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1 Topological spaces

In Part IB Analysis II you have encountered the notion of a metric space (X, d), and
what is means for a function f : (X, d) → (X ′, d′) between metric spaces to be continuous.
Namely, that given an x0 ∈ X and ϵ > 0, there exists a δ > 0 for which d(x, x0) < δ
implies d′(f(x), f(x0)) < ϵ. Looking at this definition, we see that whether a given function
f : X → X ′ is continuous or not depends on the metrics d and d′ in a very loose way: f
will be continuous for many choices of metrics on X and X ′. In other words, continuity of
f does not really depend on the metrics involved, but only on some shadow of the notion
of a metric. This shadow is the notion of a topological space. Once we describe this notion
we will see that it is not necessary to have a metric to discuss continuity, and that for
many purposes it is an irrelevance whether a given topological space comes from a metric
space or not.

1.1 Language

The generalisation from metric to topological spaces is shift the focus from distance
between points to openness of sets: we simply axiomatise how open sets behave, and
declare anything that behaves in that way to be called “open sets”. Recall that the power
set P (X) of a set X is the set of all subsets of X.

Definition. Let X be a set. A topology on X is a collection T ⊆ P (X) of subsets of X
satisfying:

(i) ∅, X ∈ T ,

(ii) if {Uα}α∈I is a collection of elements of T then
⋃
α∈I Uα ∈ T ,

(iii) if {Uα}α∈I is a finite collection of elements of T then
⋂
α∈I Uα ∈ T .

A set X with a chosen topology T is called a topological space (or simply space).
Elements of the set X are called points and elements of T are called open sets. If
x ∈ U ∈ T then we say that U is an open neighbourhood of x.

It is usually safe to leave T implicit and say “X is a topological space” to mean “X is
a set with a chosen topology TX”, and say “U is open in (or an open subset of) X” to
mean “U ∈ TX”. We generally do this, except when e.g. talking about two topologies on
the same set in which case we diligently give names to the topologies.

Whenever one introduces a kind of mathematical object, one should immediately
introduce the appropriate kind of “morphisms” between such objects. In the case of
topological spaces, these are the continuous functions:

Definition. A function f : X → Y between topological spaces is called continuous if
whenever V is an open subset of Y , the preimage f−1(V ) := {x ∈ X : f(x) ∈ V } is an
open subset of X.

Once we have a notion of “morphism” between things, we can say what it means for
two things to be the same, i.e. to be “isomorphic”. For some reason, in the subject of
Topological Spaces it is given another name:

Definition. A function f : X → Y between topological spaces is a homeomorphism if it
is continuous and has a continuous inverse. In more detail, this is the same as asking that

(i) f is a bijection, and
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(ii) f and f−1 are both continuous.

If there exists a homeomorphism between spaces X and Y we say that they are homeo-
morphic, and write X ∼= Y .

The topologies on a given set can be ordered by containment.

Definition. If T ⊆ T ′ are topologies on a set X then we say that T is coarser than T ′,
and that T ′ is finer than T .

This is precisely the same as saying that the function id : (X, T ′) → (X, T ) is
continuous.

1.1.1 Topologies from metrics

To check that we are not just playing with words, let us show that the metric space notions
of “open” and “continuous” fit into the framework developed so far. Recall from Part IB
Analysis II that U ⊆ X is open with respect to the metric d if for each x ∈ V there exists
an ϵ > 0 such that the ball Bϵ(x) := {y ∈ Y : d(x, y) < ϵ} lies within U .

Proposition. Let (X, d) be a metric space, and let Td denote the collection of subsets of
X which are open with respect to the metric d. Then Td is a topology on X. We call it
the topology on X induced by the metric d.

Proof. The set ∅ ⊆ X is open vacuously, and X ⊆ X is too because any ball in X lies in
X, so these are both in Td.

Suppose {Uα}α∈I is a collection of subsets of X in Td, and let x ∈
⋃
α∈I Uα. By

definition of the union we must have x ∈ Uβ for some β ∈ I, and as Uβ is open with
respect to the metric d there exists an ϵ > 0 such that Bϵ(x) ⊂ Uβ ⊂

⋃
α∈I Uα. This shows

that
⋃
α∈I Uα is in Td as required.

Suppose {Uα}α∈I is a finite collection of subsets of X in Td, and let x ∈
⋂
α∈I Uα.

Then for each α ∈ I we have x ∈ Uα, and as Uα is open with respect to the metric d there
exists an ϵα > 0 such that Bϵα(x) ⊂ Uα. Now ϵ := infα∈I(ϵα) > 0 as the set I is finite so
this infimum is actually the minimum of the ϵα’s. Then Bϵ(x) ⊂ Bϵα(x) ⊂ Uα for each
α ∈ I, so Bϵ(x) ⊆

⋂
α∈I Uα. This shows that

⋂
α∈I Uα is in Td as required.

That is, a metric space defines a topological space whose open sets are the sets that
were called “open” in Part IB Analysis II.

Example. The Euclidean metric d(x, y) := ||x−y|| defines a topology on Rn, the Euclidean
topology. The induced metric defines a topology on any subset of Rn. △

When we discuss sets like Rn, [0, 1]n, [0, 1), and the like we usually consider them with
this topology, unless we make a point to emphasise otherwise.

Proposition. If (X, dX) and (Y, dY ) are metric spaces, which can be considered as
topological spaces by the previous Proposition, then a function f : X → Y is continuous in
the sense of topological spaces if and only if it is continuous in the sense of metric spaces.

Proof. Suppose first that f : X → Y is continuous in the sense of metric spaces, let
V ⊆ Y be open, and in order to show that f−1(V ) is open choose a x0 ∈ f−1(V ): we
need to find a ball inside f−1(V ) centred at x0 As V is open, there is an ϵ > 0 such that
Bϵ(f(x0)) ⊆ V . As f is continuous in the sense of metric spaces, there is a δ > 0 such
that d(x, x0) < δ implies d′(f(x), f(x0)) < ϵ. In other words, f(Bδ(x0)) ⊆ Bϵ(f(x0)),
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or equivalently Bδ(x0) ⊆ f−1(Bϵ(f(x0))). But then Bδ(x0) is contained in f−1(V ), as
required.

Suppose now that f : X → Y is continuous in the sense of topological spaces, let
x0 ∈ X and ϵ > 0 be given: we need to find a δ > 0 such that d(x, x0) < δ implies
d′(f(x), f(x0)) < ϵ. As Bϵ(f(x0)) is open in Y , the set f−1(Bϵ(f(x0))) is open in X and
contains x0. By the definition of openness in the previous Proposition, there is a δ > 0
for which Bδ(x0) ⊆ f−1(Bϵ(f(x0))). Spelling this out it precisely says that if d(x, x0) < δ
then d′(f(x), f(x0)) < ϵ.

We can also characterise convergence of sequences in topological, rather than metric,
terms.

Definition. Let (X, T ) be a topological space, x1, x2, x3, . . . ∈ X be a sequence in X. We
say the sequence converges to x∞ ∈ X if for every open neighbourhood U ∋ x∞ there
is an N such that xn ∈ U for all n ≥ N . Equivalently, only finitely-many terms in the
sequence lie outside of U .

Proposition. Let (X, d) be a metric space, giving the topological space (X, Td). A
sequence {xn} in X converges to x∞ in the sense of metric spaces if an only if it converges
to {xn} in the sense of topological spaces.

Proof. Suppose first that {xn} converges to x∞ in the metric sense. If U ∋ x∞ is an open
neighbourhood then there is an ϵ > 0 such that Bϵ(x∞) ⊆ U . By metric convergence there
is an N such that d(xn, x∞) < ϵ for all n ≥ N , i.e. such that xn ∈ Bϵ(x∞) ⊆ U for all
n ≥ N . Thus the sequence converges to x∞ in the topological sense.

Suppose now that {xn} converges to x∞ in the topological sense, and let ϵ > 0. Then
Bϵ(x∞) ∋ x∞ is an open neighbourhood, so there is an N such that xn ∈ Bϵ(x∞) for all
n ≥ N , i.e. d(xn, x∞) < ϵ for all n ≥ N . Thus the sequence converges to x∞ in the metric
sense.

That is, whether a sequence in (X, d) converges (to x∞) does not actually depend on
the metric d, but only on the topology Td.

At this point we can start asking ourselves what properties of a metric space (X, d)
in fact depend on the metric, and what properties only depend on the topological space
(X, Td). The former of course means “up to isometry”, whereas the latter means “up to
homeomorphism”. We have just discussed that continuity and convergence are topological
properties: let’s see a non-topological property.

Example. Consider R and (0, 1) with their Euclidean topologies. The function

x 7−→ tan(π(x− 1/2)) : (0, 1) −→ R

is a bijection, and is continuous (in the sense of metric spaces and so also in the topological
sense). Its inverse is also continuous, by the-inverse-of-a-continuous-strictly-monotonic-
function-is-continuous from Part IA Analysis I. It therefore defines a homeomorphism
R ∼= (0, 1).

But the metric spaces (R, d) and ((0, 1), d), with the Euclidean metrics, are not isometric.
For example, the metric space (R, d) is complete, but ((0, 1), d) is not as the sequence { 1

n}
in (0, 1) is Cauchy but has no limit. So “being complete” is a property of metric spaces
that does not only depend on the induced topological space. △
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1.1.2 Further examples

There are many basic examples of topological spaces which do not obviously come from
metrics, lots of which cannot possibly come from metrics as we will see.

Example. Let X be a set. The finest topology on X is Tdisc := P (X), consisting of all
subsets. It is called the discrete topology. Any function from (X, Tdisc) to any topological
space is continuous.

This topology is induced by the metric

d(x, y) :=

{
1 x ̸= y

0 x = y
.

To see this first observe that B1/2(x) = {x} so the single points are open in the topology
induced by d, and by taking unions it follows that all subsets are open in this topology, so
it is Tdisc. △

Example. Let X be a set. The coarsest topology on X is Tindisc := {∅, X}. It is called the
indiscrete topology. Any function from any topological space to (X, Tindisc) is continuous.

Suppose that this topology arises from a metric d on X. Then for any point x the
set Bϵ(x) is open, and it is not empty as it contains x so must be the whole set X. But
then for any x, y ∈ X we have d(x, y) < ϵ for all ϵ > 0, so in fact d(x, y) = 0 by taking the
infimum. By the axioms of a metric it follows that x = y, so X has (at most) one element.

Let {xn} be a sequence in (X, Tindisc), and x∞ ∈ X be any element. This point only
has one open neighbourhood, X ∋ x∞, which contains all xn’s. According to our definition
the sequence {xn} converges to x∞ in the space (X, Tindisc): any sequence converges to
any limit in this topological space! Clearly we will have to give up on some of the intuition
we have about metric spaces. △

Example. Let X be a set. The collection

Tcofinite := {X \ F : F ⊆ X is finite} ∪ {∅}

defines the cofinite topology on X. You will verify that this is a topology on Example
Sheet 1. △

Example. Let X = {o, c}, and T := {∅, {o}, {o, c}}. This is the Sierpiński space. △

Example. Let X = R. The (right) order topology is Tord := {(a,∞) : a ∈ [−∞,∞]}. If
{(aα,∞)}α∈I is a collection of elements of Tord then⋃

α∈I
(aα,∞) = (inf

α∈I
aα,∞) ∈ Tord

and, if the set I is finite, ⋂
α∈I

(aα,∞) = (max
α∈I

aα,∞) ∈ Tord.

△
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1.1.3 (Sub)bases

It is sometimes convenient to describe a topology by giving less data that the full collection
of open sets: something like a generating collection of open sets. There are two related
ways of doing this:

Definition. Let T be a topology on X.

(i) A basis for T is a subset B ⊆ T such that every element of T is a union of elements
of B.

(ii) A subbasis for T is a subset S ⊆ T such that every element of T is obtained by
taking a union of sets obtained as finite intersections of elements of S. In other
words, T is the smallest topology containing S.

If S ⊆ P (X) is any collection of subsets of X which cover X, then there is a unique
topology T on X for which S is a subbasis: it consists of the sets obtained by taking a
union of sets obtained as finite intersections of elements of S. You will verify that this is
indeed a topology on Example Sheet 1.

(Sub)bases for a topology are convenient because we can test continuity of functions
on subbasis elements rather than arbitrary open sets.

Lemma. Let f : (X, TX) → (Y, TY ) be a function, and S ⊆ TY be a subbasis. If
f−1(U) ∈ TX for each U ∈ S, then f is continuous.

Proof. If V is open in Y then by definition of a subbasis we have V =
⋃
α∈I Vα for a set I

where Vα =
⋂
β∈Jα Uα,β for finite sets Jα and subbasis elements Uα,β ∈ S. Then

f−1(V ) =
⋃
α∈I

f−1(Vα) =
⋃
α∈I

 ⋂
β∈Jα

f−1(Uα,β)


is open, as each f−1(Uα,β) is open by assumption, and the intersections are finite.

Example. Consider Rn with the topology induced by the Euclidean metric d(x, y) =
||x− y||. The collection B of balls

Br(x) := {y ∈ Rn : d(x, y) < r}, x ∈ Rn, r > 0,

is a basis for the topology on Rn, by definition of the metric topology.
The collection C of cubes

(a1, b1)× (a2, b2)× · · · × (an, bn) := {(x1, . . . , xn) ∈ Rn : ai < xi < bi}

is also a basis for the topology on Rn. To see this, it suffices to show that for each
y = (y1, . . . , yn) ∈ Br(x), there is a V ∈ C with y ∈ V ⊆ Br(x). This can be achieved by
taking

V = (y1 − ϵ, y1 + ϵ)× · · · × (yn − ϵ, yn + ϵ)

with 0 < ϵ < r−d(x,y)√
n

, as some elementary geometry will show.

The collection QB of rationally-centred balls with rational radius

Bq(x) := {y ∈ Rn : d(x, y) < q}, x ∈ Qn, q ∈ Q>0

is also a basis for the topology on Rn, as you can check. This means that the topology on
Rn is determined by countably-many open sets. This is known as being second-countable,
and is a convenient property for a topology to have (though we will not see why in this
course). △
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1.1.4 Closed sets, closure, and interior

Definition. Let X be a topological space. We say that a set C ⊆ X is closed if X \ C is
open.

By taking complements, the defining properties of a collection of open sets defining a
topology give corresponding properties of the collection of closed sets.

Proposition. Let (X, T ) be a topological space, and F := {C ⊆ X : X \ C ∈ T } be the
collection of closed subsets. Then

(i) ∅, X ∈ F ,

(ii) if {Cα}α∈I is a collection of elements of F then
⋂
α∈I Cα ∈ F ,

(iii) if {Cα}α∈I is a finite collection of elements of F then
⋃
α∈I Cα ∈ F .

(In case it is not obvious, the intersection and union properties are reversed compared
to open sets.) We can also used closed sets to discuss continuity

Proposition. A function between topological spaces is continuous if and only if the
preimage of each closed set is closed.

You will prove these on Example Sheet 1.

Definition. Let (X, T ) be a topological space.

(i) The closure A of a subset A ⊆ X is the smallest closed subset of X containing A.
There is one because it is given by the following formula

A :=
⋂

closed sets C containing A

C.

As arbitrary intersections of closed sets are closed, this is indeed a closed set.

We say that A is dense in X if A = X.

(ii) The interior Å of a subset A ⊆ X is the largest open subset of X contained in A, i.e.

Å :=
⋃

open sets U contained in A

U.

As arbitrary intersections of open sets are open, this is indeed an open set.

This sort of definition looks very clean, but makes it difficult to answer basic questions
like: is some point x ∈ X in the closure (or interior) of A? One source of points in the
closure of a set A are its limit points:

Definition. Let X be a topological space and A ⊆ X. A point x ∈ X is a limit point of
A if there is a sequence {xn} in A converging to x.

We have seen that in general sequences can converge to more than one point, which
suggests we should treat this concept a bit cautiously.

Proposition. If C ⊆ X is a closed subset of a topological space, then its limit points are
in C.
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Proof. Let {xn} be a sequence in C converging to x ∈ X. If x ̸∈ C then x ∈ X \ C is an
open neighbourhood of x, so by the definition of convergence xn ∈ X \ C for all large
enough n, a contradiction.

This means that every limit point of a subset A ⊆ X lies in its closure A.

Example. The subset Q ⊂ R has Q = R, because every real number is the limit of a
sequence of rational numbers. That is, Q is dense in R. △

Example. The closure of the subset (0, 1) ⊂ R is [0, 1]. To see this, observe that 0 is
the limit of the sequence { 1

n+1} in (0, 1), and 1 is the limit of the sequence {1− 1
n+1} in

(0, 1), so [0, 1] ⊆ (0, 1). But [0, 1] is a closed set containing (0, 1), so also (0, 1) ⊆ [0, 1],
and hence they are equal. △

In a metric space you have seen in Part IB Analysis II that the closed sets are exactly
those which contain all their limit points. This is not the case in general.

Example. Consider the cocountable topology on R, i.e.

Tcocountable := {R \ F : F ⊆ R is countable} ∪ {∅}.

You can check that this is indeed a topology, similar to the cofinite topology. The closed
sets in this space are precisely R and the countable sets.

If {xn} is a sequence in this space, and x ∈ R is a point, then

{x} ∪ (R \ {xn : n ∈ N})

is an open neighbourhood of x. This contains all but finitely-many elements of the sequence
xn if and only if the sequence is eventually constantly x. Thus the only convergent
sequences in (R, Tcocountable) are the eventually constant sequences, and they converge to
their eventually constant value. It follows that the limit points of a set A are just the
points in A. But if A is not countable then its closure must be R. △

The overall lesson here is that although sequences and their limits tell us much about
metric spaces, they are not a refined enough notion to probe general topological spaces.
We will therefore stop discussing them.

1.1.5 Hausdorffness

We have seen that in the topological space (X, Tindisc) a sequence can and does have more
than one limit point; the same is true for some of the other topologies we have defined.
This is not so in a metric space: why not?

Definition. A topological space (X, T ) is Hausdorff if for each pair x, y ∈ X of distinct
points, there are open neighbourhoods U ∋ x and V ∋ y which are disjoint.

It is obligatory to include the following instructive picture:

x y
U

V
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Hausdorffness is the most important “separation condition” on topological spaces, and
is the only one we will discuss in this course. Using your intuition from metric spaces it
seems like it should obviously be true: Felix Hausdorff certainly thought so, and included
it in his original (1914) definition of a topological space. These days we do not include it
as an axiom, but as a very convenient property.

Proposition. A topological space arising from a metric space is Hausdorff.

Proof. Let d be a metric on X giving a topology T . If x, y ∈ X are distinct then
δ := d(x, y) > 0, so consider the open neighbourhoods Bδ/2(x) ∋ x and Bδ/2(y) ∋ y.
Suppose for a contradiction that the open neighbourhoods Bδ/2(x) and Bδ/2(y) are not
disjoint, and choose a z ∈ Bδ/2(x) ∩ Bδ/2(y) then d(x, z) < δ/2 and d(z, y) < δ/2 so by
the triangle inequality d(x, y) ≤ d(x, z) + d(z, y) < δ, a contradiction.

Proposition. A sequence in a Hausdorff topological space has at most one limit.

Proof. Suppose that x∞ and x′∞ are both limits of the sequence {xn}, and are distinct. As
the space is Hausdorff, there are disjoint open neighbourhoods U ∋ x∞ and V ∋ x′∞. As
{xn} converges to x∞, only finitely-many xn’s lie outside of U , but then only finitely-many
can lie inside of V , so the sequence cannot in fact converge to x′∞.

Proposition. In a Hausdorff topological space the one-point sets are closed.

Proof. Let X be a Hausdorff space and x ∈ X. For each y ̸= x we can find disjoint open
neighbourhoods U ∋ y and Vy ∋ x, and in particular X \U is a closed set containing x and

not containing y. Thus y is not in the closure {x}: this goes for all y ̸= x, so {x} = {x} is
closed.

Most of the non-metric topologies we have discussed are not Hausdorff. The indiscrete
topology clearly is not (unless the space only has one point).

Example. Consider the cofinite topology (X, Tcofinite). An open neighbourhood of x ∈ X
is a set of the form X \ F with F finite and x ̸∈ F . If y ∈ X is another point, and X \G
is an open neighbourhood of y (so G is finite and y ̸∈ G), then

(X \ F ) ∩ (X \G) = X \ (F ∪G).

As F and G are finite, if X is infinite then this set must be non-empty, so if X is infinite
then (X, Tcofinite) is not Hausdorff as any open neighbourhoods of the distinct points x
and y must intersect.

(If X is finite one checks that (X, Tcofinite) = (X, Tdisc); we have seen that this topology
is induced by a metric, so is Hausdorff.) △

1.2 Generating new topological spaces

It is relatively infrequent that we describe topological spaces by saying what all the open
sets are. More commonly, we use constructions that make new topological spaces out of
old.
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1.2.1 The subspace topology

Definition. Let (X, TX) be a topological space, and Y ⊆ X be a subset. The subspace
topology on Y is the set

T |Y := {U ∩ Y : U ∈ TX}.

A subspace of (X, TX) is a subset of X equipped with the subspace topology.

When we are leaving topologies implicit, writing Y ⊆ X means “Y is a subspace of
X”.

Proposition. This is indeed a topology.

Proof. It contains the sets ∅ = ∅ ∩ Y and Y = X ∩ Y . If {Uα ∩ Y }α∈I is a collection of
elements of T |Y then ⋃

α∈I
(Uα ∩ Y ) =

(⋃
α∈I

Uα

)
∩ Y

which lies in T |Y as
⋃
α∈I Uα ∈ TX . If the set I is finite then

⋂
α∈I

(Uα ∩ Y ) =

(⋂
α∈I

Uα

)
∩ Y

which lies in T |Y as
⋂
α∈I Uα ∈ TX .

Proposition. The inclusion i : (Y, T |Y ) → (X, TX) is continuous. In fact, T |Y is the
coarsest topology on Y for which i is continuous.

Proof. If U is open in (X, TX) then i−1(U) = U ∩ Y is open in (Y, T |Y ) by definition, so i
is indeed continuous.

If T ′ ⊂ T |Y is a proper subset, then there is a set of the form U ∩Y , with U open in X,
which is not in T ′. But then i : (Y, T ′) → (X, TX) is not continuous, as i−1(U) = U ∩ Y is
not open in (Y, T ′). So i is not continuous in any strictly coarser topology than T |Y .

We could have instead defined the subspace topology as: the coarsest topology on
Y for which the inclusion i : Y → X is continuous. Why does this sentence actually
define anything? There certainly exists some topology on Y for which i is continuous (the
discrete topology), and if there are two topologies on Y for which i is continuous then
their intersection is also a topology for which i is continuous: thus there exists a smallest
(=coarsest) topology for which i is continuous. With this definition it becomes an exercise
to work out that the open sets in this coarsest topology must be exactly those of the form
U ∩ Y for U open in X.

This is perhaps a different way of making definitions than you are used to. It is a
definition via the desirable properties that the thing is supposed to satisfy (followed by an
argument that such a thing exists), rather than by giving a construction of it (followed by
checking that the construction has desirable properties). This way of thinking requires
some getting used to, but is powerful.

Here is another characterisation of the subspace topology, along similar lines. For any
topological space Z, a function f : (Z, TZ) → (Y, T |Y ) is continuous if and only if the
composition

(Z, TZ)
f−→ (Y, T |Y )

i−→ (X, TX)

is continuous. We can phrase this as the following “universal property”:
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To give a continuous function f from a space Z into the subspace Y is exactly
the same as giving a continuous function f̃ : Z → X such that f̃ = i ◦ f , i.e.
such that f̃ happens to land in Y .

There is an elementary observation about the subspace topology which is used frequently
and often implicitly. If (X, TX) is a topological space, and U ⊆ X is an open subset with
the subspace topology, then open subsets of U are also open in X. This is because an
open subset of U is precisely U ∩ V for some open subset of V , so is an intersection of
open subsets of X and hence is open. Similarly, if C ⊆ X is a closed subset with the
subspace topology, then closed subsets of C are also closed in X.

The following, especially part (ii), is often a convenient way of checking that functions
are continuous, by checking that they are on certain subspaces.

Lemma (Gluing Lemma). Let f : X → Y be a function between topological spaces.

(i) If there is a cover {Uα}α∈I of X by open sets and the restrictions f |Uα : Uα → Y are
continuous for each α ∈ I, then f is continuous.

(ii) If there is a finite cover {Cα}α∈I of X by closed sets and the restrictions f |Cα : Cα →
Y are continuous for each α ∈ I, then f is continuous.

Proof. Let V ⊆ Y be open. As the Uα cover we have

f−1(V ) =
⋃
α∈I

f−1(V ) ∩ Uα =
⋃
α∈I

f |−1
Uα

(V ),

and as each f |Uα is continuous f |−1
Uα

(V ) is open in Uα. As Uα is open, f |−1
Uα

(V ) is also open
in X, so the above shows that f−1(V ) is a union of open sets and so open.

The closed set version is analogous, using that finite unions of closed sets are closed.

Example. The subset

Sn := {x ∈ Rn+1 : ||x|| = 1} ⊂ Rn+1

is called the n-dimensional sphere or n-sphere, and is given the subspace topology from
the Euclidean topology on Rn+1. Equivalently, the Euclidean metric on Rn+1 induces a
metric on the subset Sn and we can give it the metric topology: these are the same. When
n = 1 this is the unit circle in the plane.

The subset

Dn := {x ∈ Rn : ||x|| ≤ 1} ⊂ Rn

is called the n-dimensional disc or n-disc, again with the subspace topology. It contains
Sn−1 as a subspace. △

1.2.2 The quotient topology

Definition. Let (X, TX) be a topological space, and ∼ be an equivalence relation on
X with set of equivalence classes X/∼, and quotient map π : X → X/∼. The quotient
topology on X/∼ is

TX/∼ := {U ⊆ X/∼ : π−1(U) ∈ TX}.

Proposition. This is indeed a topology.

10



Proof. As π−1(∅) = ∅ ∈ TX and π−1(X/∼) = X ∈ TX , TX/∼ contains ∅ and X/∼.

If {Uα} is a collection of elements of TX/∼, then

π−1

(⋃
α∈I

Uα

)
=
⋃
α∈I

π−1(Uα)

is a union of elements in TX so is in TX , and hence
⋃
α∈I Uα ∈ TX/∼ .

If {Uα} is a finite collection of elements of TX/∼, then

π−1

(⋂
α∈I

Uα

)
=
⋂
α∈I

π−1(Uα)

is a finite intersection of elements in TX so is in TX , and hence
⋂
α∈I Uα ∈ TX/∼ .

Proposition. The quotient map π : (X, TX) → (X/∼, TX/∼) is continuous. In fact TX/∼
is the finest topology on X/∼ for which π is continuous.

Proof. This is a tautology: we defined the open sets in X/∼ to be exactly those whose
preimage is open.

This discussion is completely dual to the subspace topology, with the injection i : Y →
X replaced with the surjection π : X → X/∼ and “coarsest” replaced by “finest”. In fact
mentioning equivalence relations is needlessly complicated: we could have taken the input
data to be a topological space X and a surjection π : X → Z, and given Z the finest
topology for which π is continuous. A surjection π : X → Z tautologically defines an
equivalence relation on X by x ∼ x′ ⇔ π(x) = π(x′), and there is a canonical induced
bijection [x] 7→ π(x) : X/∼ → Z, so this is not really any different to what we have done
but it makes the analogy with the subspace topology clearer.

There is an alternative characterisation the quotient topology, analogous to what
we said about the subspace topology. For any topological space (Z, TZ), a function
f : (X/∼, TX/∼) → (Z, TZ) is continuous if and only if the composition

(X, TX)
π−→ (X/∼, TX/∼)

f−→ (Z, TZ)

is continuous. This is tremendously useful, and is the (only) way one should think about
quotient spaces. Namely, its “universal property” is:

To give a continuous function f out of the quotient space X/∼ to a space

Z is exactly the same as giving a continuous function f̃ : X → Z such that
f̃(x) = f̃(x′) whenever x ∼ x′.

The condition “f̃(x) = f̃(x′) whenever x ∼ x′” is exactly saying that f̃ = f ◦ π for a
(unique) function f : X/∼ → Z, and the quotient topology is precisely designed so that f

is continuous whenever f̃ is.

This gives the following convenient way to identify quotient spaces.

Definition. A continuous map f : X → Y is a quotient map if it is surjective and

U ∈ TY ⇐⇒ f−1(U) ∈ TX .

11



If f : X → Y is a quotient map, and ∼ is the equivalence relation on X given by

x ∼ x′ ⇐⇒ f(x) = f(x′),

then the above discussion gives a continuous function f̃ : X/∼ → Y . As well as being

continuous this is surjective (as f was surjective), injective (as f̃([x]) = f̃([x′]) means
f(x) = f(x′) so means [x] = [x′]), and in fact a homeomorphism as if U ⊆ Xsim is open
then f̃(U) = f(π−1(U)) is open in Y because π−1(U) is open in X and f was a quotient
map.

Example. Consider the equivalence relation on R given by x ∼ y ⇔ x − y ∈ Z. The
function

f : R −→ R2

x 7−→ (sin(2πx), cos(2πx))

is continuous by Part IA Analysis I. This function has image in the subspace S1 ⊂ R2, to
by the defining property of the subspace topology it is also continuous when considered as a
function f ′ : R → S1. If x ∼ y then f ′(x) = f ′(y), by the periodicity of these trigonometric
functions, so f ′ induces a continuous function f ′′ : R/∼ → S1. This is a bijection. One
can laboriously check that it is a homeomorphism, using the explicit description of the
quotient topology, but later in the course we will see a trick that immediately implies that
f ′′ is a homeomorphism. △

Example. Consider the subspace X = R× {0, 1} ⊂ R2, and the equivalence relation

(x, i) ∼ (y, j) ⇔ (x, i) = (y, j) or x = y ̸= 0.

The quotient space L := X/∼ is obtained by identifying all non-zero numbers on two copies
of the real line, and is called the line with two origins. It is undrawable, but perhaps we
can think of it as something like:

The points [(0, 0)] and [(0, 1)] are distinct. An open neighbourhood [(0, 0)] ∈ U ⊆ L
is a set such that π−1(U) ⊆ R × {0, 1} is open, and contains (0, 0) ∈ X. Thus π−1(U)
must contain (−ϵ, ϵ)× {0} for some ϵ > 0, but it must be a union of equivalences classes
for ∼ so must also contain ((−ϵ, 0) ∪ (0, ϵ)) × {1}. Similarly if [(0, 1)] ∈ V is an open
neighborhood then π−1(V ) must contain (−δ, δ)×{1} for some δ > 0, and so must intersect
((−ϵ, 0) ∪ (0, ϵ))× {1}. It follows that U and V must intersect, i.e. L is not Hausdorff.

As a subspace of a Hausdorff space is again Hausdorff, L cannot be realised as a
subspace of any Hausdorff space: in particular it cannot be realised as a subspace of any
metric space. △

1.2.3 The product topology

Recall that the product of two sets X and Y is

X × Y := {(x, y) : x ∈ X, y ∈ Y },

and there are projection functions

πX : X × Y −→ X πY : X × Y −→ Y

(x, y) 7−→ x (x, y) 7−→ y.

12



Definition. Let (X, TX) and (Y, TY ) be topological spaces. The product topology TX×Y
on X × Y consists those subsets U ⊆ X × Y such that for each (x, y) ∈ U there are open
neighbourhoods x ∈ V ∈ TX and y ∈W ∈ TY such that V ×W ⊆ U .

Proposition. This is indeed a topology. The sets V ×W with V ∈ TX and W ∈ TY form
a basis for the topology TX×Y .

Proof. We have ∅ ∈ TX×Y as there is nothing to check, and X × Y ∈ TX×Y as X ∈ TX
and Y ∈ TY .

Let {Uα}α∈I be a collection of elements of TX×Y , and (x, y) ∈
⋃
α∈I Uα. Then

(x, y) ∈ Uβ for some β ∈ I, and so there exist open neighbourhood x ∈ V ∈ TX and
y ∈W ∈ TY such that (x, y) ∈ V ×W ⊂ Uβ ⊂

⋃
α∈I Uα. Thus

⋃
α∈I Uα ∈ TX×Y .

Let {Uα}α∈I be a finite collection of elements of TX×Y , and (x, y) ∈
⋂
α∈I Uα. Then

for each α ∈ I there are open neighbourhoods x ∈ Vα ∈ TX and y ∈ Wα ∈ TY such
that (x, y) ∈ Vα × Wα ⊆ Uα. But then (x, y) ∈ (

⋂
α∈I Vα) × (

⋂
α∈IWα) ⊂

⋂
α∈I Uα

too, with
⋂
α∈I Vα ∈ TX and

⋂
α∈IWα ∈ TY because they are finite intersections. Thus⋂

α∈I Uα ∈ TX×Y .

The sets V ×W are a basis for the product topology by definition.

Proposition. The projection maps

πX : (X × Y, TX×Y ) −→ (X, TX) πY : (X × Y, TX×Y ) −→ (Y, TY )

are both continuous. In fact, TX×Y is the coarsest topology on X × Y for which they are
both continuous.

Proof. For U ∈ TX we have π−1
X (U) = U × Y which is open in the product topology, so

πX is indeed continuous; similarly with πY .

Let T ′
X×Y be some topology for which the two projection maps are continuous. For

U ∈ TX and V ∈ TY the sets U × Y = π−1
X (U) and X × V = π−1

Y (V ) are in T ′
X×Y , and

hence so is their intersection U × V . All unions of such sets are then also in T ′
X×Y , so

T ′
X×Y contains TX×Y as required.

Just like the subspace and quotient topologies, there is an alternative characterisation
of the product topology. For any topological space (Z, TZ), a function f : (Z, TZ) →
(X × Y, TX×Y ) is continuous if and only if the two compositions

(Z, TZ)
f−→ (X × Y, TX×Y )

πX−→ (X, TX) (Z, TZ)
f−→ (X × Y, TX×Y )

πY−→ (Y, TY )

are continuous. In other words its “universal property” is:

To give a continuous function f from a space Z into the product space X × Y
is exactly the same as giving a pair of continuous functions fX : Z → X and
fY : Z → Y .

Example. The Euclidean topology on R2 = R× R is the same as the product topology
coming from the Euclidean topology on R twice. △
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2 Connectedness and components

The intermediate value theorem from Part IA Analysis I says that if f : [a, b] → R is
a continuous function such that f(a) < 0 < f(b), then there is an x ∈ [a, b] such that
f(x) = 0. This is presented as a theorem about continuous functions, but in a sense it
isn’t: if f : [a, a+b2 ) ∪ (a+b2 , b] → R is a continuous function with the same properties then
the conclusion need not hold. Instead, it can be considered as theorem about the interval
[a, b]. Namely, it is the theorem that [a, b] is connected.

2.1 Connectedness

Definition. A topological space X is disconnected if it can be written as X = U ∪V where
U and V are disjoint non-empty open subsets. It is connected if it is not disconnected.

Example. A space with the coarse topology is connected. △

Example. A discrete space with more than one point is disconnected. △

Example. The subspace X = [0, 12)∪(12 , 1] of R is disconnected, as the sets [0, 12) and (12 , 1]
are disjoint, non-empty, and open in X (as they are X ∩ (−∞, 12) and X ∩ (12 ,∞)). △

Shortly we will show that [0, 1] is connected, but first let us discuss another way of
describing (dis)connectivity, in terms of continuous functions instead of open sets.

Proposition. A space X is disconnected if and only if there is a surjective continuous
function f : X → {0, 1}, where the latter has the discrete topology.

Proof. If X is disconnected with X = U ∪ V a decomposition into disjoint non-empty
open subsets, define the function

f(x) =

{
0 x ∈ U

1 x ∈ V.

The open subsets of {0, 1} are ∅, {0}, {1}, {0, 1}, and their preimages are ∅, U, V, U ∪ V
which are all open, so f is continuous. It is surjective as U and V are non-empty.

Conversely, if such an f exists then U := f−1(0) and f−1(1) gives a decomposition of
X into disjoint non-empty open subsets.

Theorem. The spaces [0, 1], [0, 1), and (0, 1) are connected.

Proof. For simplicity we consider [0, 1], but the same applies to the other cases. If it
were disconnected, there would be a continuous surjective function f : [0, 1] → {0, 1}.
Compose this with the inclusion i : {0, 1} → R as a subspace, to get a continuous function
i ◦ f : [0, 1] → R taking the values 0 and 1. By the intermediate value theorem there is a
x ∈ [0, 1] such that i ◦ f(x) = 1

2 , but this contradicts the fact that f only takes values 0
and 1.

Here we have used the intermediate value theorem to prove connectedness, but this is
not surprising because connectedness quickly leads to a generalised form of the intermediate
value theorem as follows.

Theorem (Intermediate Value Theorem). Let X be connected and f : X → R be a
continuous function. If there are points x0, x1 ∈ X such that f(x0) < 0 < f(x1) then
there is an x ∈ X with f(x) = 0.
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Proof. Consider the open sets U := f−1(−∞, 0) and V := f−1(0,∞), which are disjoint
and non-empty (as x0 ∈ U and x1 ∈ V ). If there were no x ∈ X such that f(x) = 0, then
U and V cover X and so X is disconnected: this is not the case, so there must exist an
x ∈ X with f(x) = 0.

In fact, connectedness is equivalent to “satisfies the conclusion of the Intermediate
Value Theorem”: if X is not connected, and f : X → {0, 1} is a continuous surjection,
then f − 1

2 : X → R is a continuous function which takes the values ±1
2 but does not take

the value 0.

To finish we show that the continuous image of a connected space is connected:

Proposition. If f : X → Y is a continuous surjection and X is connected, then Y is
connected.

Proof. We prove the contrapositive. If Y is disconnected let g : Y → {0, 1} be a continuous
surjection: then g ◦ f : X → {0, 1} is a continuous surjection, so X is disconnected.

Corollary. If f : X → Y is a continuous function and X is connected, then Im(f) is
connected.

Proof. The function f induces a continuous surjection x 7→ f(x) : X → Im(f), to which
we apply the previous Proposition.

Connectedness is an intrinsic property of a topological space, which we can sometimes
use to show that spaces are not homeomorphic to each other. Sometimes this involves a
little trickery, as follows.

Lemma. If f : X → Y is a homeomorphism and Z ⊆ X is a subspace, then f |Z : Z → f(Z)
is a homeomorphism.

Proof. The function f |Z : Z → f(Z) is continuous by the defining property of the subspace
topology. Let g : Y → X be the inverse to f . Then g sends f(Z) into Z, so have a function
g|f(Z) : f(Z) → Z which is also continuous: it is inverse to f |Z .

Example. The spaces [0, 1] and (0, 1) are not homeomorphic. If f : [0, 1] → (0, 1) was
a homeomorphism, then restricting to [0, 1) gives a homeomorphism f |[0,1) : [0, 1) →
f([0, 1)) = (0, 1) \ f(1). But [0, 1) is connected, and (0, 1) \ f(1) is not connected.

By similar games, no two of [0, 1], [0, 1), (0, 1) are homeomorphic. △

Example. The circle S1 ⊂ C is not homeomorphic to R. To see this, we notice that
S1 \ {1} is homeomorphic to (0, 1) via t 7→ e2πit, so is connected. But if we remove any
point from R then it becomes disconnected. △

The following is often convenient for checking connectedness:

Proposition. If {Xα ⊆ X : α ∈ I} is a collection of subspaces of X such that each Xα is
connected and

⋂
α∈I Xα is non-empty, then

⋃
α∈I Xα is connected.

Proof. We may as well suppose X =
⋃
α∈I Xα, so let X = U ∪ V be a decomposition into

disjoint open subsets. To show that X is connected we must show that one of U or V is
empty. Each Xα is connected, so one of Xα ∩ U and Xα ∩ V must be empty, i.e. each Xα

must lie in V or in U . But the Xα’s have a point in common, so either they all lie in U or
they all lie in V . But then one of U or V is empty.
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As an application, and a final source of examples, products of connected spaces are
connected.

Corollary. If X and Y are connected spaces then X × Y is connected.

Proof. If either X or Y is empty so is the product, so it is connected, and hence we suppose
both are non-empty. Fix an x ∈ X, and consider the sets Cy := X × {y} ∪ {x} × Y . This
is connected by the Proposition, as X × {y} ∼= X and {x} × Y ∼= Y are connected, and
their intersection is {(x, y)}. Now {Cy : y ∈ Y } is a collection of connected spaces which
cover X × Y , and

⋂
y∈Y Cy = {x} × Y is non-empty by assumption, so the Proposition

applies to show that X × Y is connected.

2.2 Path-connectedness

A different notion of “connectedness” is: we can get from any point of X to any other
point by a continuous path. This is perhaps closer to our intuition of what “connected”
should mean, but is a little odd in that it gives the interval [0, 1] a special status. We shall
see that this notion is not quite the same as connectedness, but in some situations is an
appropriate replacement. Let us first make it precise.

Definition. If X is a topological space and x0, x1 ∈ X, then a path from x0 to x1 is a
continuous function γ : [0, 1] → X such that γ(0) = x0 and γ(1) = x1.

Definition. A topological space X is path-connected if for each pair x0, x1 ∈ X there is a
path from x0 to x1.

Example. The spaces (0, 1), (0, 1], [0, 1), [0, 1], R are all path-connected. To see this, for
points x0, x1 in any of these spaces we can take the linear interpolation γ(t) = (1−t)·x0+t·x1
which gives a path from x0 to x1.

For the same reason Rn is path-connected, as is any convex subset X ⊂ Rn. (This
is because the rigorous definition of convex is that (1 − t) · x0 + t · x1 ∈ X whenever
x0, x1 ∈ X and t ∈ [0, 1].) △

Example. R2 \ {0} is path-connected. In this case we cannot wrote down a general
formula for the path between any two points, but have to consider cases. If x0 and x1 do
not lie on a line through the origin, then we may linearly interpolate between them as
above. If they do, then we should use a bent line in order to miss the origin. △

Proposition. If X is path-connected then it is connected.

Proof. Let X be path-connected, and suppose for a contradiction that it is disconnected:
let f : X → {0, 1} be a continuous surjective function, with f(x0) = 0 and f(x1) = 1. Let
γ : [0, 1] → X be a path from x0 to x1. Then f ◦ γ : [0, 1] → {0, 1} is continuous and
surjective (as it sends 0 to 0 and 1 to 1), so [0, 1] is disconnected. This is a contradiction.

Example. R2 is not homeomorphic to R. If it were, then removing a point shows that
R2 \ {0} is homeomorphic to R \ {t} for some t, but R \ {t} is disconnected and so not
path-connected, and R2 \ {0} is path-connected by the previous Example. △

It is easy to see that the product of two path-connected spaces is path-connected.

2.3 Components

If a space is not (path-)connected then it can be decomposed into disjoint subspaces which
are.
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2.3.1 Path components

Let X be a topological space. Define a relation ∼ on the set X by saying that x ∼ y
whenever there is a path from x to y.

Lemma. ∼ is an equivalence relation.

Proof. We verify the three axioms of an equivalence relation.

(i) (Reflexivity) For x ∈ X we have the path γ(t) = x in X, which shows that x ∼ x.

(ii) (Symmetry) If x ∼ y, meaning that there is a path γ : [0, 1] → X from x to y, then
γ−1(t) := γ(1− t) is a path from y to x, so y ∼ x.

(iii) (Transitivity) If x ∼ y and y ∼ z then there are paths γ from x to y and γ′ from y
to z. Then γ · γ′ defined by

(γ · γ′)(t) :=

{
γ(2t) 0 ≤ t ≤ 1/2

γ′(2t− 1) 1/2 ≤ t ≤ 1

is a path from x to z. (It is continuous by an application of the Gluing Lemma to
the closed cover {[0, 1/2], [1/2, 1]} of [0, 1].) Thus x ∼ z.

Definition. The path components of X are the equivalence classes of ∼.

It is tautological that each path component of X is path-connected.

2.3.2 Connected components

We wish to mimic the above, so we replace (image of a) path by connected subspace: define
a relation ≈ on X by x ≈ y whenever there is a connected subspace C ⊆ X containing
both x and y.

Lemma. ≈ is an equivalence relation.

Proof. We verify the three axioms of an equivalence relation. Reflexivity and Symmetry
are built into the definition. For Transitivity, suppose that x ≈ y and y ≈ z, that C1 is a
connected subspace containing x and y, and that C2 is a connected subspace containing y
and z. Then C1 ∪ C2 is a connected subspace (it is the union of connected spaces with
non-empty intersection) and contains x and z, so x ≈ z.

Definition. The connected components of X are the equivalence classes of ≈.

Proposition. Each connected component of X is indeed connected.

Proof. Let C ⊂ X be a connected component, i.e. an equivalence class with respect to
≈. For a contradiction, suppose that f : C → {0, 1} is a continuous surjection, and let
f(x) = 0 and f(y) = 1. As x ≈ y, there is a connected subspace D such that x, y ∈ D ⊆ X.
But now each d ∈ D has d ≈ x too, as x and d both lie in the connected subspace D, so
d ∈ C and hence D ⊆ C. But then f |D : D → {0, 1} is still a continuous surjection, which
is a contradiction as D is connected.

Example. The space X = (−∞, 0) ∪ (0,∞) has two connected components, (−∞, 0) and
(0,∞), which are also the path components. △
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Example. The subspace X = Q ⊂ R has connected components the one-point sets
{x}. △

As a more sophisticated example, where one sees the difference between connectivity
and path-connectivity, we have the following.

Example (Topologists’ sine curve). Let

S := {(x, sin( 1x)) ∈ R2 : 0 < x ≤ 1}.

This is not a closed set, and its closure is the set

S = S ∪ ({0} × [−1, 1]).

As S is the continuous image of (0, 1], it is path-connected and so connected. By the
Lemma below it follows that S is connected. We will show that S is not path-connected.

It suffices to show that there is no path γ : [0, 1] → S with γ(0) ∈ {0} × [−1, 1] and
γ(1) ∈ S. Suppose γ is such a path. As {0} × [−1, 1] is closed, γ−1({0} × [−1, 1]) is
closed in [0, 1] so has a largest element t. Then γ|[t,1] : [t, 1] → S is a path which starts in
{0} × [−1, 1] and sends all other points into S. Identifying [t, 1] ∼= [0, 1] we may suppose
that γ has this property.

Let us write γ(s) = (x(s), y(s)), so that x(0) = 0 and for s > 0 we have y(s) =
sin(1/x(s)). We will find a sequence sn ↘ 0 in [0, 1] so that y(sn) = (−1)n, which
contradicts the existence of a continuous function y defined on [0, 1]. To do so, for
each n choose a 0 = x(0) < u < x(1/n) such that sin(1/u) = (−1)n. Then, by the
Intermediate Value Theorem, there is a 0 < sn < 1/n such that x(sn) = u, and hence
y(sn) = sin(1/x(sn)) = sin(1/u) = (−1)n. △

Lemma. The closure of a connected subspace is connected.

Proof. Let C ⊂ X be a connected subspace, C ⊂ C its closure. Let C = U ∪ V be a
decomposition into two disjoint open non-empty subsets. Then C ∩ U and C ∩ V are two
disjoint open subsets of C, and as C is connected one of them must be empty. Without
loss of generality we may suppose that C ∩V = ∅, so C ⊂ U . But U and V are also closed
in C, so are closed in X, and hence C ⊂ U ⊊ C is a properly smaller closed set containing
C, a contradiction.

3 Compactness

The concepts introduced so far have largely been generalisations of concepts for which you
already had some intuition from Part IA Analysis I and Part IB Analysis II (“topological
spaces” generalise “metric spaces”, “continuity” generalises “continuity”, “connectedness”
generalises “the Intermediate Value Theorem is true”, ...). In Part IB Analysis II you have
seen the notion of sequential compactness: a metric space is sequentially compact if every
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sequence has a convergent subsequence. We have by now discussed sequences and their
convergence in any topological space, so we may repeat this definition verbatim to say
what it means for a topological space to be sequentially compact. However, we have also
seen that sequences can be inadequate to probe topological spaces in general (recall the
cocountable topology on R). The solution to this is the unqualified notion of compactness,
which we will now introduce. It is much less intuitive than sequential compactness, and
will take some getting used to.

Definition. A collection X ⊂ P (X) of subsets of a topological space X covers (or is a
cover) if

⋃
S∈X S = X, i.e. every point of X lies in at least one element of X . An open

cover U of X is a cover consisting of open subsets of X. A subcover of X is a X ′ ⊆ X
which is again a cover.

Definition. A topological space X is compact if every open cover of X has a finite
subcover, i.e. if U is an open cover of X then there is a finite subset U ′ ⊆ U which is again
a cover.

Example. R (with the Euclidean topology) is not compact. To see this note that the
(infinitely many!) open sets {(n− 1, n+ 1) : n ∈ Z} cover R, but the integer m ∈ Z ⊂ R
lies only in the set (m− 1,m+ 1), so no proper subcollection of these open sets covers
R. △

Example. If (X, T ) is a topological space such that X is finite then it is compact. To
see this let U be an open cover. For each x ∈ X we have x ∈ Ux for some Ux ∈ U . Then
U ′ := {Ux : x ∈ X}, which is finite as it has at most |X| elements, is a finite subcover. △

Example. The subspace

X := {0} ∪ { 1
n : n = 1, 2, 3, . . .} ⊂ R

is compact. To see this, suppose U is an open cover of X. The point 0 ∈ X must lie in
some U0 ∈ U , and as U0 is an open set it follows by definition of the subspace topology
that X ∩Bϵ(0) ⊂ U0 for some ϵ > 0. Thus 1

n ∈ U0 as long as 1
n < ϵ, i.e. as long as n > 1

ϵ .
This leaves finitely-many points 1

m with 1 ≤ m ≤ 1
ϵ perhaps uncovered by U0, so we choose

sets U1, U2, . . . , U⌊1/ϵ⌋ ∈ U with 1
m ∈ Um for 1 ≤ m ≤ 1

ϵ . Then {U0, U1, . . . , U⌊1/ϵ⌋} ⊂ U is
a finite subcover.

Conversely, the subspace

Y := { 1
n : n = 1, 2, 3, . . .} ⊂ R

is not compact. In this space every 1-point subset is open, as { 1
n} = Y ∩ ( 1

n+1 ,
1

n−1), so
every set is open: it has the discrete topology. But then it has an (infinite!) open cover
{{ 1

n} : n = 1, 2, 3, . . .} which has no proper subcover at all. △

The following exploits a similar principle to the (first part of the) previous example:
namely that [0, 1] ⊂ R is bounded and closed (=contains all its limit points). We will see
later that the same principle extends to all bounded and closed subspaces of Euclidean
spaces.

Theorem. The space [0, 1] is compact.

Proof. Let U be an open cover of [0, 1]. Consider

A := {a ∈ [0, 1] : there is a finite U ′ ⊆ U whose union contains [0, a]}.
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First note that if 0 ≤ a ≤ b and b ∈ A then a ∈ A. Second note that 0 ∈ A, as there is
some 0 ∈ U0 ∈ U so we may take U ′ := {U0}. As the set of real numbers A is non-empty,
it has a supremum α ∈ [0, 1]. We wish to show that α = 1.

Let α ∈ Uα ∈ U . Supposing that α < 1 then there is an ϵ > 0 such that α ∈
(α − ϵ, α + ϵ) ⊂ Uα. But α − ϵ < α so by definition of supremum there exists an
α − ϵ < a ≤ α with a ∈ A. But then α − ϵ ∈ A too, so there is a finite collection
U1, . . . , Un ∈ U such that U1 ∪ · · · ∪Un ⊃ [0, α− ϵ]. Adding Uα to this collection, we have

U1 ∪ · · · ∪ Un ∪ Uα ⊇ [0, α− ϵ] ∪ (α− ϵ, α+ ϵ) = [0, α+ ϵ) ⊇ [0, α+ ϵ/2].

Thus α+ ϵ/2 ∈ A, but α was the supremum of A, giving a contradiction. Thus α = 1.

3.1 Elementary properties of compactness

Proposition. If X is a compact topological space and C ⊆ X is a closed subspace, then
C is compact.

Proof. Open sets in C have the form C ∩U for U open in X. So suppose {C ∩Uα : α ∈ I}
is an open cover of C: we shall produce a finite subcover. Now X \ C is open, because C
is closed, and

{X \ C} ∪ {Uα : α ∈ I}

is an open cover of X, because
⋃
α∈I Uα ⊇

⋃
α∈I Uα ∩ C = C. As X is compact this has a

finite subcover, which we may as well suppose has the form

{X \ C} ∪ {Uα : α ∈ I ′}

for I ′ ⊆ I finite (if X \ C is not part of the subcover we may as well add it). Intersecting
with C it follows that {C ∩ Uα : α ∈ I ′} is a finite subcover of {C ∩ Uα : α ∈ I}.

Proposition. If X is a Hausdorff topological space and C ⊆ X is a compact subspace,
then it is closed.

Proof. We will show that U := X \ C is open, by finding for each x ∈ U an open
neighbourhood x ∈ Ux ⊆ U .

To do so, fix such an x ∈ U then for each y ∈ C we may use the Hausdorff property
to find disjoint open sets Vy ∋ x and Wy ∋ y. Then the collection {C ∩Wy : y ∈ C} is
an open cover of C, so by compactness of C it has a finite subcover: let y1, . . . yn ∈ C be
such that {C ∩Wy1 , . . . , C ∩Wyn} is such a finite subcover.

x

y1

C y2

yn

Wy1

Wy2

Wyn

Vy1

Vy2

Vyn
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Then

x ∈
n⋂
i=1

Vyi =: Ux

is a finite intersection of open neighbourhoods of x, so is an open neighbourhood of x. It
is disjoint from each Wyj (because Vyj is), so is disjoint from

⋃n
j=1Wyj and hence from

C =
⋃n
j=1C ∩Wyj too. Thus it lies in U = X \ C.

Proposition. If X is a compact topological space and f : X → Y is a continuous function,
then f(X) is a compact subspace of Y .

Proof. Without loss of generality we may replace Y by f(X) and hence suppose that f is
surjective. Let U be an open cover of Y = f(X), and set

f−1U := {f−1(U) : U ∈ U}.

This is an open cover of X. As X is compact it has a finite subcover, so suppose that the
sets f−1(U1), . . . , f

−1(Un) cover X. Then U1 = f(f−1(U1)), . . . , Un = f(f−1(Un)) cover
f(X) = Y and is a finite subcover of U .

Corollary. If f : X → Y is a continuous bijection from a compact topological space X to
a Hausdorff topological space Y , then f is a homeomorphism.

Proof. To show that the function f−1 : Y → X, which exists because f is a bijection, is
continuous, we may use the closed set description f continuity. So we must show that
(f−1)−1(C) is closed in Y whenever C is closed in X, i.e. that the image under f of a
closed set is closed.

If C ⊆ X is closed then it is compact, using the first Proposition above and the fact
that X is compact. Thus f(C) ⊆ Y is compact by the third Proposition above, and hence
is closed by the second Proposition above and the fact that Y is Hausdorff.

3.2 Compactness, sequential compactness, and the compact subsets of
Rd

We compare compactness with the notion of sequential compactness from Part IB Analysis
II (in the case of metric spaces). In the following we suppose that (X, d) is a metric space,
which gives a topological space (X, Td).

Lemma (Lebesgue Number Lemma). Let (X, d) be sequentially compact, and U ⊂ Td be
an open cover. Then there is a δ > 0 such that each ball Bδ(x) lies inside some Ux ∈ U .

Proof. Suppose for a contradiction that no such δ > 0 exists. Then in particular for
each n = 1, 2, 3, . . . there is an xn ∈ X such that the ball B1/n(xn) is not contained
in any element of U . By sequential compactness the sequence (xn) has a convergent
subsequence, say xni → x∞. Let x∞ ∈ U ∈ U , and ϵ > 0 be such that Bϵ(x∞) ⊆ U . For
all i ≫ 0 we have xni ∈ Bϵ/2(x∞) and 1

ni
< ϵ

2 . By the triangle inequality we then have
B1/ni

(xni) ⊆ Bϵ(x∞) ⊆ U ∈ U , a contradiction.

Such a δ > 0 is called a Lebesgue number for the open cover U : the lemma is saying
that every open cover of a sequentially compact metric space has a Lebesgue number.

Theorem. (X, d) is sequentially compact if and only if (X, Td) is compact.
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Proof. Suppose first that (X, d) is not sequentially compact. Then there is a sequence
(tn) in X without a convergent subsequence. Thus for each x ∈ X there is an open
neighbourhood Ux ∋ x which contains only finitely-many ti’s. (Otherwise the sequence
of non-negative real numbers (d(x, tn)) would have a subsequence converging to zero, i.e.
(tn) would have a subsequence converging to x.) Then U := {Ux : x ∈ X} is an open cover
of X. If it had a finite subcover then as each Ux contains only finitely-many ti’s, it would
follow that the sequence (tn) only takes finitely-many values. But this is impossible as
then it would take one of those values infinitely often and so would have a convergent
subsequence. Thus U does not have a finite subcover, so (X, Td) is not compact.

Now suppose that (X, d) is sequentially compact, and let U be an open cover of (X, Td).
Let δ > 0 be a Lebesgue number for this cover, which exists by the Lebesgue Number
Lemma. We will first show that there exists a finite set A ⊆ X such that1

X =
⋃
a∈A

Bδ(a).

If not, then for every finite set A ⊆ X there exists a x ∈ X with d(x, a) ≥ δ for all
a ∈ A. If this were the case then we could construct a sequence x1, x2, . . . in X inductively
by choosing xi to have distance ≥ δ from each element of the finite set {x1, . . . , xi−1}.
This sequence has d(xi, xj) ≥ δ for all i ̸= j, and so has no convergent subsequence, a
contradiction. So such a finite set A does exist.

As δ is a Lebesgue number for the open cover U , each Bδ(a) lies inside a Ua ∈ U . Then
{Ua : a ∈ A} ⊆ U is a finite subcover. Thus (X, Td) is compact.

Corollary (Heine–Borel(=Bolzano–Weierstrass)). A subspace X ⊆ Rd is compact if and
only if it is closed and bounded.

Proof. In Part IB Analysis II this is proved with “compact” replaced by “sequentially
compact”, but by the above Theorem these notions are the same for metric spaces.

Corollary (Extreme Value Theorem). If X is a compact topological space and f : X → R
is a continuous function, then there are elements a, b ∈ X such that f(a) ≤ f(x) ≤ f(b)
for all x ∈ X.

Proof. The set f(X) ⊆ R is compact by an earlier Proposition, so is closed and bounded. In
particular it contains its supremum B and its infimum A, and f(x) ⊆ [A,B]. Choose a ∈ X
such that f(a) = A and b ∈ X such that f(b) = B: then A = f(a) ≤ f(x) ≤ f(b) = B for
all x ∈ X.

3.3 Compactness of products

Theorem. If X and Y are compact topological spaces, then the product space X × Y is
compact.

Proof. We first prove the following, which only uses that Y is compact:

Claim. If x0 ∈ X and {x0}×Y ⊆W is an open set, then there is an open neighbourhood
Ux0 ∋ x0 in X such that Ux0 × Y ⊂W .

1This is the definition of a metric space being “totally bounded” from Part IB Analysis II, so we are
repeating(?) part of the proof of “sequentially compact = complete and totally bounded”.

22



Proof of Claim. We may cover {x0} × Y by (its intersection with) open sets of the form
U × V ⊂ W for U open in X and V open in Y , as such sets are a basis for the product
topology on X × Y . As {x0} × Y is compact this open cover has a finite subcover, so we
may find finitely-many such basis elements

U1 × V1, . . . , Un × Vn

inside W whose union contains {x0} × Y . Let Ux0 := U1 ∩ · · · ∩ Un, an intersection of
finitely-many open neighbourhood of x0 ∈ X, so again an open neighbourhood of x0. Now
if (x, y) ∈ Ux0 ×Y then consider (x0, y) ∈ {x0}×Y which lies inside Ui×Vi for some i. In
particular y ∈ Vi. But also x ∈ Ux0 ⊆ Ui, so (x, y) ∈ Ui × Vi ⊆

⋃n
j=1 Uj × Vj ⊆W . Thus

Ux0 × Y ⊆W , as required.

Now suppose that W is an open cover of X × Y . For x0 ∈ X fixed, {x0} × Y is
compact so may be covered by (its intersection with) finitely many W1, . . . ,Wn ∈ W, so
{x0} × Y ⊆

⋃n
i=1Wi is an open neighbourhood. By the Claim there is a neighbourhood

Ux0 ∋ x0 such that Ux0 × Y ⊆
⋃n
i=1Wi, i.e. Ux0 × Y may be covered by finitely-many

elements of W.
Doing the above for each point x0 ∈ X, we obtain an open cover {Ux0 : x0 ∈ X} of X.

As X is compact, this has a finite subcover {Ux1 , . . . , Uxm}. Now the finitely-many sets

Ux1 × Y, . . . , Uxm × Y

cover X × Y , and each of them may be covered by finitely-many elements of W . Thus W
has a finite subcover.

Corollary. [0, 1]d is compact.

Proof. We have seen that [0, 1] is compact, and the Theorem implies (inductively) that
finite products of compact spaces are compact.

Corollary (Heine–Borel again, topologically). A subspace X ⊆ Rd is compact if and only
if it is closed and bounded.

Proof. Suppose that X ⊆ Rd is closed and bounded. Then for some N ≫ 0 it is contained
in [−N,N ]d. This is homeomorphic to [0, 1]d so is compact, and we have seen that a closed
subspace of a compact space is compact.

Suppose that X ⊆ Rd is compact. Then it is closed as Rd is Hausdorff and we have
seen that compact subsets of a Hausdorff space are closed. To see that it is bounded, we
consider the open cover

{X ∩ (−N,N)d : N ∈ N}
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of X. As X is compact this must have a finite subcover

X ∩ (−N1, N1)
d, . . . X ∩ (−Nn, Nn)

d

with N1 ≤ · · · ≤ Nn. But these sets are all contained in X ∩ (−Nn, Nn)
d, so X ⊂

(−Nn, Nn)
d.

4 Topology of manifolds

4.1 What is a manifold?

Definition. A topological manifold of dimension d is a topological space X which is Haus-
dorff, and such that every point of X has an open neighbourhood which is homeomorphic
to an open subset of Rd. The latter property is abbreviated to locally Euclidean.

As a point p in an open subset U ⊆ Rd is contained in some ball Bϵ(p) ⊆ U , which
is homeomorphic to Rd, every point in a topological manifold has a neighbourhood
homeomorphic to Rd itself. We call this a Euclidean neighbourhood.

Remark. In some sources a further axiom is imposed: X is also required to be “second-
countable”, meaning that its topology should have a countable basis. We shall not impose
this axiom, though a topological manifold (in our sense) which is compact is indeed second
countable: see Example Sheet 3.

Example. An open subset U ⊆ Rd is a topological manifold of dimension d. It is Hausdorff
as Rd is, and is locally Euclidean as any point of U has U as an open neighbourhood,
which is (homeomorphic to) an open subset of Rd. △

Example. The sphere Sd ⊂ Rd+1 is a topological manifold of dimension d. It is Hausdorff
as Rd+1 is. To see it is locally Euclidean, we will show that for any point p ∈ Sd the
open neighbourhood p ∈ Sd \ {−p} is homeomorphic to Rd. By rotating, we may suppose
without loss of generality that p = (−1, , 0 . . . , 0). Then stereographic projection

Sd \ {(1, 0, . . . , 0)} −→ Rd

q 7−→ the intersection of the line (−p)q with the plane {0} × Rd

(q0, . . . , qd) 7−→
1

1− q0
(q1, . . . , qd)

is a continuous bijection, with continuous inverse

(e1, . . . , ed) 7−→
1∑
e2i + 1

(∑
e2i − 1, 2e1, . . . , 2ed

)
.

(q0, q1, q2)

(1, 0, 0)
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△

Example. The circle S1 is the special case d = 1 of the above, but this topological
manifold also has several other useful descriptions.

There is an equivalence relation ∼ on R given by

x ∼ y ⇐⇒ x− y ∈ Z.

It is usual to write R/Z for the quotient space: it is the quotient by the action of the
group (Z,+, 0) on the set R by translation, with the quotient topology. We have seen
earlier how to identify this quotient: The function

f : R −→ R2

x 7−→ (sin(2πx), cos(2πx))

is continuous and f(x) = f(x′) if and only if x ∼ x′, so the universal property of the
quotient topology therefore gives a continuous bijection

e : R/Z −→ S1.

Every equivalence class for ∼ has a representative in [0, 1] ⊂ R, so R/Z is also the quotient
of [0, 1] by the induced equivalence relation. In particular it is compact, and S1 is Hausdorff,
so e is a homeomorphism.

Similarly, S1 can also be described as the quotient space [0, 1]/0 ∼ 1 △

Example. Recall from earlier in the course the line with two origins L = R× {0, 1}/ ∼
where (x, 0) ∼ (x, 1) for all x ̸= 0, visualised as:

Away from the origins it is clearly locally homeomorphic to R. Writing π : R×{0, 1} → L
for the quotient map, the “top origin” [0, 1] is contained in the set U := π((−1, 1)× {1}),
which is open as

π−1(U) = (−1, 1)× {1} ∪ (−1, 0)× {0} ∪ (0, 1)× {0}

is open in R× {0, 1}. The map π|(−1,1)×{1} : (−1, 1)× {1} → U is a continuous bijection.
If W ⊆ (−1, 1) is open then

π−1(π|(−1,1)×{1}({1} ×W )) =W × {1} ∪ (W \ {0})× {0}

is open in R × {0, 1}, so π|(−1,1)×{1}(W × {1}) is open. Thus the inverse function

π|−1
(−1,1)×{1} : U → (−1, 1) × {1} is also continuous, i.e. π|(−1,1)×{1} : (−1, 1) × {1} → U

is a homeomorphism, giving an open neighbourhood of the “top origin” [0, 1] which is
homeomorphic to an open subset of R. A similar argument shows that the “bottom origin”
[0, 0] has an open neighbourhood homeomorphic to an open subset of R.

But L is not a manifold, as it is not Hausdorff: any open neighbourhoods of [1, 0] and
[0, 0] intersect. △

Example. If M and N are topological manifolds, then so is their product M × N . It
is easy to see that a product of two Hausdorff spaces is Hausdorff, using the basis for
the product topology. If (m,n) ∈ M × N , let m ∈ U ⊂ M be an open neighbourhood
homeomorphic to an open subset of Rm, and n ∈ V ⊂ N be an open neighbourhood
homeomorphic to an open subset of Rn, then (m,n) ∈ U × V ⊆ M × N is an open
neighbourhood homeomorphic to an open subset of Rm × Rn = Rm+n. Its dimension is
the sum of the dimensions of M and N . △
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Example. As an example of the above, the torus T := S1 × S1 is a topological manifold
of dimension 2. Using the description S1 ∼= R/Z we have another description of T as
R2/Z2, the quotient of the Z2-action on R2 by translation.

Using the description S1 = [0, 1]/0 ∼ 1 gives another description of the torus, as
[0, 1]× [0, 1]/ ≈ where the equivalence relation is generated by

(0, t) ≈ (1, t), (s, 0) ≈ (s, 1) for all s, t ∈ [0, 1].

We can depict the identification made by the equivalence relation as follows:

T

△

Example. Consider the equivalence relation ∼ on [0, 1]× R generated by

(1, v) ∼ (0,−v),

with quotient space M . This is the Möbius band. A depiction analogous to that above is:

M

This is a 2-dimensional topological manifold. To see this, consider the subspaces Ut
obtained by removing Lt := π({t} × R) from M with 0 < t < 1, which is the induced
quotient of ([0, t) ∪ (t, 1]) × R. By applying the homeomorphism (x, v) 7→ (x,−v) to
(t, 1]× R, we see that

Ut =M \ Lt ∼= ((t, 1] ∪ [0, t))× R/(1, v) ∼ (0, v) ∼= (−1, 1)× R.

The final identification is analogous to Q10 on Example Sheet 1. The open sets Ut cover
M and are Euclidean, and any two points in M lie in a single Ut so it follows that M is
Hausdorff. △

Example. Combining the last two examples, consider the equivalence relation on [0, 1]×
[0, 1] given by

(0, t) ≈ (1, t), (s, 0) ≈ (1− s, 1) for all s, t ∈ [0, 1].
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K

One can check, similarly to the above, that the quotientK is a 2-dimensional topological
manifold, called the Klein bottle. It visibly contains the Möbius band as a subspace, depicted
in grey. △

Example. If M is a d-dimensional topological manifold and m ∈ M is a point, then

we may find a Euclidean neighbourhood U ∋ m with φ : U
∼=→ Rd. If N is another

d-dimensional topological manifold and n ∈ V ⊆ N is a Euclidean neighbourhood with

ψ : V
∼=→ Rd, then the2 connected-sum is the quotient space

M#N :=
(
(M \ φ−1(B1(0))) ⊔ (N \ ψ−1(B1(0)))

)
/ ∼,

where the equivalence relation ∼ is generated by

φ−1(v) ∼ ψ−1(v) whenever v ∈ Rd has |v| = 1.

This is covered by three open sets. Firstly we haveM \φ−1(B1(0)) and N \ψ−1(B1(0)),
which are open subsets of topological manifolds so are themselves topological manifolds.
Secondly we have (

(U \ φ−1(B1(0))) ⊔ (V \ ψ−1(B1(0)))
)
/ ∼.

Using the induced homeomorphisms

U \ φ−1(B1(0)) ∼=φ Rd \B1(0) ∼= Sd−1 × (−∞, 0]

V \ ψ−1(B1(0)) ∼=ψ Rd \B1(0) ∼= Sd−1 × [0,∞)

2As we have described it, “the” connected-sum M#N involves many choices: of points in M and
N , and of Euclidean neighbourhoods of those points. In principle the resulting space depends on these
choices, so one should be wary of thinking about −#− as some kind of binary operation on d-dimensional
topological manifolds: better think of “a” connected-sum. In fact the dependence on these choices is only
slight, but it is very difficult to prove this: it uses the Annulus Theorem, whose proof (in the final case
d = 4) was only completed in 1982.
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we see that this quotient is homeomorphic to Sd−1 × R, so is also a topological manifold.
It follows that M#N is locally Euclidean, and by considering cases it can be checked to
be Hausdorff, so it is a topological manifold.

△

Example. The real projective space RPd is the set of 1-dimensional linear subspaces of
Rd+1. We can give it a topology by considering it as the quotient of Rd+1 \ {0} by the
equivalence relation x ∼ λx for λ a non-zero real number. We write [x0 : x1 : · · · : xd] for
the equivalence class of the point (x0, . . . , xd), which is a non-zero vector so some xi must
be non-zero.

The subspaces
Ai := {[x0 : x1 : · · · : xd] ∈ RPd : xi ̸= 0}

therefore cover RPd. Their preimages under the quotient map are {(x0, . . . , xd) ∈ Rd+1 \0 :
xi ̸= 0} which are open, so the Ai are open in RPd. Furthermore the function

π|Pi : Pi := {(x0, . . . , xd) ∈ Rd+1 \ 0 : xi = 1} −→ Ai

is a continuous bijection, and is easily checked to be a homeomorphism. As Pi is homeo-
morphic to Rd (via (x0, . . . , xi−1, 1, xi+1, . . . , xd) ↔ (x0, . . . , xi−1, xi+1, . . . , xd)) it follows
that RPd is locally Euclidean.

To see that RPd is Hausdorff it is convenient to observe that GLd+1(R) acts on it by
homeomorphisms (as it acts on Rd+1 by homeomorphisms). As every pair of linearly-
independent vectors in Rd+1 extends to a basis, this action can be used to move any two
distinct points in RPd to any other two: so without loss of generality we may suppose that
the points we wish to separate are [1 : 0 : · · · : 0] and [1 : 1 : 0 : · · · : 0]. These both lie in
the open Euclidean neighbourhood A1

∼= Rd, so these two points can indeed be separated
by open sets.3

The above perspective on RPd is based on the observation that every 1-dimensional
linear subspace of Rd+1 contains a non-zero vector, which is well-defined up to non-zero
scaling. Alternatively, we may use that every 1-dimensional linear subspace contains a unit
vector, which is well-defined up to sign. This gives another description of the topological
space RPd as the quotient space Sd/ ∼ where x ∼ −x. You may verify that the two
points of view give the same topology on the set RPd. (This leads to a different proof of
Hausdorffness, using that Sd is Hausdorff and that ∼ only identifies distinct points which
are far apart.)

We can simplify the description just given by observing that every equivalence class
for the relation x ∼ −x on Sd has a representative in the upper hemisphere Dd ⊂ Sd, and
the induced equivalence relation on Dd is given by x ≈ −x when x is on the boundary of
D2. In particular the projective plane RP2, a 2-dimensional topological manifold, can be
obtained from D2 by identifying antipodal points on the boundary of the disc. Similarly
to the pictures for the torus and Klein bottle, we may depict this as follows:

3The points [1 : 0 : · · · : 0] and [0 : 1 : 0 : · · · : 0], for example, don’t both lie in any single Ai, so it is a
little annoying to describe how to separate them directly. I have chosen to use the double transitivity of
the GLd+1(R)-action is used to get out of this degenerate situation. The only thing that is special about
this situation is that we have used the coordinate directions in Rd to describe the sets Ai, which gives
points like these a seemingly spacial status. But this is artificial: instead of using only the coordinate
directions we could have used the sets

Aℓ := {[x0 : x1 : · · · : xd] ∈ RPd : ℓ(x0, . . . , xd) ̸= 0}

indexed by all linear maps ℓ : Rd+1 → R, to cover RPd. These are easily shown to be open and Euclidean
too, any it is true that any two points in RPd lie in some Aℓ so can be separated easily.
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RP2

△

The first non-trivial result we can prove about topological manifolds is that connectivity
and path-connectivity agree for them. This applies in particular to an open subset U ⊂ Rd.

Theorem. A topological manifold is connected if and only if it is path-connected.

Proof. We already know that path-connected spaces are connected. Suppose then that
X is a connected topological manifold. The path-components of X partition it into
disjoint subsets, so to show that there is only path-component it suffices to show that the
path-components are open sets: if there was more than one of them this would show that
X is not connected, but it is.

To show that the path-components are open we must show the following: for each
p ∈ X there is an open neighbourhood of p consisting of points which can be connected
to p by a path. But as X is locally Euclidean, and Euclidean space is path-connected, a
Euclidean neighbourhood of p has this property.

This kind of argument is quite powerful. Note that we didn’t explicitly say how to
find a path between any two points, but did show that there must be one. We will use the
same principle again in the following section.

4.2 Connected manifolds are homogeneous

If X is a topological manifold of dimension d, then by definition every point of X has
a Euclidean neighbourhood and so any two points have open neighbourhoods which are
homeomorphic to each other. But the line-with-two-origins is also locally Euclidean, and
yet the two origins are somehow different in nature to the other points: not all points
“look like” all other points. However in a topological manifold all points do “look like” all
other points, it the following precise sense:

Theorem. If X is a connected topological manifold then for any two points p, q ∈ X

there is a homeomorphism φ : X
∼=→ X such that φ(p) = q.

In other words, the symmetry group ofX—which is the group of its self-homeomorphisms—
acts transitively on X. The connectivity assumption is essential:

Example. Consider the 1-dimensional topological manifold X = S1 ⊔ R.
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No self-homeomorphism of X can take a point in the S1 to a point in the R. This is
because removing a point in the S1 gives a topological space with two path-components,
but removing a point in the R gives a topological space with three path-components. If
there were a homeomorphism φ sending a point of S1 to a point of R, it would give a
homeomorphism between the complements of these points.

△

To prove the Theorem, we start with the following lemma which gives us a supply of
homeomorphisms of Rd.

Lemma. If p, q ∈ B1(0) ⊂ Rd, there is a homeomorphism φ of Rd which sends p to q, and
which is the identity outside of B1(0).

Proof. We may suppose without loss of generality that p = 0, as if there is such a
homeomorphism φ sending 0 to q, and another ψ sending 0 to p, then φ ◦ψ−1 sends p to q.

Consider first the homeomorphism

ρ : Rd −→ B1(0)

x 7−→ x
1+|x| ,

which has inverse given by ρ−1(y) = y
1−|y| . There is homeomorphism x 7→ x+ ρ−1(q) of

Rd given by translation, and when conjugated by ρ this gives a homeomorphism

φ′′ : B1(0) −→ B1(0)

y 7−→ ρ(ρ−1(y) + ρ−1(q)),

which sends 0 to q. This extends to a function

φ′ : B1(0) −→ B1(0)

y 7−→

{
φ′′(y) |y| < 1

y |y| = 1,

which we will show is continuous. We do so using the sequential characterisation of
continuity, as these are metric spaces. If (yn) is a sequence in B1(0) converging to
y∞ ∈ B1(0) on the boundary, then |yn| → 1 so 1− |yn| ↘ 0. Then

φ′(yn) = φ′′(yn) = ρ(ρ−1(yn)+ρ
−1(q)) =

yn
1−|yn| +

q
1−|q|

1 + | yn
1−|yn| +

q
1−|q| |

=
yn +

1−|yn|
1−|q| q

1− |yn|+ |yn + 1−|yn|
1−|q| q|

→ y∞

by standard estimates. Thus φ′ is indeed continuous, and it is therefore a homeomorphism,
as it is a continuous bijection from a compact to a Hausdorff space. Then the function

φ : Rd −→ Rd

y 7−→

{
φ′(y) |y| ≤ 1

y |y| ≥ 1

is continuous by the Gluing Lemma, as is its inverse.
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Proof of the Theorem. Consider the equivalence relation ∼ on X given by

p ∼ q ⇐⇒ there is a homeomorphism φ sending p to q.

The equivalence classes partition X into disjoint subsets, so to show that there is only one
equivalence class it suffices to show that the equivalence classes are open sets: if there was
more than one equivalence class this would show that X is not connected, but it is.

To show the equivalence classes are open we must show the following: that for each
p ∈ X there is an open neighbourhood of p consisting of points which can be reached from
p by applying a homeomorphism.

Let U ∋ p be a Euclidean neighbourhood, with τ : U → Rd sending p to 0. Set C :=
τ−1B1(0) ⊆ U . For each q ∈ C̊ = τ−1B1(0) the Lemma shows there is a homeomorphism
φq of Rd which sends 0 to τ(q) and which is the identity outside of B1(0). Then τ

−1 ◦φq ◦τ
is a homeomorphism of U sending p to q and which is the identity outside of C. Define a
function

ψq : X −→ X

x 7−→

{
x x ̸∈ C

τ−1 ◦ φq ◦ τ(x) x ∈ U,

which sends p to q, and which we shall show is a homeomorphism. It is well-defined and a
bijection, as τ−1 ◦ φq ◦ τ is the identity outside of C. It is continuous when restricted to
the open set U , and is also continuous when restricted to the set X \ C. Crucially, the set
X \ C is open, because X is Hausdorff and C is homeomorphic to B1(0) so is compact
and hence closed.4 By the Gluing Lemma ψq is continuous, and the same reasoning shows
that ψ−1

q is continuous. Thus ψ is a homeomorphism sending p to q.

This holds for all q ∈ C̊ = τ−1B1(0), so the latter is an open neighbourhood of p
consisting of points which can be reached from p by applying a homeomorphism, as
required.

4.3 Compact manifolds embed into Euclidean space

Some of the examples of topological manifolds we have seen arise naturally inside some
Euclidean space, or else can be put inside some Euclidean space without much difficulty:
Sn and the torus can; if two manifolds can then so can their product; with a little work
one can see that if two manifolds can then so can their connected-sum. But in fact all
compact manifolds can be put inside some Euclidean space.

Theorem. Let X be a compact d-dimensional topological manifold. Then there is an
N ≫ 0 and a subspace Y ⊆ RN homeomorphic to X.

Before embarking on the proof, we consider the following construction. There is a
function

σ : Rd −→ [0,∞)

x 7−→


1 |x| ≤ 1

1− |x| 1 ≤ |x| ≤ 2

0 |x| ≥ 2,

4This is a subtle point. Using the homeomorphism τ we know that C is closed in U , but we need to
know it is closed in X. This is false without the Hausdorff assumption, as you will see on Example Sheet 3.
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which is continuous by the Gluing Lemma. Its important features are that it is 1 on the
unit ball B1(0) and is zero outside of a compact subset (namely B2(0)).

Proof. For each x ∈ X there is a Euclidean neighbourhood Ux ∋ x, with τx : Ux
∼=→ Rd. Let

the open set Vx ⊂ Ux correspond under τx to B1(0) ⊂ Rd, and let σx := σ◦τx : Ux → [0,∞).
There is a function

bx : X −→ Rd

y 7−→

{
σx(y)τx(y) y ∈ Ux

0 y ̸∈ Ux.

On the open5 set X \ τ−1
x B2(0) this function is identically 0 so is continuous, and it is also

continuous on the open set Ux, so by the Gluing Lemma it is continuous. Similarly we
may consider σx as a continuous function X → [0,∞) by setting it to be 0 outside of Ux.

Now {Vx : x ∈ X} is an open cover of X, so there is a finite subcover Vx1 , . . . , Vxn .
Consider the function

e : X −→ (Rd × R)n

y 7−→ (bx1(y), σx1(y); . . . ; bxn(y), σxn(y)),

which is continuous by the universal property of the product topology. If e(y) = e(y′) then
suppose that y ∈ Vxi (as the V ’s cover) so that σxi(y) = 1 and hence σxi(y

′) = 1 too. But
then

τxi(y) = bxi(y) = bxi(y
′) = τxi(y

′)

so y = y′ as τxi is a homeomorphism. Thus e is injective. Writing Y := e(X), the universal
property of the subspace topology shows that e : X → Y is continuous. It is also a
bijection from a compact to a Hausdorff space, so is a homeomorphism as required.

Example. We have seen that RP2 can be covered by 3 open sets each homeomorphic
to R2, so the argument above gives a homeomorphism to a subspace of R9. It is fact
homeomorphic to a subspace of R4 (this can be done explicitly) and is not homeomorphic
to a subspace of R3 (this can be proved using ideas in Part III Algebraic Topology). △

4.4 Surfaces by gluing polygons

A (topological) surface is the typical name for a 2-dimensional topological manifold.
Example of surfaces we have seen are the sphere S2, the torus T , the Klein bottle K, and
the projective plane RP2. We have seen how to obtain the last three by gluing the sides of
a square together in pairs, and for completeness we may obtain S2 in this way too:

S2

5We again use Hausdorffness of X to see that the complement of a compact set is open.
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More generally, if P ⊂ R2 is a convex polygon with an even number 2n of edges, and
we label each edge by a, b, c, d . . . so that any label which is used is used precisely two
times, and we furthermore choose a direction of each edge which we depict by drawing an
arrow on it, then we can define an equivalence relation ∼ on P to be generated by the
following rule: If the two edges labelled α have vertices u, v, with direction pointing from
u to v, and x, y, with direction pointing from x to y, then

t · u+ (1− t) · v ∼ t · x+ (1− t) · y for each t ∈ [0, 1].

More informally, we glue the two edges labelled α together so that the arrows match up.

a

cb

a

b

d c

d

The following is proved by treating several cases: points coming from the interior of P ,
points coming from the interior of an edge of P , and points coming from vertices of P . It
is laborious—so we omit it—but is elementary and you will have no difficulty in filling in
the details.

Theorem. P/ ∼ is a compact topological surface.

We can describe a connected-sum of two surfaces given by polygons, by choosing
carefully the disc which is cut out to form the connected-sum. This is best described by a
picture as in the following example:

Ta a

b

b

# =RP2x x

y

y

b

ab

a

y

x y

x

This 8-gon can be replaced by a 6-gon without changing the topological surface it
defines, by consolidating the contiguous edges xy with a single edge, say c.

Example. In a similar way, we can obtain a 12-gon giving a connected-sum RP2#RP2#RP2

whose edges are all oriented clockwise and which read xyxyststuvuv. We may consolidate
each of the contiguous edges xy, st, and uv with single edges p, q, and r to see that
RP2#RP2#RP2 is obtained from the 6-gon

33



r

r

q

q

p

p

Cutting this open along the indicated dashed line a, and then gluing along p, changes this
into the 6-gon

r

a

q

q

a

r

which must then still give RP2#RP2#RP2. Cutting this open along the indicated dashed
line b, and then gluing along r, changes this into the 6-gon

b

a

q

q

b

a

which again must give RP2#RP2#RP2. But after renaming q to be c, this is the 6-gon
that we explained above describes a connected-sum T#RP2, so we conclude that there is
a homeomorphism

RP2#RP2#RP2 ∼= T#RP2.

△

4.5 Triangulable surfaces

Every surface we have discussed can be given a triangulation in the following sense.

Definition.
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(i) A triangle in RN with vertices non-collinear points p, q, r ∈ RN is the space

{t0 · p+ t1 · q + t2 · r ∈ RN : t0 + t1 + t2 = 1, ti ≥ 0},

i.e. the convex hull of, or smallest convex set containing, the vertices p, q, r. Its three
edges are the convex hulls of {p, q}, {p, r}, {q, r} respectively.

(ii) A collection K = {∆1, . . . ,∆n} of triangles in RN form a (2-dimensional) polyhedron
if each intersection ∆i ∩∆j with i ̸= j is either empty, a common vertex of both
triangles, or a common edge of both triangles.

✓ ✗ ✗

We set |K| :=
⋃n
i=1∆i, a subspace of RN .

(iii) A triangulation of a topological surface S is the data of a polyhedron K together

with a homeomorphism ϕ : |K|
∼=→ S.

To triangulate the torus, for example, we consider the picture

1

2

3

1

4

5

6

4

7

8

9

7

1

2

3

1

which gives a homeomorphism to a polyhedron in R9 by assigning each of the 9 vertices to a
basis vector, and each edge or triangle to the convex hull of the basis vectors corresponding
to its vertices. Some checking shows that this is indeed a polyhedron (the reason for taking
quite so many triangles is to ensure that each edge or triangle in the picture is uniquely
determined by its vertices: this is what is needed to verify that the triangles in R9 form a
polyhedron).

In this section we will discuss topological surfaces which admit a triangulation. But:

Theorem (Radó). Every compact topological surface admits a triangulation.

However, this is a quite involved to prove, and is beyond the scope of this course.
Our goal will now be to explain how to tell whether two (triangulable) compact topo-

logical surfaces are homeomorphic. We have seen that RP2#RP2#RP2 is homeomorphic to
T#RP2, so certainly surfaces described in different ways can turn out to be homeomorphic.
What we want are invariants : some quantities or properties associated to surfaces that we
can measure, so that if they differ then the surfaces are definitely not homeomorphic; in
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fact they will be complete invariants, meaning that if they do not differ then the surfaces
are homeomorphic. This will give us a way to know that surfaces are homeomorphic
without actually having to find a homeomorphism.

Definition. The Euler characteristic of a triangulated surface ϕ : |K|
∼=→ S is the integer

χ(K) := #vertices of |K| −#edges of |K|+#triangles of |K|.

In Part II Algebraic Topology you will see that if ϕ′ : |K ′|
∼=→ S is another triangulation

of S then χ(K ′) = χ(K), so it is reasonable to call this χ(S), the Euler characteristic of S.

Example. S2 is homeomorphic to the tetrahedron, which is a polyhedron having 4 vertices,
6 edges, and 4 faces, so χ(S2) = 4− 6 + 4 = 2. △

Example. The triangulation of the torus T drawn above has 9 vertices, 27 edges, and 18
triangles, so χ(T ) = 9− 27 + 18 = 0. △

Example. Taking the picture of the triangulation of the torus above and changing the
side identifications gives the following triangulation of the projective plane RP2,

1

2

3

4

5

6

7

8

8

9

10

5

4

3

2

1

having 10 vertices, 27 edges, and 18 triangles, so χ(RP2) = 10− 27 + 18 = 1. △

Definition. An orientation of a triangulated surface ϕ : |K|
∼=→ S with polyhedron

K = {∆1, . . . ,∆n} is a choice of cyclic ordering of the vertices of each triangle ∆i, such
that whenever ∆i ∩∆j is an edge, the ordering of the end points of this edge induced
by ∆i is opposite to the ordering induced by ∆j . If the triangulated surface admits an
orientation then it is orientable, otherwise it is non-orientable.

Like the Euler characteristic, orientability is in fact an intrinsic property of the
topological manifold S and does not actually depend on the triangulation: you will also
see this in Part II Algebraic Topology.

Example. RP2 is not orientable. In the triangulation drawn above we consider the middle
horizontal strip, which is a Möbius band, and try to order the vertices in each triangle
from left to right so that they fit together:

1

2 3

↷

1 3

2

↷
1

2 3

↷

1 3

2

↷
1

2 3

↷

1 3

2

↷
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But the induced ordering on the left-hand edge points upwards (1 to 2), and the induced
ordering on the right-hand edge points downwards (2 to 3), and as we identify these edges
with a twist these orderings are equal, not opposite. Once we chose the cyclic ordering of
the left-hand triangle our hands were tied, so it is not possible to orient (this triangulation
of) the Möbius band, so it is not possible to orient (this triangulation of) RP2.

The same reasoning shows that e.g. a connected-sum RP2#S of triangulable surfaces
is non-orientable, at least when it is formed using well-chosen discs (cf. Q7 on Example
Sheet 3). △

Given this preparation, we may formulate a classification theorem for surfaces.

Theorem (Classification of surfaces). If two compact connected (triangulable) topological
surfaces have the same orientability and Euler characteristic, then they are homeomorphic.

We will not prove this, though we have all the ingredients. The strategy is to first show
that any connected triangulable surface can be obtained by identifying pairs on edges in a
polygon, and then to show that the labelled polygon description can be manipulated—using
the same kinds of moves that we used to show that RP2#RP2#RP2 is homeomorphic to
T#RP2—until it is one of a list of standard forms. These standard forms describe the
orientable surfaces6

S2, T, T#T, T#T#T, . . .

having Euler characteristics 2, 0,−2,−4, . . ., and the non-orientable surfaces

RP2,RP2#RP2,RP2#RP2#RP2, . . .

having Euler characteristics 1, 0,−1,−2, . . ., so these surfaces are all different. The proof
in fact shows that these are all the compact connected (triangulable) topological surfaces.

6The orientable surface given by the connected-sum of g tori is said to have genus g; it has χ = 2− 2g.
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