Proposition 6. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and let $x \in \mathbb{R}^n$. Then f is differentiable at x iff each $f_i: \mathbb{R}^n \to \mathbb{R}$ $(1 \le i \le m)$ is differentiable at x. Moreover, if f is differentiable at x then $(Df|_x)_i = (Df_i)|_x$ for each i, and all partial derivatives of f exist at x with the matrix f of f is differentiable at f with the matrix f of f is differentiable at f.

Proof. Write

$$f(x+h) = f(x) + \alpha(h) + \varepsilon(h) ||h||$$

where $\alpha \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Then for each i with $1 \leq i \leq m$ we have

$$f_i(x+h) = f_i(x) + \alpha_i(h) + \varepsilon_i(h) ||h||$$

where $\alpha_i \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$. Now, $\varepsilon(h) \to 0$ as $h \to 0$ iff for each i we have $\varepsilon_i(h) \to 0$ as $h \to 0$, establishing the first two of the three claims above.

Finally, suppose f is differentiable at x with $Df|_{x} = \alpha$. Then, writing e_1, e_2, \ldots, e_n and e'_1, e'_2, \ldots, e'_m for the standard bases of \mathbb{R}^n and \mathbb{R}^m respectively, we have for each j that

$$\frac{f(x+te_j)-f(x)}{t} = \frac{\alpha(te_j)+\varepsilon(te_j)||te_j||}{t} = \alpha(e_j) \pm \varepsilon(te_j) \to 0$$

as $t \to 0$. Hence $D_j f$ exists for each j and

$$\alpha(e_j) = D_j f(x) = \sum_{i=1}^m D_j f_i(x) e_i'$$

as required. \Box

Proposition 7. Let $m, n \ge 1$ and let $\|.\|, \|.\|'$ denote the operator norm and the Euclidean norm respectively on $\mathcal{M}_{m \times n}$. Then there exist constants c and d (depending on m and n) such that for all $A \in \mathcal{M}_{m \times n}$ we have $\|A\| \le c\|A\|'$ and $\|A\|' \le d\|A\|$.

Proof. Let $A \in \mathcal{M}_{m \times n}$.

Let $x \in \mathbb{R}^n$ with ||x|| = 1. Then

$$||Ax||^2 = \sum_{i=1}^m ((Ax)_i)^2 = \sum_{i=1}^m \left(\sum_{j=1}^n A_{ij} x_j\right)^2 \leqslant \sum_{i=1}^m \left(\sum_{j=1}^n ||A||'\right)^2 = \sum_{i=1}^m (n||A||')^2 = mn^2 ||A||'^2$$

and so $||Ax|| \leq n\sqrt{m}||A||'$. Thus $||A|| \leq n\sqrt{m}||A||'$.

For the other way round, we have

$$||A||^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} (A_{ij})^{2} = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} (A_{ij})^{2} \right) = \sum_{j=1}^{n} ||Ae_{j}||^{2} \leqslant \sum_{j=1}^{n} ||A||^{2} = n||A||^{2}.$$

Thus $||A||' \leqslant \sqrt{n}||A||$.