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Chapter 1

Homotopy groups, CW complexes, and fibrations

Conventions. The term “map” means continuous function. We write I = [0, 1], I" for
the n-fold product, and

oI" = {(t1,t2,...,ty) € I"| some t; is 0 or 1}.

We write D? C R? for the unit disc, and S%~! ¢ D¢ c R? for the unit sphere. In
particular
D’={0}, S°={x1}, D*t=p = S'=0.

A homotopy between maps fo, f1 : X — Y isamap F : X x [0,1] — Y such that
F(—,0) = fo(—=) and F(—,1) = fi(—). If A C X is a subspace we say that the homotopy
F is relative to A if F(a,t) is independent of ¢ for all a € A.

We write [X,Y] := {maps f : X — Y}/homotopy for the set of homotopy classes of
maps from X to Y.

1.1 Homotopy groups

Let (X, z0) be a based space, i.e. a space with a distinguished point zy € X.

Definition 1.1.1. Let the nth homotopy group 7, (X, zg) denote the quotient of the
set of maps
f:I" — X such that f(9I") C {zo},

by the equivalence relation ~, where fy ~ f7 if there is a homotopy
F:I"x[0,1] — X
such that
(i) F(oI" x [0,1]) C {0},
(ii) F(=,0) = fo(=), and F(=,1) = fi(-).

Let us condense this definition a bit. For a pair (X, A) of a space X and a subspace
A C X, and another pair (Y, B), amap of pairs f : (X,4) — (Y,B)isamap f: X - Y
such that f(A) C B. A homotopy between maps of pairs, F': (X, A)x[0,1] — (Y, B)
is a homotopy F : X x [0,1] — Y such that F(A x [0,1]) C B. In these terms we can
just say that

(X, zo) = {homotopy classes of maps f: (I",01") — (X, {zo})}.

Sometimes we will write elements of these sets as [f], to emphasise that they are equiv-
alence classes and that f is merely a representative, but often we will not.

1
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Example 1.1.2. If n = 1 then m (X, x0) is the usual fundamental group (but so far we
have only descried it as a set, not as a group).

If n = 0 then, as I° = {x} and 9I° = 0, mo(X, {xo}) is the set of path components of
X (and is independent of x). A

For n > 1 we define a composition law - on m, (X, z¢) by the formula

f(2t17t27"')tn) O§t1§1/2

. (1.1.1)
g(2t1_17t27“'7tn) 1/2St1§1

(f . g)(tl,tg, - ,tn) = {
Theorem 1.1.3. The operation - is well-defined on m,(X, x¢), and endows this set with

the structure of a group with identity element given by the constant map:

consty, : I — X
(tl,tQ, R ,tn) — Zp.

Furthermore, if n > 2 then this group is abelian.

Proof. The first part is identical to the argument that the fundamental group is indeed
a group. For the second part we use the homotopy shown below

3- Constx, contx, 2—
9- g | ~ — A ; g%
|| O 197

le

— X,
Figure 1.1

to swap the order of operations. O
If p:(X,z0) = (Y,yp) is a based map then

s (X, 20) — (Y, y0)
[f1— [po f]

defines a group homomorphism. If ¢ : (Y,y9) — (Z,20) is another based map then
(@ZJ © 90)* = 14 0 @y, and (IdX)* = Idwn(X,;ro)-

If two maps o, 1 : (X, z0) — (Y, y0) are based homotopic! then the evident homo-
topy shows that (©0)« = (¢1)«. From this it is immediate that if ¢ has a based homotopy
inverse (i.e. a based map 9 : (Y,y0) — (X, o) such that 1) o ¢ and ¢ 01} are both based
homotopic to the identity) then ¢, is an isomorphism. In fact, if ¢ is any homotopy
equivalence then ¢, : m,(X,z0) — m,(Y,y0) is an isomorphism: this is proved in the
same way as for the fundamental group; it is Example Sheet 1 Q1.

!i.e. homotopic as maps of pairs
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1.2 Change of basepoint

If u: I — X is a path from zy to x1, and f: (I",0I") — (X, x1) is a map of pairs, then
we get a map of pairs
ug(f): (I",0I") — (X, xo)

given graphically as shown in Figure 1.2 below: that is, apply f to a smaller cube, and
interpolate between the smaller and larger cube using w on each radial ray.

/
DN

<
S=
ZINNS

Figure 1.2

This construction is well-defined on homotopy classes, and yields a function
uy (X, 21) — T (X, 20)
satisfying
(i) ug = uly if u is homotopic to u' relative to their end-points,
(ii) (comstg,)# is the identity,
(ili) ug is a group homomorphism,

(iv) if v: I — X is a path from x; to z2 and u - v is the concatenation of these paths,
then (u-v)y = uy ovy.

These properties all follow from fairly obvious homotopies.

It follows that if x¢ and 2 lie in the same path component, then the groups 7, (X, z¢)
and 7, (X, x1) are isomorphic, but a choice of path from xy to x; is necessary to obtain
a specific isomorphism.

In particular, taking x; = x¢ gives a left action of the group m (X, zg) on each of
the groups m,(X,z¢) for n > 1, which for n = 1 is simply the action by conjugation:
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uy(f) =u- f-u"t. Thus for n > 2 the abelian group 7, (X, zo) has the structure of a
Z[m1 (X, x0)]-module?.

1.3 Relative homotopy groups

Let (X, A) be a pair and z¢g € A be a basepoint. Let M"~! C dI" denote the closure of
the complement of I"~1 x {0} C oI"™.

Definition 1.3.1. For n > 1 let 7, (X, A, zo) denote the quotient of the set of maps
f: 1" — X such that f(0I") C A and f(M" ) C {zo}

by the equivalence relation given by homotopies through such maps. Extending the
notation for maps of pairs, we can write such a map as a map of triples

foImorm,m 1y — (X, A, {xo}).

For n > 2 the formula (1.1.1) defines a group structure on 7, (X, A, z¢), with identity
element given by the constant map const,,, and for n > 3 the homotopy of Figure 1.1
shows that this group is abelian. For n = 1 the sets m (X, A, z¢) do not have a group
structure, but consty, still provides a canonical element of these sets. Analogously to
Figure 1.2 above, if u : I — A is a path from zg to z1 then the following figure describes
the change-of-basepoint isomorphism in relative homotopy groups, so that in particular
m1(A, zg) acts on each m,(X, A, zg).

e

/ ,__IJI“I

9-)('/

— X, “

Xa

W

I

Maps of triples ¢ : (X, A,x9) — (Y, B, 1) induce functions ¢, : m,(X, A, x9) —
(Y, B, yp) with all the properties one expects:

(i) If o ~ ¢1 through such maps then (o). = (¢1)s,

(ii) ¢« is @ homomorphism for n > 2,

2A group G has a “group ring” Z[G] whose elements are finite Z-linear sums of elements of G, and
whose multiplication is determined by Z-linearity and the group structure of G. A left Z[G]-module is
precisely the same as an abelian group with a left G-action by group homomorphisms.
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(iii) (¥ o) = 1w 0 Py

Remark 1.3.2 (Cubes and discs). As I"/0I™ = S™, with 0I"/0I™ giving a basepoint
x € S™, we may equally well take m, (X, xo) to be given by the homotopy classes of based
maps f: (8™, %) = (X,z9). The group operation is then given as follows:

Similarly, as (I"/m"=1 01" /1) = (D", 8" 1), we may take m,(X, A, z0) to be
given by homotopy classes of maps of triples f : (D", 8" 1 %) — (X, A, 10). The group
operation is given as follows:

2
' oy 8 T (K AR
(a-) -olisc ™
\ J
D

We will use these points of view interchangeably.

1.4 The Hurewicz homomorphism

We know that H, (D", S"!;7Z) is isomorphic to Z, with generator u,. As homotopic
maps induce equal maps on homology, we may therefore define a function

h:mn (X, Ayxo) — Hp(X, A} Z)

By contemplating the previous figure, this is a homomorphism: it is called the Hurewicz
homomorphism. For a while this will be the only tool we have to show that elements
of m,(X, A, z¢) are nonzero, but we will develop more tools.

The action of 71 (A, z¢) on 7, (X, A, z¢) is shown in the following figure, which makes
clear that the Hurewicz homomorphism is insensitive to this action, i.e. h(ug([f])) =

h(L11)-
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k

o, - (X A %)

Ny

y w

1.5 Compression criterion

The constant map consty, : (I™,dI",M"1) — (X, A, x) represents an element of
(X, A, x0). When is [f] = [consty,]| in m,(X, A,20)? To answer this we adopt the
“disc” perspective.

Lemma 1.5.1. A map f : (D™, 8" 1 %) — (X, A, 2¢) represents [const,,] € m, (X, A, z0)
if and only if f : D™ — X is homotopic relative to S"~ to a map with image in A.

Proof. Suppose first that f is homotopic relative to S»~! to a map ¢ which has image
in A. Such a homotopy shows that [f] = [g] € (X, A, 20). Now choose a deformation
retraction®

r: D" x[0,1] — D"

of D" to * € S"~! € D", and consider gor : D" x [0,1] — X. At time 0 this is the map
g, and at time 1 it is const,,: furthermore, for all times it sends S™ ! into A (as the
map g has image in A) and sends * to z¢ (as r fixes * throughout). Thus this homotopy
shows that [g] = [const,].

DI\

Now suppose that [f] = [consty,], and let H : D" x [0,1] — X be a homotopy giving
this identity, so H(D" x {1}) C {zo} C A and H(S"! x [0,1]) € A. As D" x [0,1]

3In this course a deformation retraction of X to a subspace A is a homotopy from the identity map
of X to a map into A, and this homotopy should be constant on A.
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deformation retracts to D™ x {1} U S"~! x [0, 1], by radial projection from (0, —1) as in
Figure 1.3, it follows that f(—) = H(—,0) is homotopic relative to S ! to a map into
A. O

Figure 1.3

1.6 The long exact sequence of a pair
The map of pairs i : (A,z9) — (X, xo) and map of triples j : (X, zg,z9) — (X, A, z0)
induce maps

ix: (A, x0) = T (X, 20)  and gy o (X, 20) = T (X, A, o).

In addition, given a map f : (I™, 01", 1) — (X, A, ) its restriction to I"~! x {0} C
OI" gives a map Of : (I"~1,0I""1) — (A, z¢), inducing a function

0:mp(X, A, z0) — m—1(4, x0).

If n > 2 then O(f - g) = f - Oy, so this function is a homomorphism in this case.
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Theorem 1.6.1. The sequence

Tni1(X, A, x0) j

o}
L 7Tn A ,Z'O # Wn(X,l'()) % 7Tn<X7A7wO)
) )
E% Tn—1(4, xo) L> Tn—1(X, o) =
. % 7T1(X7l'0) % Wl(X,A,SUO)
) )

[ﬁ FQ(A,JZ()) # 7T0(X,$0)

1s exact. Fractness al the last three positions must be interpreted carefully: it means that
Im(j*) = 0~ ([const,,]) and Im(9) = (i)~ ([consty,]).
This long exact sequence is natural with respect to maps ¢ : (X, A, x9) — (Y, B,yo).

Proof.

Exactness at m,(X,zo): Let f: (I",0I") — (X, z0) be such that j.([f]) = [consty,].
By the compression criterion this means that f is homotopic relative to dI™ to a map
with image in A, so [f] € Im(i). The compression criterion also shows that j o i, = 0.

Exactness at 7, (X, A,z0): We have 0j.([f]) = [f]inx{0}] = [consts,] because f sends
OI™ to xg. Now let f: (I",0I"," 1) — (X, A, z0) be such that f : (I""1,0I"!) —
(A, x0) is homotopic to consty,, say via a homotopy H : "' x [0,1] — A. Form the
map

g: (I 0I") — (X, )
(tl to t)'_> H(t217tn71—2t1) O§t1§1/2
s U2y ) f(2t1*1,t2,...,tn) 1/2§t1§1

These indeed glue as H(ta,...,tn;0) = (Of)(te, ..., tn) = f(0,t2,...t,), and g indeed
takes the value x¢ if any t; is 0 or 1. See Figure 1.4 (a).

Thus [g] € (X, 2z0), and we can form j.([g]) € m (X, A, xp). This is equal to
[f] € mn(X, A, xo) via the homotopy of triples

G (I", 0", " 1 x [0,1] — (X, A, x0)

H(tQ,.. n;1—2t1) O§t1§1/28
f(2tlst27'~‘7t) 1/28§t1§17

(tl,tg,...,tn,s) — {

as the homotopy H has image in A. See Figure 1.4 (b).

Exactness at m,_1(A,xo): For f: (I", 01", I‘I”_l) — (X, A, 29), the element i.0([f]) is
zero because '
(It x {o},01" ! x {0}) (A o) — (X, x0)
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d) Xo b) — X _

X, ¥ Xy g-

8’[ foye1"”’

Xo H Xo S'%_
+| T XOL H]I“x[n's. | X’
Xo e A

Figure 1.4

is homotopic to consty, via the homotopy f! Conversely, if g : (I, 0I" 1) — (A, o)
has i o g homotopic to const,, via a homotopy H : (I, 01" 1) x [0,1] — (X, z0), then
the map H : I"" — X satisfies

Hiporygy =g, H@OI) C A, H() C {ao},
and so [H] € m,(X, A, xo) satisfies O([H]) = [g]. O
For a path u : [0,1] — A, the change-of-basepoint bijections
uy (X, A, o) — (X, A, 21),

ugy (X, x0) — m (X, 1)  and  wuy (A, x0) — T (A4, 21)

give a map of long exact sequences from that based at x¢ to that based at z;. In particular
m1(A, o) acts on the terms of the long exact sequence of Theorem 1.6.1, making it a
long exact sequence of Z[m1 (A, zg)]-modules (and of sets-with-a-m (A, xo)-action near the
bottom).

1.7 Maps are pairs (up to homotopy)

A pair of spaces (Y, B) in particular gives an (inclusion) map i: B — Y.
If f: X —Y is amap,let

My = (X x [0,1]UY)/(z,1) € X x [0,1] ~ f(z) € Y,

called the mapping cylinder of f.
There is an inclusion

X —)Mf
x +— [(x,0)]
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K{o)
Xx[ol]

7

and linear interpolation gives a deformation retraction

T:MfX [0,1] —)Mf
(lyl,t) —ry
([x,s],t) — [(x,s(1 —t) + t)]

to the subspace Y C M. Thus the pair (My, X) has inclusion map satisfying

X — My

\>\;f“m
Y

In other words, M/ is a replacement of Y, up to homotopy equivalence, for which the
map f: X — Y is represented by the inclusion of a subspace.

Using this device we may consider any map f : X — Y as being, morally, the inclusion
of a subspace, and so can pretend that (Y, X) is a pair: we really mean the pair (M, X).
For example, for zg € X we can define

Wn(Y,X,.T()) = Wn(Mf,X, :C()),

whereupon, using m,(Y") = m,(My), we get a long exact sequence

Tn1(Y, X, 20) j

15)
L (X, 20) —L s 1Y, f(x0)) ——L s 7 (Y, X, 20) U
16)
&Wndewﬁﬁwndwaw) I

1.8 CW complexes
Definition 1.8.1. A CW complex is a space X obtained by the following process.

(i) Let X~ 1:= 0.
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(ii) Supposing the space X"~ ! has been defined, let {¢, : S~ — X" 1} ;. be a set
of maps, and let

X" = (X" U (I, x D) /(a,z) € I, x S" ' ~ pu(x) € X",
with the quotient topology.

We let el be the image of {a} x int(D™) under the quotient map, called an open cell.

Let X := U,>0X" with the following topology: a set S C X is open (resp. closed) if
and only if each S M X" is open (resp. closed)*. We call X" the n-skeleton of X.

A pair of spaces (X, A) is a relative CW complex if X is obtained as above but
starting from X! := A.

If X is a CW complex then a subcomplex is a closed subspace A C X which is a
union of open cells. In this case A is a CW complex in its own right, and (X, A) is called
a CW pair.

Definition 1.8.2. A pair (X, A) has the homotopy extension property if given a
map f: X — Y and a homotopy H : A x [0,1] — Y such that H(—,0) = f|a(—), there
exists a homotopy H': X x [0,1] = Y such that H'| 4x(01) = H and H'(—,0) = f(—).

Equivalently®, we start with the data of a map
fUH: (X x{0})u(Ax][0,1]) —Y
and ask for an extension to a map H': X x [0,1] = Y.
Theorem 1.8.3. A relative CW complex (X, A) has the homotopy extension property.

Proof. As a preliminary step, observe that just as in Figure 1.3 the space D™ x [0, 1]
(deformation) retracts to (D™ x {0})U (S™ ! x [0, 1]) via radial projection from (0,2). It
follows that the pair (D", S" ') has the homotopy extension property: the initial data
is a map

fUH: (D" x {0p)u(S" ' x[0,1]) — Y
and precomposing with the retraction » : D™ x [0,1] — (D™ x {0}) U (S"~! x [0, 1]) gives
the required extension.

Now, let (X, A) be a relative CW complex, f: X — Y and H : A x [0,1] = Y be
given. We will construct compatible maps H" : X" x [0,1] — Y by induction over n: we
start with H~1 := H.

Suppose H" ! is given. Now

(X" x[0,1]) U (I, x D™ x [0,1])
(a,z,t) € I, x D" x [0,1] ~ (pa(x),t) € X1 x [0,1]’

X" x[0,1] =

so the retraction r : D™ x [0,1] — (D™ x {0}) U (S™~1 x [0,1]) for each o € I,, gives a
retraction
r" e X7 x [0,1] — (X" x {0}) U (X" x [0,1]),

4So a function f : X — Y is continuous if and only if all its restrictions f|x» : X" — Y are
continuous.
®Though this equivalence is subtle if A C X is not closed, see Proposition A.18 of Hatcher’s book.

Lecture 3
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and we can set H" := (f|x» U H" 1) or™. By definition of the topology on X, the map
H' :=Up>oH" : X x [0,1] = Up>0X" x [0,1] — Y is continuous, and gives the required
extension. 0

This argument shows the most useful point of working with CW complexes: we can
make arguments by induction over cells, or skeleta, and often reduce to proving things
for D™. The following is another example of this strategy.

Lemma 1.8.4 (Compression Lemma). Let (X, A) be a relative CW complex and (Y, B)
be a pair with B # (0. Suppose that for each n such that X has an n-cell relative to A,
(Y, B,yo) = 0 for all yo € B. Then any map f : (X, A) — (Y, B) is homotopic relative
to A to a map into B.

Proof. We will construct compatible homotopies
H": X" x[0,1] —Y

relative to A, such that H"|xn, oy = f|x» and H"(X" x {1}) C B. We start by taking
H1(x,t) = f(x) to be the constant homotopy on X°.

If A"~ ! has been defined let I,, index the n-cells of X relative to A. For each o € T,
we have a map

Ma = fl{a)xpn uH”‘l\{a}XSn_lxw {a} x (D" x {opHhu(S" ' x[0,1))) — Y.

The domain is homeomorphic to D", and m,(S" ! x {1}) ¢ H*1(X"1 x {1}) C B, so
me, represents an element of m, (Y, B, mq(c, *,1)). As this homotopy group vanishes by
assumption, by the compression criterion (Section 1.5) the map m,, is homotopic relative
to {a} x S~ ! x {1} to a map into B: this homotopy gives an extension to a map

M, :{a} x D" x[0,1] — Y
satisfying M, ({a} x D™ x {1}) C B. As

(X1 % [0,1]) U (I, x D™ x [0,1])
(a,z,t) € I, x D™ x [0,1] ~ (pa(x),t) € X7~ x [0,1]

X" x[0,1] =
we can let H" = (H"~ ' U |_|a€1n Ma)/ ~. -

1.9 Weak homotopy equivalences and Whitehead’s Theorem

Definition 1.9.1. Amap f : X — Y is a weak homotopy equivalence if the functions
fe (X, 20) — (Y, f(x0)) are bijections for all n and for all basepoints zg € X.

More generally, we say that spaces X and Y are weakly homotopy equivalent if
there exists a zig-zag

X —=01¢—2Zy—Z3— - — L+ Y

of weak homotopy equivalences.
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We have seen (Example Sheet 1 Q1) that homotopy equivalences are weak homotopy
equivalences. Our goal is to show that the converse is also true, as long as the spaces
involved are CW complexes.

Theorem 1.9.2. Let (Z, A) be a relative CW complex, f: X — Y be a weak homotopy
equivalence, and a commutative square

A—hyx

[l

z 2y
be given. There there is a map g : Z — X such that
(1) goi=h,
(ii) f o g is homotopic to g, relative to A.

Proof. Suppose first that f : X — Y is the inclusion of a subspace, so that (Y, X) is a
pair. The long exact sequence

7rn+1(y> X, :CO) j

0

L (X, 20) L (Y, f(20)) % (Y, X, z0) U
0

[_) WTL—I(X,I'O) L) W?L—I(Y,f(m‘o)) Jx

then shows that m,(Y,X,z9) = 0 for all zp € X. The claim then follows from the
Compression Lemma (Lemma 1.8.4).

For a general map f: X — Y we reduce to the case above following Section 1.7. Let 1 gave a fallacious ver-
My denote the mapping cylinder of f, with inclusions inc: X — My and j : Y — My ) of this argument

in lectures: here it is

and retraction 7 : My — Y. Consider the diagram now corrent.
Al x X X
Ll e
z 2y Lo My Y,

in which the left and right squares commute (using that r o j = Idy) and the middle
square commutes up to homotopy. Combining the two leftmost squares gives a new
square

A—r X
li linc
7 g'=jog M

~
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which also commutes up to homotopy. Using the homotopy extension property, we may
change ¢’ by a homotopy to a map ¢” making the square literally commute. This puts
us in a situation to apply the version of the statement proved above, as inc : X — My
is the inclusion of a subspace. Thus there is a map §” : Z — X such that ¢” o4 = h and
such that inco §” ~ ¢” ~ ¢’ relative to A. Applying r to this homotopy, it follows that
f og” is homotopic to g relative to A, as required. O

Corollary 1.9.3 (Whitehead’s theorem). If f : X — Y is a weak homotopy equivalence
between CW complexes, then it is a homotopy equivalence.

Proof. First apply the previous theorem to
0
Y

which provides a map ¢ : Y — X such that f o g is homotopic to Idy. We claim that g
is a homotopy inverse to f so we must also show that g o f is homotopic to Idx.

As f o g is homotopic to Idy, there is a homotopy H from fo(go f) = (fog)o f to
foldy =1Idy o f. Thus we may form the commutative square

— X
|7

Id
Y Y,

X x {0} U X x {1y Lo x

J/inc Jf

X % [0,1] 1 Y.

The left-hand map is the inclusion of a sub-CW complex, and the right-hand map f is
still a weak homotopy equivalence, so by the previous theorem we may find is a map
H : X x[0,1] — X such that H|xyqoy = fog and H|xy} = Idx, as required. O

There is another consequence of Theorem 1.9.2 with further justifies focussing on the
notion of weak homotopy equivalences.

Corollary 1.9.4. A weak homotopy equivalence induces an isomorphism on homology
and cohomology with any coefficients.

Proof sketch. 1t is enough to prove that a weak homotopy equivalence f : X — Y induces
an isomorphism on homology with Z coefficients: it then follows for (co)homology with
any coefficients by Universal Coefficient Theorems. By replacing Y by the mapping
cylinder My, it is also enough to treat the case where f is the inclusion of a subspace.
In this case we need to show that H,(Y, X;Z) = 0.

Let > ns - o] € Cn(Y,X) be a relative cycle, where ¢ : A" — Y are singular
simplices. We must show that this cycle represents zero in H, (Y, X;Z). By considering
Ne - 0 as |ny| copies of o (or of —o), we may glue copies of A™ together along faces as
follows. If 7 C o is a (n — 1)-dimensional face which is not sent into X, then because
> ns - 0) € Cp_1(X) there is another simplex ¢’ which also has 7 as a face. Let
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K denote a simplicial complex obtained by gluing together in this manner all (n — 1)-
dimensional faces which are not mapped into X, and let L C K denote the union of the
unglued (n — 1)-dimensional faces. By construction there is a map of pairs

f(K] L) — (Y, X).

Now
x :=sum of all n-simplices of K € C,(|K]|,|L|)

is a cycle, and by construction f.(z) = [>_n, - o] € Hy(Y,X). Now as (|K|,|L|) is a
relative CW complex, by Theorem 1.9.2 the map f : (|K]|,|L|) — (Y, X) is homotopic
relative to |L| to a map with image in X, and so f.(z) = 0. O

1.10 Connectivity

Definition 1.10.1. For n > 0 say that a pair (X, A) is n-connected if mo(A) — mo(X)
is onto® and m;(X, A, 2¢) = 0 for all 1 < i < n and all x9 € A. Equivalently, for all
o € A the maps

TFi(A, x(]) — 7TZ'(X, xo)

are epimorphisms for ¢ < n and isomorphisms for ¢ < n. More generally, say that a map
f: X — Y is n-connected if the pair (M, X) is n-connected.

Say that a space X is n-connected if the pair (X, {z¢)}) is n-connected for all
xg € X, i.e. m(X,2z9) =0 forall 0 <i<nand all zp € X.

Theorem 1.10.2. S™ is (n — 1)-connected.

Proof. Let x € S™ be a basepoint, i < n, and f : (S% %) — (S™,*) be a continuous map,
representing [f] € m;(S™, *). By the Simplicial Approximation Theorem we may change
f by a homotopy to a map f’ that is simplicial with respect to some triangulations
St~ |K|and S™ = |L|; as i < n the map f’: S* — S™ is not surjective, so lands inside
some (int(D™),*) C (S™,*). As int(D") deformation retracts to * € int(D"), it follows
that f’ is homotopic, relative to x, to a constant map, so [f] =0 € m;(S™). O

Corollary 1.10.3. The pair (D", S"!) is (n — 1)-connected.

Proof. The long exact sequence on homotopy groups for this pair, and the fact that
;i (D™, %) = 0, shows that the boundary map

0 : m(D", st *) — 7ri_1(S”71, *)

is an isomorphism. By the previous theorem the latter group vanishes for ¢ —1 <n —1,
so the former group vanishes for i < n. O

Corollary 1.10.4. If (X, A) is a relative CW complex only having relative cells of di-
mension < n, then any map f : (X, A) — (D", S" 1) is homotopic relative to A to a
map into S L.

5You can interpret this condition as “mo(X, 4, zo) = 0”, but we did not define such a relative homo-
topy group.



16 Chapter 1  Homotopy groups, CW complexes, and fibrations

Proof. Apply the Compression Lemma (Lemma 1.8.4). O

Corollary 1.10.5. If (X, A) is a relative CW complex only having relative cells of di-
mension > n, then it is (n — 1)-connected.

Proof. Let i < n and f : (I',0I',"1) — (X, A, x) represent an element [f] €
(X, A, xg), which we must show is zero, i.e. we must find a homotopy compressing
f into A.

As I' is compact so is f(I?), so it lies in a sub relative CW complex (X', A) having
finitely-many cells (see Example Sheet 1 Q5). Thus we may suppose without loss of
generality that (X, A) has finitely-many cells. Let A C X’ C X be a sub-CW complex
having one fewer relative cell than X. By induction it suffices to show that we can
homotope f relative to OI™ until it has image in X'.

Thus we may suppose that we are in the following simplified situation: we have a
map ¢ : (I',0I') — (X, X’), where X = X’ U D* with £ > n and i < n, and we wish to
homotope g relative to OI° to that it has image in X'.

g7 (U)
u
47 (V)
VvV
-
x/ |

Cover X = X' U D¥ by the open sets U = X’ U (D*\ {0}) and V = int(D¥). Then
g Y (U) and g=1(V) form an open cover of I, so by the Lesbegue number lemma we may
subdivide I’ into small cubes each of which maps into U or into V (or into both). Let
B C I be the “bad cubes™ those closed cubes which map into V. Then g(0B) C VNU,
and so we have a map

glp : (B,dB) — (V,V NU) = (int(D*), int(DF) \ {0}) ~ (D*, S51).

As (B,0B) is a relative CW complex only having cells of dimension < i < n, and
(V,V NU) is homotopy equivalent to (D*, S¥=1) with k > n, it follows from Corollary
1.10.4 that g|p is homotopic relative to OB to a map into U NV, and hence that g is
homotopic to a map into U. Finally, U deformation retarcts to X’. O

1.11 Cellular approximation

Corollary 1.11.1 (Cellular approximation). If f : (X, 4) — (Y, B) is a map between
relative CW complezes, then it is homotopic to a map f satisfying f(X™) C (Y™) for all
n > 0.

Proof. See Example Sheet 1 Q7. O
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Corollary 1.11.2. If X is a CW complex and ¢ : S"' — X is an attaching map for
an n-cell then ¢ is homotopic to a map into X" !, so X Uy D™ 4s homotopy equivalent
to a CW complex. O

1.12 CW approximation

From the point of view of weak homotopy equivalence, every space is equivalent to a CW
complex:

Theorem 1.12.1. For any space X there is a CW complex C' and a weak homotopy
equivalence f : C — X.

Furthermore, if g : D — X is another weak homotopy equivalence from a CW com-
plex, there is a weak homotopy equivalence ¢ : C — D such that go ¢ ~ f.

Lecture 5

Proof. Suppose that X is path connected (otherwise repeat the below for each path
component), and choose a basepoint zg. We will construct CW complexes C° ¢ C! C
C? C --- and maps f": C™ — X such that

(i) C™ is n-dimensional, and

(ii) fn is n-connected, i.e. f' : m;(C", %) — m;(X, zp) is an isomorphism for ¢ < n and
an epimorphism for i = n.

Then the map f := U, f" : C = U,>oC" — X induces an isomorphism on all
homotopy groups and so is a weak homotopy equivalence.

We start with C° = {*} and f°(*) = zo. Assuming that C"~! has been constructed,
let {tpo : (S"71 %) — (O™ 1 %)}aer, be a set of maps such that [1),] € m,_1(C™71, %)
generate

Ker(f2 ! : 7, 1(C" 1 %) = mo_1(X, x0)),

and let
grelim = Cn_l U U DZ
aEIn
be the CW complex obtained by attaching n-cells to C"~! along the maps 1. As
fr oy : (8" 1 %) — (X,m0) is nullhomotopic, a choice of nullhomotopy gives an
extension of this map over the cell D?, and so an extension of f"~! to a map

m :Cn — X.

prelim prelim
n
. N _ _q i i .
Consider the factorisation f*~!:Cn= 1 5 prelim P X as giving
n
1. —1 T ( prelim)*
T o (CM %) —— Wn_l(Cgmlim,*) —— Tp—1(X, x0).

The map f7'~! is surjective by assumption. The map i, is surjective, because we have
Tn—1(C" C"™1 %) = 0 by an application of cellular approximation (Corollary 1.11.1).

prelim?
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On the other hand the 1, map to 0 under ¢, by construction, and as these generate the

kernel of f~! it follows that ( orelim )+ 15 @ bijection. For i <mn —1 we have

7 n’r‘e im)*
o T (C™7 L %) — m(C” *)(% (X, o),

prelim?

the map f"~! is an isomorphism by assumption, and the map 4, is an isomorphism
as both m;(C}) i C" 1 %) and W1+1(Cpmllm, C™~ 1 %) vanish by cellular approximation
(Corollary 1.11.1): it follows that (f} ;) is an isomorphism too.
Now let {¢q : (S™, %) = (X, 20)}ges, be a set of maps such that [pg] € mn (X, z0)
generate this group, let
c" prelzm\/ \/ Sﬁ
BEIn

be obtained by attaching an n-cell trivially for each 5 € J,, and set f™ := prelim V Vs :
C" — X. By construction the map fI' : m,(C",*) — m,(X,zo) is an epimorphism.

Consider the maps

n

(frol oy, cm(en *) BN 7 (C™, %) ——— mi(X, x0).

prelim prelim’
The map 4 is a split monomorphism as the inclusion 7 : prelim C™ has a retraction
(by collapsing all Si’s to the basepoint). As m;(C", relim x) =0 for i <n—1hy
cellular approximation (Corollary 1.11.1), it follows that the map i, is an isomorphism
for i < n—1. Together with the fact that ( ;}mlim)* is also an isomorphism for i < n—1,
it follows that f' is an isomorphism in this range too. This finishes the construction of
the C"™’s and f™’s.

For the last part, apply Theorem 1.9.2 to

to get ¢ : C — D such that go ¢ ~ f; as f and g are weak homotopy equivalences, so is
P O

Corollary 1.12.2. If X s n-connected, there is a weak homotopy equivalence f : C — X
where C' has a single 0-cell, and all other cells of dimension > n.

Proof. As in the last proof, but start with {x} =C°=C! =... = C". O

1.13 Hurewicz’s Theorem

By Theorem 1.10.5, if (X, A) is a relative CW complex only having cells of dimension
> n then 7;(X, A, z¢) = 0 for i < n. What about 7, (X, A, x¢)? We start by considering
the situation where (X, A) consists of a single relative n-cell.



1.13 Hurewicz’s Theorem 19

Theorem 1.13.1. If X = AU D", then the map
®: (D", 8" %) — (X, A, x0)
given by the n-cell generates m,(X, A, z0) as a Z[m1(A, xq)]-module.”

Proof. Let [f] € mp(X, A, zp) with n > 3; our goal is to write it as a Z-linear combination
of elements vx([®]) for v € w1 (A, zo).

We have a map f: (D", 8", %) = (X, A, z0). There is an open set U = int(D") C
X, and so f~Y(U) C D" is an open subset contained in the interior. Now f : f~1(U) — U
is a map between open subsets of R™, so it may be homotoped near f~1(0) so that it is
smooth and transverse to 0 € U near this set: continue to call the map f. Then there is
a small closed disc 0 € D C U such that f~*(D) = |_I§?:1Dj is a disjoint union of closed
discs, each of which is sent homeomorphically to D by f.

)
> i
e //-—)

() %

Let z1 be a point on the boundary of D, and u be a path in D™ C X from zg to .
Let y; € D; be the point that is sent by f to 1.

Choose paths v; in D™ from * to y;, and let V =AU (D" \ {0}) C X, another open
set. Then the disc D gives an element

[inCD] S TI'n(X, V,{L'1>
which under the isomorphisms
(X, A, 20) — 70 (X, V,20) < w00 (X, V, 1)

corresponds to [®].

Each f ow; is a path from zg to 21 lying in V, but need not be homotopic to the
path w. However, it is homotopic to v; - u for some [y;] € m(V,zo) = m1 (A, zo). Thus
from the geometric description of sum of relative homotopy classes (Remark 1.3.2) we
see that

/1= (1) #([®]) € ma(X, V. o)

J=1

as required, where the signs come from whether the homeomorphisms f|p, : D;

L
0o

preserve or reverse orientation.
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Corollary 1.13.2. If X is obtained from A by attaching a single n-cell along a map ¢ :
(S" 1 %) — (A, xq), then (A, z0) — m(X, x0) is an isomorphism for alli <n —1, and
Tn—1(A,x0) = mr—1(X,x0) is an epimorphism with kernel the Z[m (A, xo)]-submodule
generated by [¢] € mp_1(A, z0).8

Proof. The first two parts follows from the fact that m;(X, A,x9) = 0 for i < n, by
Corollary 1.10.5. For the last part we consider the portion of the long exact sequence of
(X, A) given by

(X, A, x0) 2., Tn-1(A4,29) —— mp—1(X,29) —— 0,

which has 0(|®]) = [¢], and apply the previous theorem. O

Corollary 1.13.3. If X = AU D™ and A is simply connected, then m,(X, A, x¢) is
isomorphic to Z, generated by [®].

Proof. By the theorem this group is generated as a Z-module by [®], so it remains to
show that [®] has infinite order. For this consider the Hurewicz homomorphism

h: Tr’l’L(X)Ava) — H’I’L(X7A7Z) = epcision Hn(Dn’Snil;Z) =7

and observe that [®] is tautologically sent to the generator [D"] € H,, (D", S"!;Z). This
does indeed have infinite order. O

Corollary 1.13.4 (Hopf’s theorem). We have m,(S™,*) = Z, generated by the identity
map Idgn : S™ — S™. That is, maps f,g : S™ — S™ are homotopic if and only if they
have the same degree.

Proof. Take A = {x¢} in the previous corollary. O

Corollary 1.13.5. If X =\/ . ; St is a wedge of n-spheres with n > 2, then
T (X, %) = EBZ,
acl

generated by the inclusions io 1 Sop — X.

Proof. Suppose first that J is finite. Then the inclusion \/ .;S4 — [l.csSa is a
sub-CW complex, and the relative cells have dimension > 2n, so this pair is (2n — 1)-
connected. Thus the inclusion induces an isomorphism on 7,(—). On the other hand a
map into a product is a product of maps, so

Tn <H sg) = [ 7 (S5) = P () = P 2.

aceJ acd acJ acJ

"For n > 3; for n = 2 the 71 (A, zo)-orbit of [®] generates the non-abelian group m2(X, A, 20); for
n = 1 there is no sensible statement.
8For n — 1 > 2; for n — 1 = 1 the kernel is the normal subgroup of 71 (A, zo) generated by [¢].

Lecture 6
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Now in general we have X = (J ;1 ; gnite (V7 S™), and as any map from a compact
space (such as S™ or S™ x [0, 1]) has image in a finite subcomplex, and taking homotopy
groups preserves direct limits, the claim follows. O

Theorem 1.13.6 (Hurewicz). Let X be a path-connected space with basepoint xy, which
is (n—1)-connected for some n > 2. Then H;(X;Z) =0 for 0 < i <mn, and the Hurewicz
homomorphism

h:mn(X, o) — Hp(X;Z)

s an isomorphism.

Proof. By Corollary 1.12.2 there is a weak equivalence f : C — X from a CW complex
having a single 0-cell, and no other cells of dimension < n. By Corollary 1.9.4 the map
f« + Hi(C;Z) — H;(X;Z) is an isomorphism, but computing with cellular homology
gives H;(C;Z) = H(C;Z) = 0 for 0 < i < n as claimed.

We now consider the Hurewicz homomorphism in degree n. The inclusion i : C"*+1 —
C is (n + 1)-connected, so i, : m,(C"*1 %) — 7,(C,*) is an isomorphism, and i, :
Hff”(C"H; Z) — Hff”(C; Z) is clearly an isomorphism too: thus we may suppose that
C = C"*lis (n + 1)-dimensional and apart from a 0-cell has no cells of dimension < n.

As any map from a compact set (such as S™ or A") into C"™*! intersects the interiors
of finitely-many (n + 1)-cells, we may suppose without loss of generality that C™*! has
finitely-many (n 4 1)-cells: we proceed by induction on the number of (n + 1)-cells. By
the previous corollary the map h : m,(C™, x) — H,(C™;Z) is an isomorphism, providing
the base of the induction. Suppose then that C"t! = ' Uy, D™ and that the Hurewicz
homomorphism for C’ is an isomorphism. The Hurewicz homomorphism gives a map of
long exact sequences

Z = 7, 1 (C™HL, O %) ——— T (CF, %) —— mo(C™TL %) —— 0 ——

; Tk

7= H,(C"C2) —— H,(C;Z) —— Hp(CPH7Z) —— 0 ——

< 1R <

where the first vertical map is an isomorphism by Corollary 1.13.3, the next is an iso-
morphism by assumption, and the other two are isomorphisms by observation: it follows
from the 5-lemma that the middle vertical map is an isomorphism too. ]

Theorem 1.13.7. If X is a path-connected space with basepoint xg, then the Hurewicz
homomorphism
h: 7'('1(X,:L‘0) — Hl(X,Z)

is an epimorphism, with kernel the commutator subgroup of m1(X,xg). That is, this
homomorphism is the abelianisation of w1 (X, xo).

Proof sketch. 1t holds for X =\/; S1 by direct calculation of both sides: the left-hand
side is the free group on J and the right-hand side is the free abelian group on J. Then
proceed as in the proof of the last theorem, looking at the effect on both sides of adding
a cell. O
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1.14 Eilenberg—Mac Lane spaces and cohomology

Definition 1.14.1. A path-connected based space (X, z¢) is an Eilenberg—Mac Lane
space of type (G,n) if
G i=n

mi(X, 20) = {() i # n.

(Note that if n > 2 then the group G must necessarily be abelian, but if n = 1 it need
not be.)

Example 1.14.2. Recall from Q9 on Example Sheet 1 that if 7 : X — X is a covering
space then 7, : m;(X,%o) — mi (X, m(Zo)) is an isomorphism for i > 2. Thus if a path-
connected based space (X, x¢) has contractible universal cover then m;(X, zo) = 0 for all
i > 2, and so X is an Eilenberg-Mac Lane space of type (G, 1) for G := 71 (X, x0).

In particular,

(i) S!is Eilenberg-Mac Lane space of type (Z, 1), and

(ii) RP* is an Eilenberg—Mac Lane space of type (Z/2,1). A

Lemma 1.14.3. If either n = 1 and G is any group, or n > 2 and G s an abelian group,
then an Eilenberg—Mac Lane space of type (G,n) exists, and can be taken to be a CW
complex.

Proof. Suppose first that n > 2 and G is abelian. Let

Pz Pz—ac—0
peJ acl

be a partial free resolution of the abelian group G.° Form the CW complex X" :=
Vaer ™, then form X' by attaching an (n + 1)-cell to X” for each 8 € J, along a map
g with

losl = f(15) € P Z = mn(X", ).

acl

Now X’ has no cells of dimension < n apart from a 0-cell, so is (n — 1)-connected, and by
construction Hy(X";Z) = (P, e Z)/im(f) = G, so by Hurewicz’s theorem m,(X'; x) =
G. Now form X from X’ by attaching cells of dimension > n + 2 to kill m;(X’, %) for all
1 > n: it is then the required Eilenberg-Mac Lane space.

If n = 1 we choose a presentation G = (I|.J) of the group G, let X" = \/ S,
and form X' by attaching 2-cells along ¢g with [pg] = 8 € Free(I) = m1(X”,*). Then
proceed as above. O

9For example, the free abelian group on G surjects onto G, and its kernel is again free abelian as
any subgroup of a free abelian group is free abelian.
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Let (X,z0) be an Eilenberg-Mac Lane space of type (G,n). If n > 2, or more
generally if n > 1 and G is abelian, then by the Hurewicz theorem we have H,,_1(X;Z) =
0 (or it is the free abelian group Z if n = 1) and an isomorphism

Ox HTL<X;Z) e ﬂ—n(Xa -7;0) =G,
so by the Universal Coefficient Theorem

0 — Exth(H—rtX;7Z),G) — H"(X;G) 5 Homz(H,(X;2),G) — 0

the isomorphism ¢x corresponds to a canonical cohomology class
tx € H'(X;G).
For any space Y there is therefore a function
Y, X] — H"(Y;G)
[f:Y = X]— f"(1x).
Theorem 1.14.4. IfY is a CW complez, then the function (1.14.1) is a bijection.

(1.14.1)

Proof. To show surjectivity, let [¢] € H™(Y;G) = H",(Y;G), so that ¢ : C¥(Y) — G
is a cocycle, i.e. a homomorphism such that ¢ o d = 0. For each n-cell of Y, ¢ gives an
element of G = 7, (X, xp). This determines a map

frymyrt=\/ " — X,
a€cly,

and therefore a map

froyn —ynynt L x

By construction this satisfies (f*)*(tx) = [¢]ly» € H*(Y™;G). As the restriction map
H™"(Y;G) — H™"(Y";G) is injective (by considering cellular cohomology, say), it suffices
to show that the map f”: Y™ — X extends to a map ¥ — X.

We first extend it to Y™+, To do so, note that for each (n+ 1)-cell ® attached along
amap ¢ : S" — Y™, the composition [f" o ] € m,(X,z0) = G is precisely ¢ o d(®),
which vanishes as ¢ is a cocycle. Thus f™ extends to a map f*t!: Y - X. Now Y is
obtained from Y"*! by attaching cells of dimension i > n + 1, but then m;_1(X, 29) =0

. . 1—1
so for an i-cell attached along ¢ the composition S?~1 4 yi-l f—> X is nullhomotopic

so the map f**! extends to Y.
Injectivity is proved similarly, constructing a nullhomotopy out of a coboundary. O

Corollary 1.14.5. If (X, x¢) is an Eilenberg-Mac Lane space of type (G,n), and (Z, z)
1s another which is a CW complex, then there is a weak homotopy equivalence f : Z — X.

Proof. The class 1z € H"(Z;G) corresponds by the previous theorem to a map f: Z —
X (which we may homotope so that it sends zp to xg) such that f*(.x) = tz. That is,
the map

G = 7m,(Z, 20) ELN (X, 20) 2 G

is the identity map of G: but as X and Z only have this homotopy group non-trivial, f
is a weak homotopy equivalence. O
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We will therefore generally write K(G,n) for any space which is an Eilenberg—
Mac Lane space of type (G,n): by Lemma 1.14.3 such spaces exist for all (G,n), and by
Corollary 1.14.5 they are unique up to weak homotopy equivalence.

1.15 Fibrations

Definition 1.15.1. Let C be a class of spaces. A map p : F — B has the homotopy
lifting property with respect to C if for each X € C and for each commutative square

Xx{0y 1> E
l lp (1.15.1)
X x[0,1] -2 B

there is a homotopy H : X x [0,1] — E such that
poH=H and H(—,0)=f(-).

If p has the homotopy lifting property with respect to C = {all spaces} then it is
called a Hurewicz fibration. If it has the homotopy lifting property with respect to
C={D% D', D? D3 ..} then it is called a Serre fibration.

We call B the base, E the total space, and p~!(b) the fibre over b € B.

Example 1.15.2. Let p = proj; : £ := B x F' — B denote projection to the first
coordinate. Then given a lifting diagram as above we can take

ﬁ(m,t) := (H(z,1),projy o f(x)).
This satisfies the required properties, so p is a Hurewicz fibration. A

Example 1.15.3. Any covering space p : B — B is a Hurewicz fibration (by the homo-
topy lifting lemma)). A

Example 1.15.4. A Hurewicz fibration is a Serre fibration. A

Example 1.15.5. A composition of Hurewicz (or Serre) fibrations is a Hurewicz (or
Serre) fibration. A

Example 1.15.6. Let p: ' — B be a map, and ¢ : B — B be a map. Let
E' =B xpE:={(t,e) e B x E|¢() =ple)}
and p' : E' — B’ be p/(t/,e) = . Then p’ is called the pullback of p along ¢; it fits

into a diagram
(V' ,e)—e

E' FE
lp’ lp
B—°% B
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and has the following universal property: Given maps X — F and X — B’ which become
equal in B, there is a unique map X — E’ making the evident diagram commute.

Suppose now that p has the homotopy lifting property with respect to C, and consider
a lifting problem

X x {0y L p

! I

X x[0,1] 25 B
with X € C. We can incorporate this into the larger commutative diagram

(V' ,e)—e

X x {0y Lo p E

L b F

X x[0,1] 25 B B,

and the outer square is a homotopy lifting problem for p, which can be solved as X € C

and p has the homotopy lifting property with respect to C: let d)fo\]/'{ : X x[0,1] = FE
be the lift. But by the universal property this produces a lift H : X x [0,1] — E’ of the
original lifting problem. Concretely, it is given by

H(z,t) == (H(z,t), ¢ 0 H(z, 1)) € E.

This argument shows that the class of maps having the homotopy lifting property
with respect to C is closed under the formation of pullbacks. In particular, the pullback
of a Hurewicz (or Serre) fibration is again a Hurewicz (or Serre) fibration. We often write
¢*E := E" and ¢*p :=p' : ¢*FE — B’. A

Lemma 1.15.7. Let p: E — B be a Serre fibration, (X, A) be a relative CW complez,
and a commutative diagram

X x{0lUAx[0,1] —L> E
l p
X x[0,1] —%*— B
be given. Then there is a map H : X x [0,1] — E extending f and lifting H.
Proof. Consider first the case (X, A) = (D", S"1). There is a homeomorphism of pairs
(D™ x [0,1], D™ x {0} U S"" 1 x [0,1]) = (D" x [0,1], D" x {0})

which translates this lifting problem to that of (1.15.1) for X = D™, which can be solved
as p is a Serre fibration.

For a general relative CW complex (X, A), we can construct the lift one cell at a time
using the above. O



26 Chapter 1  Homotopy groups, CW complexes, and fibrations

Theorem 1.15.8 (Local-to-global principle for Serre fibrations). If p: E — B is a map
such that there is an open cover {Us}acr with each pl,-1(y.) : p™1(Ua) = Uy is a Serre
fibration, then p is a Serre fibration.

Proof. Using a homeomorphism D™ =2 [" let a lifting problem

rx{oy 1. p

Lo b

" x 0,1 2 B

be given. Now {H 1 (U,)}aes is an open cover of I" x [0,1], so by the Lesbegue number
lemma we may choose a grid fine enough that each cube lies in some H~1(U,). Order
the cubes as shown in the figure below, so that each cube except the rightmost ones has
a face to its right labelled higher.

I ‘ 6 | - |46
[R5 B
T R 9%
I EREE

{ s |- 1% o2

— T

Now we can lift the map H on the 1st cube, extending the lift given on its red face,
using that this cube has image in some U,, and that p is a Serre fibration over U,.
Similarly, supposing that the first (i — 1) cubes have been compatibly lifted, we may find
a lift on the ith cube, extending the lift already given over part of its boundary, as no
lift has yet been given on its rightmost face. Continuing in this way gives the desired
lift. O

Corollary 1.15.9. A fibre bundle is a Serre fibration.

Proof. If p: E — B is a fibre bundle then by definition there is an open cover {U, }qer of
B and homeomorphisms p~!(Uy) = Ug X F over Uy, identifying pl,-1¢,) : p7' (Ua) = Ua
with proj; : Uy X F' — U,. By Example 1.15.2 such maps are Serre fibrations, so by the
previous theorem p is too. O

Theorem 1.15.10. Let (B,by) be a path-connected based space, p : E — B be a Serre
fibration, and xo € F :=p~'(by). Then the map

st T (E, F,x9) — (B, by)
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1s an isomorphism for all m > 1, so there is a long exact sequence

Tn+1(B, bo) U

0
L 7rn(Fa .’L'()) # Wn(EaxO) # Wn(BvbO)
0 )
[—> 7Tn,1(F, CL‘()) L> anl(E,xo) Jx

Proof. Let f: (I",0I™) — (B, bg) be a map. Construct the relative lifting problem

COnStIO

M~ == "' x{o}uor-1x[0,1] —— F

| p

"1 % [0,1] B,

which has a solution f : I"~' x [0,1] — E. By construction this sends dI" to F and

PN

M= to xg, so we have [f] € m,(E, F, 1), and by construction this satisfies p«([f]) =
[po f] = [f]. Thus p, is surjective.

Suppose that [g] € m,(E, F,xq) satisfies p.([g]) = 0, so that p o g is homotopic to
consty,: let H : I" x [0,1] — B be such a homotopy, which sends 9I" x [0,1] to by.
Now consty, : "1 x [0,1] = E is a lift of H|qn-14] 1], S0 we may construct the relative

lifting problem

Uconstg
" x {0burmt x [o,1] 20,

| |

I" % [0,1] a B.

This has a solution H : I"™ x [0,1] — E, which is a homotopy relative to M"~! from g to
a map into F' = p~!(bg), which by the Compression Criterion (Section 1.5) shows that
[g] =0 € 7, (E, F,xp). 0O

Example 1.15.11. Let $?"*! c C"*! be the unit sphere. The group S = U(1) of unit
complex numbers acts freely on S?"*! with quotient the complex projective space CP™.
The map

p: Sl cpn

is a fibre bundle, so a Serre fibration, with fibre over each point homeomorphic to S'.
Thus there is a long exact sequence

e m(SY, o) < (S 1g) 25 (TP, %) —L i1 (ST, wo) — -+

Combining this with
Z 1=1

0 else

i (ST, z0) :{
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and 7;(S?"t1 29) = 0 for i < 2n, we find that

0 2<i<2n.

In particular, for CP* = U,,>oCP" we find

0 i#2

so that CP*° is an Eilenberg—Mac Lane space of type (Z,2), i.e. CP* ~ K(Z,?2).
The map H :=p: S — S? = CP!, with fibre S', is known as the Hopf map. The
sequence

0 = m3(SY, o) —=> w3(S3, 20) 25 m5(S2, %) -2 mo(S, 20) = 0

shows that 73(S?, %) & Z generated by [H]. A

1.16 Comparing fibres

Theorem 1.16.1. Let p : E — B be a Serre fibration, by, ,b1 € B be points with fibres
Fy, :==p~Y(b;), and u : [0,1] — B be a path from by to by. Then there is a space F, and
weak homotopy equivalences

b, iy
Fbo —0> Fu <—1 Fbl-

Furthermore, if v is a path from by to bs then there is a commutative diagram of weak
homotopy equivalences

Proof. Define F,, := u*FE. There are maps of Serre fibrations

Fy, F, Fy,

L]

{0} [0,1] {1}.
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The long exact sequence on homotopy groups for the fibration u*p based at a point
xg € F, with (u*p)(xg) =0 is

S 7Ti+1([07 1]a {0}) — Wi(FbO’:EU) — Wi(meO) — ﬂ-i([ov 1]a {0}) —

and as [0, 1] is contractible the middle map is an isomorphism: thus Fy, — F, is a weak
homotopy equivalence. The map Fp, — F,, is also a weak homotopy equivalence by the
same argument.

For the second part, note that the composition

1R

[0,1] = [0,1/2] c [0,1] X5 B

is the path u, so pulling p back along these maps gives a map of Serre fibrations

F, Fuv

| |

[0,1] X% [0, 1/2] —5 [0,1];

the map of total spaces is the required map F,, — F,.,. These fibrations have the same
fibres, and their bases are both contractible, so it follows from the map of long exact
sequences for these fibrations that the map F,, — F)., is a weak equivalence. The map
F, — F,., is constructed analogously, and it is then easy to verify that the diagram so
obtained commutes. O

By the first part, if B is path-connected then the fibres over different points are all
weakly homotopy equivalent to each other. Because of this, we will often say that

“F - E 24 Bis a fibration sequence,”

meaning that p is a fibration, B is path-connected, and that F' is the fibre of p over some
point: the fibre over any other point is then weakly homotopy equivalent to F.

Corollary 1.16.2. Let p: E — B be a Serre fibration, by,by € B be points with fibres
Fy, := p (b)), and u : [0,1] — B be a path from by to bi. Then there is an induced
isomorphism

Uy - H*(Fbo) L) H*(Fbl)-

If v is a path from by to b, then vy ouy = (u-v)g. In particular m(B,by) acts on
H,(Fy,). Similarly, it acts on the cohomology of Fy,.

Proof. As weak homotopy equivalences induce isomorphisms on homology, we define u4
to be the composition of the isomorphisms

H.(Fyy) > Hi(F,) €~ H.(Fy,).

The formula vy o uy = (u - v)4 then follows from the commutative diagram in the last
theorem. O
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1.17 Function spaces

Definition 1.17.1. For spaces X and Y, we let map(X,Y") denote the set of continuous
maps f: X — Y. We endow this set with the compact-open topology: the topology
generated by the subbasis of sets

W(K,U) = {f: X - Y| f(K) C U},
ranging over all compact K C X and all open U C Y.

Lemma 1.17.2. If X is locally compact'® then the evaluation map

exy :map(X,Y)x X —Y
(fiz) — f(x)
15 continuous.

Proof. Let U > f(x) be an open neighbourhood. As X is locally compact there is a
compact neighbourhood z € K C f~}(U). Then exy sends W(K,U) x K into U, so
the open set W(K,U) X int(K) > (f,x) lies in U. O

Lemma 1.17.3. Let f : Z x X — 'Y be continuous. Then its adjoint
. Z — map(X,Y)
z— (x— f(z,2))
18 continuous.

Proof. We must show that (f°4)~!(W (K, U)) is open, for K C X compact and U C Y
open. If f%(z) € W(K,U) then {z} x K C f~%(U). As K is compact there is an open
V 5 z such that V x K € f~1(U), but then z € V C (f*)"Y\(W(K,U)). O

Corollary 1.17.4. If X is locally compact and f*¢ : Z — map(X,Y) is continuous,
then f : Z x X — Y is continuous.

Proof. The map f is

fedxId ex,y

Zx X' S5 map(X,Y)x X =5 Y.

Corollary 1.17.5. If X and Z are locally compact, then the map

a:map(Z x X,Y) — map(Z, map(X,Y))

f'—>fad

15 a homeomorphism.

10 e. for every point z € X and every open neighbourhood U 3 z, there is a compact set K with
rzeint(K) C K CU.
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Proof. By the last two results this function is well-defined and a bijection. Also, by the
last results,

a is continuous <= map(Z x X,Y) x Z — map(X,Y) is continuous
< map(Z x X,Y) x Z x X — Y is continuous

which it is as Z x X is locally compact. Similarly a~! is continuous if and only if
map(Z, map(X,Y)) x Z x X — Y is continuous, but this factors as

eZ,map(X,Y)XIdX exy
—

map(Z, map(X,Y)) x Z x X map(X,Y)x X =Y

so is indeed continuous. O

Theorem 1.17.6. If (X, A) is a relative CW complex and X is locally compact, then
the restriction map

res: map(X,Y) — map(4,Y)
fr—fla
1s a Serre fibration.

Proof. Suppose given a homotopy lifting problem

ad
D x {0} L map(X,Y)

D" x [0,1] % map(A,Y),

where fo¢ and H% are adjoint to maps f : X x D"x{0} — Y and H : AxD"x[0,1] = Y.
As (X x D", A x D") is again a relative CW complex, it has the homotopy extension
property, so H extends to a H : X x D" x [0,1] — Y starting at f. By adjunction this

gives a map
H . D™ x [0,1] — map(X,Y),

lifting H and extending f%¢. O

Example 1.17.7. Consider the relative CW complex ([0, 1], {0}). The theorem shows
that the evaluation map

evp : PX :=map([0,1],X) — X
v —7(0)

is a Serre fibration, called the path fibration. The fibre evy ! (x0) =: Py, X is the space
of paths in X starting at xg, and this is contractible: the homotopy

P, X x[0,1] — P, X
(v,t) —> (sr—> {W(S) O<ss< t)

y(t) t<s<1

is easily checked to be a deformation retraction. A
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Lemma 1.17.8. In fact evg : PX — X is a Hurewicz fibration.

Proof. Supposing given a homotopy lifting problem

Zx {0t —L px

Z x[0,1 - X,
with Z an arbitrary space. Define a map H% : Z x [0,1] x [0,1] — X by the formula

H(z,t—2s) 0<s<t/2

fz0(5R) t2<s<1

HY(2,t,5) = {
This is continuous by the gluing lemma, so its adjoint H:Zx [0,1] — PX is continuous
by Lemma 1.17.3. We easily check that H lifts H and extends f. O

The same argument, with more notation, shows that

evg Xevy : PX — X x X
v — (7(0),7(1))

is a Hurewicz fibration.
Let f:Y — X be a map, and form the pullback

Ef = (f xIdx)*PX — PX
l Jevoxevl
v x x DX v oox

Unravelling the definition, we have

Ey={(y,7) €Y x PX[~(0) = f(y)},

and the map (y,7) — (y,7(1)) : Ef = Y x X, being the pullback of evy x evy, is a
Hurewicz fibration. As the projection Y x X — X is also a Hurewicz fibration, the map

pr: Ef — X
(y,7) — (1)

is a Hurewicz fibration.
On the other hand, the maps y + (y,constysy) : Y — Ey and (y,7) = y: By =Y
are easily seen to be homotopy inverses. In total, the diagram

Ey

y—(y,const
wei) 2,

y L, x
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shows that the map f : Y — X may be replaced up to homotopy equivalence with a
Hurewicz fibration py : Ef — X. We call the fibre

py(z0) = {(y.7) € Y x PX [7(0) = f(y).7(1) = zo}

the homotopy fibre of f at the point o € X. The long exact sequence on homotopy
groups for the fibration p;, along with the homotopy equivalence ¥ ~ E;, gives a long
exact sequence

7Tn+1(X, 3}0) j

o]
_ I
L T (P} ! (20), (3o, constay)) ——— T (Y, y0) ——————— m(X, 7o)
; B
L ﬂ—n—l(pjjl(xo)v (yg,constzo)) — 7Tn—l(}/a yO) i

Applied to the inclusion map f: {zo} — X, we get
Ep ={y € PX|7(0) = zo} = Py, X

and
py ' (x0) = {7 € PX [7(0) = 20, 7(1) = xo} =: Dy X

the loop space of X based at xp. The long exact sequence on homotopy groups for the
fibration p; shows that

0 mn(X,20) — Tp—1(Qsy X, consty,)

is an isomorphism for n > 1. In this sense (2X has the analogous effect on homotopy
groups as the suspension XX does on homology groups.

As the space Q,,X is again based, at const,,, we can iterate this construction to
form Q’;OX . Unravelling definitions shows that

OF X = {f € map(I*, X) | f(0I") = xo}.

If 1 lies in the same path-component as g then Theorem 1.16.1 applied to the fibres
of the fibration

evg Xevy : PX — X x X

over (bo,bg) and (by,b1) shows that Q,, X and Q,,X are weakly equivalent!'! so if X
is path-connected then we often just write 2X to mean the loop space taken at some
basepoint.

11n fact we easily see that they are homotopy equivalent: conjugating by a path u from zo to x;
gives a map Q,, X — ., X, conjugating by the reverse path gives a map Q;, X — Q. X, and the two
compositions are easily seen to be homotopic to the identity.
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1.18 The Moore—Postnikov tower

Lemma 1.18.1. Let f: (A, a9) — (X, x0) be a map of path-connected and based spaces,
and n > 0. There is a relative CW complex (Z,, A) and an extension gy, : Zy, — X of f
such that

(i) (Zn,A) only has relative cells of dimension > n, so in particular is n-connected,

(ii) the map (gn)« @ T™n(Zn,a0) — (X, x0) is injective, and for all i > n the maps
(gn)s : ©i(Zn, a0) — m(X,20) are isomorphisms.1?

To emphasise: the factorisation
fiA— Z, I X

has the first map an isomorphism on homotopy groups in degrees < n, the second map
an isomorphism in degrees > n, and in degree n

fe (A a0) — T (Zn, a0) — (X, x0)

is the (unique up to isomorphism) factorisation of f. as an epimorphism followed by a
monomorphism.

Proof. First construct (17", A) by attaching (n + 1)-cells to A to kill
ker(fy : mn(A, ag) = mn (X, x0)),

and using the nullhomotopies in X to extend the map f toa g) : T™ — X. Now construct
relative CW complexes T C T"Ft ¢ T2 C ... with ¢ : T* — X such that

(i) (7% A) only has relative cells of dimensions n +1 < * <i+1
ii) the map m;(g’) is injective for n < j < i+ 1 and surjective for n < j < i + 1.
I\In

This can be done exactly as in the proof of the CW approximation theorem: if T°~! has
been constructed, first attach (i + 1)-cells to kill ker(f, : m;(T%"!) — m; (X)), and then
wedge on (i + 1)-spheres to generate ;41 (X).

Finally, let Z, := >, T" O

>n

If g, : Z, = X and gnt1 : Zpt1 — X are maps given by the lemma, consider the
commutative square
A—— 7,

Lol

In+1
Zn+l /5 X.

The relative CW complex (Z,41, A) only has cells of dimension > n + 2. On the other
hand we have a long exact sequence

. ~7Ti(Zn) — ﬂ'Z(X) — 7Ti(X, Zn) — 7TZ‘_1<Zn) — 7TZ'_1(X) ceey

12This property is often phrased as “the map g : Zn — X is n-co-connected”.
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the left-hand map is surjective for ¢ > n, so for ¢ > n + 1, and the right-hand map is
injective for i — 1 > n, so for ¢ > n+1. Thus m;(X, Z,) = 0 for i > n+ 1. It then follows
from the compression lemma that there is a map

Pn+1 - Zn+l — Znp

which is the identity on A, such that g, o p,y1 is homotopic to g,+1 relative to A. In
total we obtain a diagram

f:A Zo 25 X

where the left-hand triangles commute, and the right-hand triangles commute up to
homotopy. By redefining g/, = go o p1 o p2 © - - - © p,, we may assume that the right-hand
triangles commute too. This is the Moore—Postnikov tower of the map f: A — X.

Example 1.18.2. For a space X consider the map f : X — {x}. Its Moore-Postnikov
tower gives a diagram

/ p1

x Iy x,
where 7;(X,,) = 0 for i > n and
(fn)s : mi(X,20) — mi(Xn, fn(z0)) is an isomorphism for i < n.

This is the Postnikov tower of X.

It is perhaps suggestive to use “interval" notation and write X, = X[0,n — 1]: this
space has the same homotopy groups as X in the range of degrees 0 < * < n — 1 and
trivial homotopy groups outside this range. A
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Example 1.18.3. Choose a basepoint xg € X, and consider f : {z¢o} — X. Its Moore-
Postnikov tower gives a diagram

Z1 g2

{xo} ZO 9o X

where Z,, is n-connected, and (g, )« : 7;(Zn, zo) — (X, zo) is an isomorphism for i > n.
This is the Whitehead tower of X (at the basepoint ).

It is again suggestive to write Z, = X[n + 1, 00]: this space has the same homotopy
groups as X in the range of degrees n+ 1 < % < oo and trivial homotopy groups outside
this range. A

In the Whitehead tower consider the long exact sequence

Ti(Zn+1) (Pt 7i(Zn) —— 7i(Zny Zng1) —2 T 1(Znia) Brti)s mi—1(Zn)

|G- [ |G- |t

mi(X) —— mi(X) mi—1(X) —— m—1(X).

If i < nthen m(Z,) = 0 = mi—1(Zn+1), 80 ®i(Zny, Znt1) = 0. If @ > n + 2 then the
vertical maps are all isomorphisms, so m;(Zy,, Zp+1) = 0 too. In degree n 4+ 1 we have
Tnt1(Znt1) = 0, Tpg1(Zn) = mnp1(X) and 7,(Zp41) = 0, and so
X = 1
Wi(Zna Zn+17$0) = {ﬂ'n-‘rl( ’JJO) e
0 else.

In other words, the homotopy fibre of p, : Z,11 — Z, is a K(m,4+1(X, 20),n).
Similarly, for the Postnikov tower of X we find

(X X1 9) {m(X, zo) i=n+1
0 else,
so the homotopy fibre of p,, : X411 — X, is a K (7, (X, x0),n).
Both of these become easier to remember using the “interval" notation: the first says
that the homotopy fibre of X[n,o0] — X[n — 1,00] is a K(m,—1(X,z0),n — 2), and the
second says that the homotopy fibre of X[0,n] — X[0,n — 1] is a K (m,(X, z0), n).
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1.19 A motivating strategy

At this point we have developed various techniques for manipulating homotopy groups
of spaces, but we do not yet know how to compute many of them. We know Hopf’s
theorem, that m,(S™) = Z generated by the identity map, and in Example 1.15.11 we
calculated that m3(S?) = Z generated by the Hopf map H : S% — S2.
If X is a simply-connected space and H;(X;Z) = 0 for 0 < i < n then the Hurewicz
theorem shows that
h:mo(X,m0) — Hy(X;7Z).

As we are quite good at calculating homology, this means that we can often calculate
the lowest non-trivial homotopy group.
If X is a path-connected space and

<o — Xn,00] — X[n—1,00] — -+ — X[3,00] — X[2,00] — X[1,00] ¥ X
is the Whitehead tower of X, then as X |[n, oo] is (n— 1)-connected we have isomorphisms
Tn(X) < m(X[n, 00]) — H,(X[n,c]; Z),

so we can calculate 7, (X) as the lowest non-trivial homology group of the space X [n, co].
The problem is that X[n,oc] is a space that we have shown exists by highly inexplicit
means, and we have no idea how to express its homology in terms of e.g. the homology
of X.

However, supposing that we know the homology of X we could ¢ry to inductively cal-
culate the homology of the spaces X [n, oo] (and hence by the above the homotopy groups
of X') as follows. As the homotopy fibre of X[n,c0] — X[n—1,00]isa K(m,—1(X),n—2),
and we may suppose that we know m,_1(X) by induction, the strategy would have some
hope if

(i) given a fibration p : E — B with fibre F, we had a mechanism to calculate the
homology of E given the homology of B and of F', and

(ii) given an abelian group G we knew how to calculate the homology of K(G,n).

Developing tools to do this will be the rest of the course: the first is the Serre spectral
sequence, and the second is the subject of cohomology operations. These tools will
have broad applications, well beyond calculating homotopy groups.
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Chapter 2

The Serre spectral sequence and applications

2.1 Spectral sequences

Definition 2.1.1. A bigraded abelian group A,. is an abelian group A with a
decomposition A = @pquZ Ay A degree (a,b) map f : A,e — B, of bigraded
abelian groups is a homomorphism f : A — B such that f(A4,4) C Bpta,q+b-

Definition 2.1.2. A (homological) spectral sequence is a sequence E,l’.7 E,27,7 Ei,, e
of bigraded abelian groups, called pages, equipped with maps

d": By — Eq, of degree (—r,7 — 1)
such that d” od” = 0, so that d" is a differential, and Efjl = H(Eg,,d"). That is,

ker(d": Ej , — E} i 1)

ET+1 _
g T r . LT ro)
im(d" : Ep+ryq—r+1 - EP#I)

Remark 2.1.3. All the gradings I have given are optional and variable.

Definition 2.1.4. An exact couple of type r consists of bigraded abelian groups F, o
and A, . and maps

i Aee —> Aqe of degree (1,—1)
J i Aee — Foo of degree (—7,7)
k: Eeo — Ao of degree (—1,0)

so that the triangle

: Aee
Eo,o

is exact at each vertex (i.e. im(¢) = ker(j), and so on).

In this case d := j o k, which has degree (—r — 1,7), is a differential on E, ., as
dod=jo(koj)okand koj=0.

The derived couple of such an exact couple is given by

o , . Ker(d)
Aa=im(i)  Bly= g
V=il JG@) =L@ KD = k),
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Theorem 2.1.5. The derived couple of an exact couple of type r is well-defined and is
an exact couple of type (r + 1).

Proof. First show that j': A, , — Ey , is well-defined. If i(a) = i(b), then i(a — b) = 0
so a —b=k(c). Then
jla) = j(b) + j(k(c)) = j(b) + d(c)

s [j(a)] = [j(0)] € Fu, = 2.
Now show that k' : Eg, — Aq, is well-defined. If [e] = [f] € E,,, then d(e) =

(X}

d(f) =0, and e = f +d(g) = f + j(k(g)). Then

k(e) = k(f) + k(i (k(9))) = k(f)

askoj=0.

That the resulting triangle is exact at each vertex I leave as an exercise.

Finally, if i(a) € Apq4 then a € Ay 441, 80 j(a) € Ep_1—rgti+r, s0 j' has degree
(—r — 1,7 +1). The map ¢’ has degree (1,—1), and k' has degree (—1,0). Thus the
derived couple is indeed an exact couple of type (r + 1). O

In particular, if (Ae e, Fes,i,j, k) is an exact couple of type 0, then letting Fy, be
the (r — 1)st derived E, o, and d" be the (r — 1)st derived d, gives a spectral sequence.

Example 2.1.6 (The spectral sequence of a filtered space). Let
PcXoCcXiCXeC---CX

be a sequence of subspaces. Using the long exact sequences for the pairs (X,,, X,,—1) for
homology with arbitrary coefficients (which we omit from the notation), let

Apg = Hpq(Xp)
Epq = Hpiq(Xp, Xp-1)
it Hyyo(Xp) — Hipg)4(g—1)(Xpt1) of degree (1,-1)
J Hpyo(Xp) — Hpig(Xp, Xp—1) of degree (0,0)
kit Hpyq(Xp, Xp1) — Hp_1)14(Xp—1) of degree (—1,0).

This is an exact couple of type 0 (it is exact by the exactness of the long exact sequence
of a pair), so gives a spectral sequence with

E;q = Hpyq(Xp, Xp-1).

The form of this spectral sequence is shown in Figure 2.1.

The differential d' : E} , — E

p—1,4 18 given by the composition

0
Hyyo(Xp, Xpo1) — H(p—1)+q(Xp—1) — H(p—1)+q(Xp—17XP—2)' A
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Figure 2.1 The homological spectral sequence for a filtered space.

Example 2.1.7. Let X be a CW complex, ) € XY € X' C --- be its skeletal filtration.
Then we have
_ Cell(X) ifg=0
Eziq = Hpyq(XP, XP 1) = {Op else
and

_ o — - -
Cgell(X) = H,(XP, X 1) 9, H(p—l)(Xp 1) — Hp 1 (X? L xp 2) = ;e_lll(X)

is by definition the cellular boundary map. Thus

p.q

2 HeN(X) ifg=0
0 else.

The differential d” for r > 2 changes the ¢-degree, so must necessarily be zero: thus the

above describes E;“’q for all » > 2. AN

Theorem 2.1.8 (Convergence). Let ) C Xg C X7 C Xo C --- C X be a sequence of
subspaces such that any simpler in X lies in some X, and let {(Eq,,d")}r>1 be the
associated spectral sequence.

Ifr>p+1ithend : E, ,— E}_, ., 4 is zero, so ErtY s a quotient of E . Write

By = (g — B B )
Then there is a filtration
0 < FOHy(X) < FTHy(X) < F? Hy(X) < -
of Hy(X) such that
(i) Upso F"Ha(X) = Ha(X), and
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1 FPHp14(X) ~ oo
(i) Fr T, o(X) By

7

We say the spectral sequence converges to H.(X), and write “E} , = Hp,¢(X)”.

Proof. Firstly, Ej . .. is a subquotient of B} . = Hp1q 1(Xp s, Xp 1), and

this vanishes if p—r < 0. Thus d" : Ej , — E)_ . .. 1 is indeed zero if r > p+ 1.
Now, define
FPHpyq(X) :=im(Hpyq(Xp) = Hpiq(X)).

By our assumption that any simplex in X lies in some X,, we have | J,~q F"Hp1q(X) =
H,.4(X) as required. -

To prove property (ii) we first establish some intermediate results.
Claim: If z € A, , then j(z) € E,, = E:zluq is a cycle with respect to every d'.

Proof of claim. We have d(j(x)) = j(k(j(x))) = 0 as ko j = 0. More generally, if j(z)
survives until E7 = then

d"([j(x)]) = 5" o K" ([i(2)]) = j"([k(j (2))])
which also vanishes as ko j = 0. O
This defines a homomorphism j : Ay, — E, , for all > 1, so a homomorphism
Joo t Apq — Epy
Claim: The homomorphism j is onto.

Proof of claim. An element of EJ< is represented by an z € E,, = E;q such that

)

d"([z]) = 0 for all » > 1. Thus j"(k"([z])) = 0, so k"([z]) = i®"(a,) for some a, € Aqq
(as it is the image under 7 of an element which lies in the image of o1 Aee = Aee)-
But k" ([z]) = k(x), so we find that

k(x) S im(iw : Ap—?“—l,q-f—?“ — Ap_qu)

for all r. But A,—,_14+r =0 for p—r —1 <0, so for all » > 0, and hence k(x) = 0, so
x = j(y), so [z] = joo(y)- O

Claim: ker(joo) = i(Ap—1,4+1) + U, ker(i®?).
Proof of claim. If j(z) = 0 then [j(x)] = 0 € E} ; for some r. Thus
[]($)] = jr_l o kr_l(yr) € E;,gl for some y;-.

Now k™ !(y.) € ALY, so kK" '(y,) = i *(a,_1) for some a,_1 € As,, and thus
i°Ya,—1) =0, 50 a1 € ker(i°"~1). Now

()] = 3" (ar-1)) = [j(ar—1)] € By ",

S0
[j(z —ar—1)]=0¢€ E;;Il.

Lecture 12
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Continuing in this way, get
j(x—ar_l—ar_g—---—al):()EE;,q
with as € ker(i°%), so
r=i(y)+ar—1+a 2+ +a
as required. O

We now prove that #ﬁ()&) = E;5. By the above we have
pTq ’

EX o Apg ~ A, ¢/ U, ker(i°%)
P4 (Ap—1,g+1) + Ugker(i°%) — i(Ap_1,g41/ U, ker(i°®))’

but
| ker(i%) = ker(Hpq(Xp) = Hpiq(X)),

because a homology class on X, vanishes in X if and only it vanishes in some X,
again using the assumption that every simplex in X lies in some X,. The fact that

FPHp(X) = im(Hp1q(Xp) = Hpiqe(X)) = ker(Her:EI;}—S(fp.)Herq(X))

finishes the proof. O

In practice the spectral sequences we will look at have even better vanishing proper-
ties: they satisfy

E;’q:0forp<00rq<0.

In this case there are only finitely-many non-zero groups EJ along each diagonal
p+q = d, so the filtration F'* Hy(X) has finite length, and { E;5, }, =4 gives a composition
series for Hy(X).

Example 2.1.9. Returning to Example 2.1.7, on the skeletal filtration of a CW complex
X, we have

p,q —

cell : —
o o JHFN(X) ifg=0
0 else,
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so by the convergence theorem H,(X) has a filtration with a single nontrivial filtration
quotient, ng”(X ), and hence

Hy(X) = HEM(X).

This gives a new proof that cellular homology calculates singular homology. AN

2.2 The Serre spectral sequence

Theorem 2.2.1. Let p : E — B be a Hurewicz fibration over a CW compler B with
a single 0-cell by € B and fibre F := p~t(bg), such that 71 (B, by) acts trivially (for the
action of Corollary 1.16.2) on H.(F;G).

Then there is a spectral sequence {(Eq,,d")} with

E2, = Hy(B; Hy(F; Q)

and a filtration of H.(E;G) such that % =
p+a\s ’

Corollary 2.2.2. Let p : E — B be a Serre fibration over a path-connected space B,
such that w1 (B,bo) acts trivially on the homology of F := p~1(by) with G-coefficients.
Then there is a spectral sequence with precisely the same properties.

Proof. Let a : C — B be a CW approximation, where C has a single 0-cell ¢y and
a(co) = by. Construct the following commutative diagram

~
—weak

Paiylco) <2 F

by first forming the pullback a*p : o* E — C, which is again a Serre fibration, and whose
fibre over ¢g is again F, and then replacing the map a*p by a Hurewicz fibration as
in Section 1.17. The replacement map o*E — E,+, is a homotopy equivalence, so the
induced map F' — p;*lp(c()) on fibres is a weak homotopy equivalence (by the 5-lemma
applied to the map of long exact sequences of homotopy groups for the Serre fibrations
a*p and pg+p). Similarly, as « is a weak equivalence the map o*E — E is too (by the
5-lemma applied to the map of long exact sequence for the fibrations p and a*p). In
particular all the horizontal maps induce isomorphisms on homology, and the left-hand
column is a Hurewicz fibre sequence to the theorem above applies to it: this gives the
analogous spectral sequence for the right-hand column. ]

Example 2.2.3. Consider the Hopf fibration H : S — S2, whose fibres are all homeo-
morphic to S'. This is a fibre bundle, and so a Serre fibration. The group m(S?, *) is
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trivial so necessarily acts trivially on H,(S';Z). We have

7 = 2 1), (2,1
B2, = Hy(8% Hy(sh2) = 2 00 = 0020, 0.0, 21
' 0 otherwise

as shown in Figure 2.2.

Figure 2.2 The homological Serre spectral sequence for the Hopf fibration.

This spectral sequence converges to

7 x=0,3

0  otherwise,

H,.(S%7) = {

so the copies of Z at Eio and E&l cannot survive to EJS. Thus the differential
> FE3, 27— E}, 27

must be an isomorphism, as this is the only way these groups can die. A

Example 2.2.4. Let n > 1 and consider the path fibration vy — (1) : P.S™ — S™, with
fibre over x € S™ given by 2,5" = QS™. Asn > 1 the space S” is simply-connected, so
its fundamental group acts trivially on H,(€,S™;Z). Thus we have a spectral sequence

E. = Hy(S" Hy(QS™ Z)) = Hpio(P.S™ Z).

Now P,S™ is contractible, so we must have EJ¢ =0 forp+¢ >0 (and 00 = ).

We will reverse-engineer this spectral sequence, using as input just H.(S™;Z), that
the spectral sequence converges to zero in degree p + ¢ > 0, and that Q5" is path
connected, which follows from the long exact sequence on homotopy groups for the path
fibration shows that 2S5 is path-connected. It will be useful to refer to the chart at the
end of the example throughout.

As QS™ is path-connected we have Hy(Q2S™;Z) = Z, and we can determine the bottom
row of E.27. to be

Z x=0,n

E2 = Hy(S™Z) =
0 ol ) {0 otherwise.
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Suppose that H;(25™;Z) # 0 for 0 < ¢ < n — 1, and let ¢ be minimal with this
property. Then Eg’i = Ho(S™; H;(Q2S™;Z)) # 0. The differential entering Ef; is d” :

IS ' IS8 M M
EM»_TJrl — EOJ7 and EM_TJr1 is a subquotient of

E?,ifrJrl = Hr(Sn§ H; 1 (QSn7 Z))

but this vanishes as ¢ —r 4+ 1 < ¢ for r > 2, and we supposed that ¢ was minimal.
Thus Eg5 = Eg,i # 0, which is impossible as the spectral sequence converges to zero for
p+q > 0. Thus
H;(QS™Z)=0for0<i<n-—1.

Now in degree n there is a unique possible non-zero differential leaving position (n,0),

which is
d":E}lg=E.y=7— Ef, | = H,.1(Q5™; Z).

This must be injective, but is must also be surjective as no other differential can kill the
group at position (0,n — 1). Thus

Hy_1(Q8™7) = 7.

~

But now we can fill in the entire row ¢ = n — 1, and we find that E,Qw_l = Z too. The
pattern of rows now repeats exactly, giving

H(asmizy= {& 1=0n =120 =130 1),
I 10 otherwise.

The spectral sequence is therefore as shown in Figure 2.3. A

Proof of Theorem 2.2.1. Let {by} = B® C B' C B? C --- be the skeleta of B, and filter
E by E, := p~1(B"). Note that any simplex in E lies in some E,,, as any simplex in B
lies in some B". Following Example 2.1.6 there is an associated spectral sequence, with

E;,q = Hp1q(Ep, Ept1; G),
and by Theorem 2.1.8 this spectral sequence converges to H,,,(E;G). To prove the
theorem we must therefore show that
Ej = Hy(B; Hy(F; G))

under the assumption that m(B,bg) acts trivially on H,(F;G). To do that, we will
compute the homology of the chain complex (E,ly,, d'). Let us omit the coefficients G
from the notation: it plays no role.
If {iq : DP — BP}qcg, are the characteristic maps of the p-cells of B, then we have
Hurewicz fibrations
Do =1inp: By =i E — DP.

Let OF, = p,1(SP71), so that OE, — SP~! is also a fibration.
Claim: The natural map

P H.(Es, 0E.) — H(Ep, Ep_1)

a€lp

is an isomorphism.
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4 ~
3[a1) é‘ 7

™
) T 1
A
n W 1
o Wﬁ 'Z/- ﬂf)
o \ n

Figure 2.3 The homological Serre spectral sequence for the path fibration of S™.

Proof of claim. There is an open neighbourhood of EP~! in EP which weakly! deforma-
tion retracts to EP~! (this is true for BP~! C BP, by taking the complements of the
centres of the discs: then use the homotopy lifting property). Thus by excision

H*(Ep’ Epfl) — H*(Ep/Epfla *),

but we also have
Ey/Ep1 = \/ Ea/0Es. O

a€clp

Now consider a single fibration p, : Fq — DP, let 0 € DP be a basepoint, and set
F, :=p;1(0). Consider the homotopy lifting problem

SP1x Fp x {0} — 29 F, inc E,

| !

SP—1 % F, x [()7 1] Lﬂ) gp—1 « [07 1] (v,t)—=t-v P,

LA weak deformation retraction of a space X to a subspace A is a homotopy from the identity map
of X to a map into A, which restricts to a homotopy of maps from A into A. It is “weak" in that it need
not fix A pointwise.
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The lifted homotopy H : SP~! x F,, x [0,1] — DP satisfies H(v,z,0) = z for all v € SP~1,
s0 it descends to a map ¢ of fibrations

DPXFQLEQ

| |

DP ——— DP.

As the fibres over 0 € DP of both fibrations are Fy,, it follows from the 5-lemma that ¢ is
a weak homotopy equivalence. Restricting to SP~1 C DP gives a map 9¢ : P~ x F, —
OF, which is a weak homotopy equivalence for the same reason. Thus we have

H.(E,,0E,) = H,(DP x F,,S""! x F,)
= H.p(Fa)

by the Kiinneth theorem for pairs. We therefore have

E), = P Hy(F.).

aclp

Choosing a path from 0 € int(DP) C B to by, Corollary 1.16.2 gives an isomorphism
H.(F,) = H.(F). Different choices of paths in principle give different isomorphisms
but by our assumption that 71 (B, by) acts trivially on the homology of F' in the current
situation they do not: thus we may canonically identify H,(F,) with H,.(F).

Thus we may write

E), = €D Hy(F) = C(B) @ Hy(F). (2.2.1)

aglp

Claim: Under this isomorphism d! = d*? @ 1.

Proof of claim. Before starting the proof proper, we make two observations about natu-
rality:

(i) If f: C — B is a cellular map, C also having a single 0-cell ¢g, then the filtration
of f*E given by (f*E), = (f*p)"'(CP) is compatible with the filtration of E by
E,, giving a map of exact couples and hence a map of spectral sequences. Under
the isomorphism (2.2.1) the induced map on E, , is fx ® 1.

(ii) If g : B/ — FE is a map of fibrations over B, with h : F/ — F the induced map
on fibres over by, then g(E:;) C B, so again get a map of exact couples and hence
of spectral sequences. Under the isomorphism (2.2.1) the induced map on E.17, is
1® hy.

Now, as it is enough to check the claim on basis elements of Cgell(B), by (i) we may
suppose that B = DP_ having a single 0-cell, a (p — 1)-cell, and a p-cell. Then, using the
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equivalence ¢ : DP x F, — E, over DP, by (ii) it is enough to check the claim for the
trivial fibration DP x F,, — DP where we can write F' = F,. In this case we have

p—1,q

Hyiq(DP x F,SP~1 x F) = y Hyiq-1(SP1 x F, {bo} x F)
X} /

Hyiq-1(SP7! X F)

1 1
E@H E

which by naturality of the Kiinneth theorem for pairs is
Hy(D?, 57) @ Hy(F) 22} Hy (S7™") @ Hy(F) < H, 1(S", %) @ H,(F)

as required. O

Having identified (E, ,,d') with the cellular chain complex Cel(B; Hy(F; Q)), we
find that Equ is isomorphic to H,(B; Hy(F'; G)) as required. O

Example 2.2.5. Acting on the unit vector (1,0,0) € C? gives a map ¢ : SU(3) — S°,
which is easily checked to be a fibre bundle and hence a Serre fibration. The fibre over
(1,0,0) € S° is the stabiliser of this vector, so SU(2) = $3. Thus we have a spectral

sequence
E2 = H,(S% Hy(S%)) = Hpio(SU(3)).

O ©o o 7

o (@) o
3

O

Q

\\O

pr—a—a——c o2
o 2 e §

By considering the chart, there is no space for non-trivial differentials, and in each
total degree p + ¢ = d there is at most one non-trivial group. Thus

Z n=0,35,8

0 otherwise.

H,(SU(3); Z) = {

Lecture 14
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2.3 The Serre spectral sequence in cohomology

There is similarly a spectral sequence for the cohomology of a filtered space, with two
changes: the indexing is slightly different, and the matter of convergence is, in general,
more complicated.

If)C XoC X1 CXyC---C X is a sequence of subspaces, let

AP = HPH(X, X,; G) EPY = HPT(X), X,_1;G)
so the long exact sequence on cohomology for the triple? (X, X,, X,—1) gives maps
i: APY — APTLAFL of degree (—1,1)
§: APY — EPYLL of degree (1,-1)
k: EP? — AP9TL of degree (0,1)
Based on this one can invent the notion of a cohomological exact couple, which is
precisely the same as an exact couple but with a different convention on degrees: the

above gives a cohomological exact couple of type 0 (by definition), and its rth derived
couple will have type r. The corresponding spectral sequence has differentials

. ) ,q—(r—1
d, : BP9 — prira—(r=1),

so have minus the degree of the homological differentials. Its form is shown in Figure
2.4.

Figure 2.4 The cohomological spectral sequence for a filtered space.

In this situation each position (p,q) can only be the target of finitely-many differ-
entials, but can be the source of infinitely-many. Thus for > 0 we have inclusions
EP? > Effl D Effz D -+, and we define

P9 . Pqd — 15 P,q P,q P,q
Eoo = ﬂ Er - hén( e ET+2 — Er—i—l — Er )
>0

2This is the long exact sequence on cohomology associated to the short exact sequence of cochain
complexes 0 — C* (X, X,) = C*(X, X,—1) = C*(Xp, Xp—1) — 0 given by the evident maps.
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Inverse limits are more subtle than direct limits, and in general one has to analyse this
quite carefully to understand what it means to converge to H*(X). In the case of the
cohomological Serre spectral sequence the following will suffice.

Theorem 2.3.1. If ) C Xo C X; C Xo C --- C X is a sequence of subspaces such that
any simplex in X lies in some X,, and

EPY = HPT9(X,, X,p-1;G) = 0 unless p > 0 and ¢ > 0,
then defining a filtration by
FPH"(X; Q) :=im(H" (X, X,-1;G) - H"(X;G))
we have
(i) Upso FPHY(X;G) = HY(X; G), 50 FPH"(X;G) = 0, and

.. P4 ~v FPHP+¢Z(X7G)
(1) B’ = Forrmracx.ay -

Proof. Let us omit the coefficients G from the notation. We have FOH"(X) = H"(X),
which gives the first part of (i). For the second part consider

-2 HY(X, X)) —— H™"(X,X,) —— H"(X, X, 1) — ---

| l

Hn(Xerl,Xp) Hn(Xp’prl)

From the long exact sequence of the triple (X, X,, X,—1) and our assumption that
H"(X,, Xp—1) = 0if n—p < 0, we see that the map “1” is an epimorphism for p > n+1,
and by the analogous argument the maps “2” and “3” and so on are then all epimorphisms
too.

Suppose then that p > n + 1, let ¢,_; € C"(X, X,—1) be a relative cocycle, which
we consider as a homomorphism ¢, : Cp(X;Z) — G which vanishes on Cy(Xp—1;Z).
Choose a sequence

Pp € Cn(Xa Xp)a Pp+1 € Cn(X7 Xp+1)7

of relative cocycles whose cohomology classes correspond under the maps “17, “27, “3”,
and so on. Now we must have

Yp—1 = Yp + pp—1 0 d for some p,_1 € cn (X, Xp-1),
as [op—1] = [pp] € H™(X, Xp—1), and similarly there must be cochains
Pp € Cn_l(X> Xp)s  ppt1 € Cn_l(Xa Xp+1),  Ppy2 € Cn_l(X’ Xpt2),
such that ¢; = ;41 + p; o d. Consider

¢ pp—1+pptppr1+ - Cro1(XGZ) — G
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which is well-defined as any x € C,,—1(X;Z) lies in Cy,—1(Xp—14r;Z) for some r > 0, so
all but finitely-many p;’s vanish on it.
Now we observe that if z € C,,(Xy;Z) then

@pfl(x) = ppfl(dx) + pp(d$) + - +M+M+ .
= ¢(dx),

and every element of C,(X;Z) lies in some Cp(Xg;Z) 50 ¢p—1 = ¢pod, so [pp—1] =0 €
H"(X,X,_1). As ¢,—1 was arbitrary, H"(X, X,—1) = 0, and hence FPH"(X;G) = 0,
which finishes the proof of (i).

Part (ii) is just as in Theorem 2.1.8. O

Theorem 2.3.2. Let p: E — B be a Serre fibration over a path-connected space with
fibre F:= p~Y(bg) so that m1(B,by) acts trivially on H*(F;G). Then there is a spectral
sequence with

EyY = HP(B; H'(F; G))

and with E5! = %, for a certain descending filtration F*H"(E;G) having

FOH™(E;G) = H"(E;G) and F"H"(E;G) =0 for m > n.

Proof. Using the above convergence result this is just as for the homology Serre spectral
sequence, with a little care regarding direct sums vs. direct products. O

2.4 Multiplicative structure

The great advantage of the cohomological Serre spectral sequence of a fibration sequence
F — E — B is that it relates the cup-product structure on H*(E) to that on H*(B) and
H*(F). The following encapsulates all the necessary properties. We do not include the
proof: it is no more difficult than what we have do so far, but is not very enlightening.

Theorem 2.4.1. Let R be a commutative ring, p : E — B be a Serre fibration with path-
connected base, and fibre ' = p~Y(bg) such that m (B, by) acts trivially on H*(F;R).
Then the Serre spectral sequence {(Ey'*,d,)}r>2 admils product maps

— —EPI@ EP — PP for > 0
such that
(i) Er® is a bigraded ring for each r > 2,
(ii) d, : Ey* — Ey® is a derivation, i.e.
de(z-y) = dp(z) -y + (-1)9E@z - d,(y),
where deg(z) = p + q when x € EPY,

(wi) Byt = H(E*,d,) as bigraded rings,
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(iv) the isomorphisms EY'? = HP(B; H1(F; R)) assemble to an isomorphism of bigraded
rings, where the latter is given the product

HP(B; HY(F; R)) ® H” (B; HY (F; R)) —s HP*"(B; HY(F; R) @ H? (F; R))
— H""(B; H*(F; R)),
(v) the filtration F*H*(E; R) satisfies
F"H™(E;R) — F™ H" (E; R) C F™™ H""(E; R),
so the cup product induces well-defined maps

F"H"(E; R) F™ H" (E; R) Frtm [’ (B; R)
FrtlHn(E;R) © Fm'+1H"(E;R) ~ Fmtm'+1Hntn'(E; R)’

. . . ~ FPHPTI(E:
(vi) the isomorphisms E5! = (E:R)

= FrrTHrT(ER) assemble to an isomorphism of bigraded
TiNgs.

Remark 2.4.2. When the Universal Coefficient Theorem applies to let us write
HP(B; HY(F; R)) = H”(B; R) ® H'(F; R)
for all p and ¢, the multiplication in (iv) is given by
(z@y)- (@ @y) = (-1)* W (@ o) @ (y — o).

This sign may seem strange at first, but it is necessary in order to make the Kiinneth
isomorphism H*(B; R) ®g H*(F; R) = H*(B x F; R) into a ring isomorphism.

Example 2.4.3. Let us revisit the fibration sequence
Qs" — PS" — ST

from Example 2.2.4, with n > 1. We showed there that H,(Q2S™;Z) is Z in degrees
divisible by (n — 1) and 0 otherwise; by the Universal Coefficient Theorem H*(QS™;Z)
has the same description. The cohomological Serre spectral sequence must therefore be
as shown below.

Let us be concrete about generators. Use the Universal Coefficient Theorem to write

ER? = HP(S™;Z) ® HU(QS™ 7).

Let w € H"(S™;Z) be the standard generator, giving an element u ® 1 € Eg’o and let
r1 € H"1(QS™; Z) be such that

dy(1®z1) =u® 1.

More generally, assuming that x; 1 € H(ifl)(”*l)(QSn; Z) has been chosen, define z; €
H"=1)(QS™; Z) to be such that d,,(1®x;) = u®x;_;. We have therefore chosen preferred
generators for all the cohomology groups of 25", and so have
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9 ~
3[11) %’( Z“@Xz

o) K 240,

-\
/\-—I Z’LK‘ 7L MOX.
X
° 7’; 'Z > i)
o \ n

for some integers A(7,j). What are they?
Using the multiplicative properties of the Serre spectral sequence we calculate
dn(1® z; — x5) = dn((1 @ ) - (1 © 7))
= (wewi)- (1o + ()" V1) (ue s )
=u® (i1 — aj) + ()" ()T (2 — o)
=u® (zii1 — z;) + (~1) " V@ (z; — zj_1),

using that (n — 1)(n) is even. By the ansatz (2.4.1) this gives the recurrence relation

A(i,§) = A(i —1,7) + (=1 VDA, j - 1).

Case 1: (n—1) is even. Then we have A(i, j) = A(i— 1, j) + A(i,j — 1) which is solved
by A(i,j) = (ZJZ.”). Thus the cup-product structure on H*(QS™;7Z) is given by

i+
Ti~—~ Tj = i Litj-

This is known as a free divided power algebra I'z[z1] on the class x;.
Case 2: (n — 1) is odd. Then we have A(i,j) = A(i — 1,5) + (=1)*A(i,5 — 1). One
may verify that

A2i+1,2j+1) =0, A(2i,2)) = (“;")
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A(2i,25 +1) = (24;]) A(2i+1,2j) = (ZJZT‘7>
satisfies this recurrence.

This may be understood a little as follows. As z1 € H" 1(2S™;Z) has odd degree,
by the graded-commutativity of the cup product we have 23 = —22 and so 222 = 0, but
H*"=1(QS™, Z) = Z{xs} is torsion-free, so #7 = 0. This fits with A(1,1) = 0 above.
Now the above says that x1 — z9; = x2;4+1. The above is then saying that we have a
ring isomorphism

H*(QS™ Z) = Z[z1]/(23) ® [z[xa). A
Example 2.4.4. The long exact sequence on homotopy groups for the fibration sequence

QK (Z,3) — P.K(Z,3) — K(Z,3),

and the fact that P.K (Z, 3) is contractible, shows that QK (Z, 3) is a K(Z,2).3 Thus it is
weakly equivalent to CP> and so we know its cohomology ring: we have H*(K(Z,2);Z) =
Zi2] for a class 1o of degree 2. We can take this to be the class we described in Section
1.14, which also gives a t3 € H3(K(Z,3);Z). We will explain how to produce the chart
shown in Figure 2.5 for the cohomological Serre spectral sequence of this fibration

- A
1 \ 3 % Y

6 /A 12

e

2 /723 s U

2 7L 1 w1

2
o ' 2 3 b v & =2 % q

\4

O

Figure 2.5 The cohomological Serre spectral sequence for the path fibration of K(Z,3).

We have H (K (Z,3);Z) = 0 for 0 < i < 3 and that H3(K(Z,3);Z) = Z{13}, by the
Universal Coeflicient Theorem and the Hurewicz Theorem. This lets us complete the

3This is completely general: QK (G,n) ~ K(G,n — 1).
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Es-page for p < 3. As the cohomological Serre spectral sequence converges to zero in
positive degrees, we must have d3(1 ® 12) = 413 ® 1; by rechoosing generators we can
suppose it is +:3 ® 1. By the derivation property we then have d3(1®(3) = 2t3 ® 19, and
more generally

d3(1®5) =n-13@5 1,

which completes the first column of differentials. We also deduce that H*(K(Z,3);Z) = 0
for 3 <7 < 6, as there is no way these groups could die in the spectral sequence.
As 13 has odd degree, we have 2L§ = 0. We also have

d3(t3 @ 1a) = L%

by the derivation property. In order to leave nothing in E>? we must therefore have
HS(K(Z,3);Z) = Z/2{/3}. This lets us complete the Es-page for p < 6. By the deriva-
tion property again

o 2 n1_ )0 if n is even
d3(t3 @ 1y) =n-15@ 15 = {L% ® @1 ifnis odd,
which completes the second column of differentials. We also see H'(K(Z,3);Z) = 0 as
there is no way this group could die in the spectral sequence.
We have found that EZ’A = 7/3{13 ® 13}, and the only way this can die is if the
differential
ds : B2t — ES°

is injective: similarly, the only way the group at (8,0) can die is if this group is surjective.
Thus we have
HY(K(Z,3);7) = 7./3.

In the same way, ds : Eg,z = Z/2{i3 ® 1o} — E’g’o must be an isomorphism, so
H?(K(Z,3);Z) = 7/2. In total, we have calculated

n 012 3 45 6 7 8 9 10
HWK(Z,3Z) Z 0 0 Z 0 0 Z/2 0 Z/3 Z/2 ?

and so, using the Universal Coefficient Theorem backwards,

n 012 3 4 5 6 7 8 9 10
Hy(K(Z,3Z) Z 0 0 Z 0 Z/2 0 Z/3 Z/2 ? ?

describes the homology of K(Z,3) in degrees < 8. A

Example 2.4.5. Let f : S — K(Z,3) be a map that generates 73(K(Z,3)) = Z. Then
there is a fibration p : Ef — K(Z,3) with fibre F', and a weak equivalence w : S* = Ey
such that pow = f.
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The long exact sequence on homotopy groups

0

m5(K(2,3)) =0 U

L 7T4(F) —= 7r4(S3) _— 7T4(K(Z,3)) =0 j
0

LW:&(F) LN 3(83) =2 ———— 3(K(Z2,3)) =72 — -+

shows that F is 3-connected and that 74(S®) = 74(F): thus, by the Hurewicz theorem
we have 74(S%) = m4(F) & Hy(F; 7).
Considering the homology Serre spectral sequence

EI;‘I = H,(K(Z,3); Hy(F;Z)) = Hpiq(Ef; Z) = Hyy (5% Z)

we see that the differential
d’>: Eyy — Efg=17/2
must be an isomorphism, as its kernel or cokernel would contribute to H,(S%;Z) in
degree x € {4,5}, which is impossible. Thus H4(F;Z) = Z/2, so by the discussion above
71'4(53) = Z/Z.
Together with Hopf’s theorem ,(S™) = Z, and the Hopf fibration sequence S' —
S3 — S?, we now know the following homotopy groups of spheres

n 1 2 3 4
mm(S% 0 0 Z 72
m™m(S? 0 Z Z Z)2

2.5 mod C theory

Definition 2.5.1. A Serre class C is a class of abelian groups closed under the opera-
tions of taking subgroups, quotients, and forming extensions.

Example 2.5.2.
(i) The class of finitely-generated abelian groups (using that Z is Noetherian).

(ii) The class of torsion abelian groups where each element is annihilated by products
of prime numbers in some set P.

(iii) The class of finite abelian groups in the above class. A
Definition 2.5.3. For a Serre class C, a map f: A — B of abelian groups is

(i) injective mod C if Ker(f) € C,
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(ii) surjective mod C if B/Im(f) € C,
(iii) an isomorphism mod C if both the above hold.

Lemma 2.5.4. Suppose in addition that A ® B, Tor(A,B) € C when A,B € C. (The
three examples above have this property.) Let p: E — B be a Serre fibration with path-
connected base, and fibre F = p~1(bg) such that w1 (B, by) acts trivially on H.(F;Z), then
if any two of

H.(F;Z),  H«(E;Z),  H.«(B;Z)
lie in C then so does the third.

Proof. Suppose first that ﬁ*(F;Z),I:L(B;Z) € C, and consider the Serre spectral se-
quence
E} = Hy(B; Hy(F; 7)) = Hpiq(E; 7).

As the class C is closed under extensions, to see that H,1(E;Z) € C for p+q > 0 it
suffices to show that EJ € C for p+ ¢ > 0. As the class C is closed under forming
subquotients, it suffices to show that Ei,q € C for p+ g > 0. The Universal Coefficient
Theorem gives

0 — Hy(B;Z)® Hy(F;Z) — Hp(B; Hy(F;Z)) — Tor(Hp—1(B;Z), Hy(F;Z)) — 0

so as C is closed under ® and Tor (and Z® A = A and Tor(Z, A) = 0) it follows that we
do indeed have Equ eCforp+q>0.

Suppose now that ﬁ*(F;Z),ﬁ*(E; Z) € C. The lower corner of the Serre spectral
sequences gives an exact sequence

2
Hy(B;Z) S Hy(F;Z) — Hy(E;Z) — Hy(B;Z) — 0,

so Hi(B;Z) is a quotient of Hy(FE;Z) and so lies in C. To generalise this, suppose then
that Hy(B;Z) € C for 0 < p < k. We have an exact sequence

r+1 I8 ar I8
0 Ek,o Ek,O 7 Ekfr,rfl

and Ef_ ., is a subquotient of Ezimfl = Hy_(B;H.—1(F;Z)). As we have supposed
that Hy_.(B;Z), Hy—r—1(B;Z) € C, by an application of the Universal Coefficient The-
orem as above we find that E,gfm,fl € C and hence E};fwfl € C. Thus if E;:gl € C then
E,’;O e€C. As f]k(E, Z) € C so are its filtration quotients, so El,;f:gl =Ep € C. Thus by
downwards induction we find that E,%p = Hy(B;Z) € C as required.

Under the assumption that ﬁ*(B;Z),ﬁ*(E; Z) € C, similar reasoning shows that

H.(F;7) €C. O
Lemma 2.5.5. Let C be either
(i) the class of finitely-generated abelian groups, or

(ii) the class of finite P-torsion abelian groups.

Lecture 16
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If AeC then Hi(K(A,n);Z) € C for all i,n > 0.
Proof. By considering the fibration sequences
K(An—-1)~QK(A,n) — P.K(A,n) — K(A,n),

with P,K(A,n) ~ x, the previous lemma reduces the claim to the case n = 1.

Finitely-generated: Then A = Z" ® Z/n1 & --- ® Z/ny, so we can take K(A,1) =
(SY" x K(Z/n1,1) x --- x K(Z/ny, 1), so by the Kiinneth theorem we are reduced to

showing that each H;(K(Z/n,1);Z) is finitely-generated.

The class n -1y € H*(K(Z,2);Z) corresponds to a map f, : K(Z,2) — K(Z,2),
which on me(—) induces multiplication by n. It follows from the long exact sequence on
homotopy groups that the homotopy fibre of f, is K(Z/n,1), so there is a homotopy
fibre sequence

K(Z/n,1) — K(Z,2) 1™ K(zZ,2).

As K(Z,2) ~ CP* has finitely-generated homology groups, it follows from the previous
lemma that K(Z/n,1) does too.

Finite P-torsion: Then A = Z/p!* & --- ® Z/p,* for p; € P, so as above it suffices
to show that each H;(K(Z/p™,1);Z) is finite p-torsion. We have the homotopy fibre
sequence

K(Z/p" 1) - K(7,2) 2 K(7,2)

and by the long exact sequence on homotopy groups the homotopy fibre of i is a K(Z, 1) ~
51, so we have a homotopy fibre sequence

St — K(Z/p",1) - K(Z,2). (2.5.1)

By the Hurewicz theorem we have Hy(K(Z/p",1);Z) = Z/p", and so by the Universal
Coefficient Theorem we have

HY(K(Z/p"1);Z) =0  H*(K(Z/p",1);Z) D Z/p".

Thus the cohomology Serre spectral sequence for (2.5.1) must take the following form

\ ) 7). %6« 4, <26 « x?au
/5-- w

Q
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so that
Z i=20
Hi(K(Z/pna 1);Z) =< Z/p™ i>0 even
0 7 odd.

By the Universal Coefficient Theorem (backwards!) each H;(K(Z/p™,1);Z) is therefore
finite p-torsion, as required. O

Theorem 2.5.6 (mod C Hurewicz). Let C be either
(1) the class of finitely-generated abelian groups, or
(ii) the class of finite P-torsion abelian groups.

If X is 1-connected and m;(X,z9) € C for 0 < i < n, then Hi(X;Z) € C for0 <i <n
and
h:mn(X,z0) — Hy(X;2Z)

s an isomorphism mod C.

Proof. Consider the Postnikov tower of X,

and recall that the homotopy fibre of py : X — Xp_1 is a K (7 (X, zo), k).
So if m(X,2z9) € C for 0 < ¢ < n, then by induction using the homotopy fibre

sequences ‘
K(T(‘i(X, .Io),i) — Xz i) Xifl

we find that ﬁ*(Xn,l; Z)€C. As fn—1: X = X,_1 is n-connected, we have
HZ(X,Z) = HZ'(Xn_l;Z) fori<n

so Hi(X;Z) € Cfor 0 <i < n. Lecture 17
The map f, : X — X,, is (n + 1)-connected, so an isomorphism on nth homology.
The homology Serre spectral sequence for the homotopy fibre sequence

K(ﬂn(X7 xO)v n) — Xn % Xn—l

has the form
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|

! @ A4\

@
o | 2 3 -\ N 141 N2

so gives an exact sequence

dn+1

Hy1(Xp—1;Z) —— Hp(K(mp(X,20),n);Z) —— Hp(Xn;2) —— Hp(Xn-1;2)

I

Wn(Xa SC(])

where the two outer terms lie in C: thus the kernel and cokernel of map & lie in C, so h
is an isomorphism mod C. O

Corollary 2.5.7. m;(S™) is a finitely-generated abelian group for all i and n.

Proof. For n =1 we know these homotopy groups, so suppose n > 1. Suppose not, and
let ¢ be minimal such that m;(S™) is not finitely-generated. Then h : m;(S™) — H;(S™;Z)
is an isomorphism mod finitely-generated abelian groups, so H;(S™;Z) is also not finitely-
generated, a contradiction. O

More generally, this argument shows that if X is a 1-connected space with each
H;(X;Z) finitely-generated, then each m;(X, ) is also finitely-generated.

Corollary 2.5.8. The groups m;(S®) are finite for i > 3.

Proof. Let f : S — K(Z,3) represent a generator of H3(S3;7Z), and X denote its
homotopy fibre. By Lemmas 2.5.4 and 2.5.5 the homology groups of X are finitely-
generated.
Let F denote the Serre class of finite abelian groups. We have
7;(S3) finite for i > 3 <= m;(X) finite for all i (by LES of homotopy groups)
< H(X;Z) finite for all i (by mod F Hurewicz Theorem)

— ﬁi(X§@) Zﬁi(X;Z)@)Q:Ofor all 4
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where the last implication is because the homology of X is finitely-generated.

To show that X has trivial Q-homology, we consider the Q-cohomology Serre spectral
sequence for homotopy fibre sequence

K(72,2) ~QK(Z,3) — P.K(Z,3) — K(Z,3)
which takes the form shown in Figure 2.6, showing that

Q i=0,3

0 else.

H'(K(Z,3);Q) = {

It follows that the map f : S3 — K(Z, 3) is an isomorphism on H*(—;Q), and therefore

from the Serre spectral sequence for the homotopy fibre sequence X — [LRENY e (Z,3)
that H.(X;Q) = Q, so H.(X;Q) = 0 as required. O

R 3 & 18

® 3
A
R @R 10¢*
® §
’L
X @'L@x
iy}

Figure 2.6 The cohomological Serre spectral sequence for the path fibration of K(Z,3) with
Q-coefficients.
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2.6 The transgression

For F — E % B a Serre fibration of path-connected spaces, consider

Hy(E, F) —2— H;_1(F)

2

Hi(B) 2 H;(B, bp).

Say that (x,y) € H;(B) x H;—1(F) is a transgressive pair if there is a z € H;(E, F)
such that
p«(2) =Jx(x)  and  0(z) =y.

This gives a partially-defined and many-valued “function”

called the transgression. The following lemma relates it to those differentials in the
Serre spectral sequence going from the horizontal to the vertical edge.

Lemma 2.6.1. A pair (x,y) € H;(B) x H;_1(F) is transgressive if and only if in the
Serre spectral sequence the class © € H;(B) = H;(B; Ho(F)) = Ei2,0 survives until Ef,o
and

d'(x) = [y € Ey;_1, a quotient of Ey; 1 = Ho(B; Hi-1(F)) = Hi—1(F).

Proof. Let z € H;(E, F) exhibit (z,y) as a transgressive pair, recall that E,, := p~(B"),
and consider

Zf zf ]*(l‘),

where the first map is surjective as H;(E, E;) = 0, and so a Z can indeed be chosen. The
spectral sequence comes from the exact couple

@p,q Hpig-1 (Epfl) - @p,q Hyyq (Ep)

@p,q Hp+q(Epv Ep—l)

and the class x € EZO is represented by the image z of Z under
Hi(E;, F) = Hi(E;, Ey) — Hi(E;, Ei_1) = E}y.

Thus d"(x) is given by j(i71)"k(Z). But k(2) = 9(2) € H;_1(E;_1) and we know this
lifts to 9(z) € H;—1(F) = H;—1(Ep). This shows that d"(z) = 0 for r < 4, and that
di(x) = jO(z) = jO(z), but this is j : H;_1(Eo) = H;_1(FEp,0), so d(x) is represented
by 8(2’) =y c Hl_l(F)

The reverse direction is similar. O
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There is a similar discussion in cohomology. A pair (z,y) € H(B) x H(F) is
called transgressive if there is a z € H**1(B, by) such that in the diagram

H*YE,F) «+2— H(F)

]

Hi(B) «X— H*+1(B,b).

we have j*(z) = z and p*(z) = 0(y). As in the lemma, this is equivalent to y € H'(F) =

Eg’i surviving until E?jfl and satisfying d;1(y) = [z]. Lecture 18

2.7 Freudenthal’s suspension theorem
Theorem 2.7.1. Let X be an (n — 1)-connected based space. Then the suspension map
Yom(X) — mi(E2X)
[f:8" = X]— [2f : 8" = S & ¥X]
1s an epimorphism for i < 2n — 1 and an isomorphism for i < 2n — 2.

Proof. For n = 1 this is just Theorem 1.13.7, so suppose that n — 1 > 1. Consider the
path fibration

QXX — PYX — ¥X,

and note that ¥X is n-connected (by the Hurewicz theorem and the suspension isomor-
phism H,.(XX) = H,_1(X)), so QXX is (n — 1)-connected. The Serre spectral sequence
has the form

LEY] [ ] o [ ]

total J@/ec

N+l
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Thus the differentials d* : H;(XX) — H;_1(Q2XX) are isomorphisms for i — 1 < 2n.
These differentials are transgressions so are given by

Hi(P.YXX,05X) —~ H;_1(Q5X)

2

Hi(SX) —=— H;j($X,%)

and hence
ps: Hi(P.XEX,QXX) — H; (XX, %)

is an isomorphism for i < 2n.
Consider the map

F:C0X — P.YX
[t,x] — (s — [st,z])

where we consider CX and X as quotients of [0,1] x X. Then there is a commutative
square

x —L L onx

mH[x,l]J/ j

cx I pyx

where f(z)(s) = [s,z]. The map on long exact sequences on homology gives

| |#

~| Hi(P.SX,Q5X) —~ H;_1(QXX)

2

where the curved arrow is an isomorphism by excision. As the map p, is an isomorphism
for i < 2n, it follows that R
fo : Ho(X) — H.(QXX)

is an isomorphism for * < 2n — 1.

Asn—12>1, QXX is I-connected. Letting F' denote the homotopy fibre of the map
f, it then follows from the Serre spectral sequence that H,(F') = 0 for * < 2n—2. By the
Hurewicz theorem (as 71 (F') must be a quotient of mo(2XX) and so abelian) it follows
that F'is (2n — 2)-connected, so by the long exact sequence

s (F) — m(X) L (X)L i (F) — -

the map f* s (X) — m(QXX) = w41 (3XX) is an epimorphism for ¢ < 2n — 1 and an
isomorphism for ¢ < 2n — 2. O
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Corollary 2.7.2. The map ¥ : 7;(S%) — m;41(S?) is an epimorphism for i <5 and an
1somorphism for i < 4, so in particular

7.)2 = m4(S?) = m5(SY).

As we continue the range in Freudenthal’s theorem only gets better, so mp41(S™) = Z/2
for alln > 3.

By Freudenthal’s theorem m;4,(X"X) is independent of n as long as n > 0: we
call its stable value 7f(X), the ith stable homotopy group of X. Tautologically it
satisfies 75 (XX) = 7f ,(X), and in particular 75(S") = 77, (S°), so there is only a
l-parameter family of “stable homotopy groups of spheres”, abbreviated 7¢ := 7$(S).
We have calculated

o =L i =17/2

and the next few are

i 0 1 2 3 4 5 6 7 8
w7 ZJ2 ZJ2 ZJ24 0 0 Z/2 7240 Z)2®7Z/2

1

There is not an obvious pattern: these groups are a topic of active research.
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Chapter 3

Cohomology operations

3.1 Steenrod squares
Theorem 3.1.1. There are natural (for maps of pairs) homomophisms
Sq': H"(X, A;7/2) — H" (X, A;Z/2), i>0

satisfying

(1) Sq” =1d,

(ii) Sd'(z) = 2 if i = |a],

(i4i) Sq'(x) =0 if i > |z|,

(iv) Sq*(z — y) =3, ;4 Sa'(x) — S’ (y),

(v) §08q" =Sq’ 0§ for the connecting map 6 : H"(A;Z/2) — H" (X, A;Z/2),
(vi) 00Sq’ = Sq’oo for the suspension isomorphism o : H"(X;Z/2) — H" (S X;7/2),
(vii) Sq' is the Bockstein operation associated to the ezact sequence

0 —7Z/2—7/4—7/2—0

of coefficients.

Sometimes we write Sq = Y ;2 Sq’. Then Sq(z) still makes sense, as the sum is
finite by (iii), and (iv) may then be expressed as Sq(z — y) = Sq(x) — Sq(y). We will
come back to construct the Sq’ and prove this theorem in Section 3.4, but will first give
several applications which only use these properties.

Example 3.1.2. Recall that CP? = S2 Uy, D* for h: S — S? the Hopf map. As a ring
we have H*(CP? 7Z/2) = Z./2[z]/(«®) and so

Sq?(z) = 2? #0.

Now Y"CP? has cohomology

l 0o 1 -+ n+1 n+2 n+3 n+4
H{(Z"CP*%Z/2) ZJ/2 0 --- 0 72 0 72
generator 1 . o"(x) o™ (x?)

66
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and we have
Sq*(0" (x)) = 0™(Sa*(x)) = o™ (%) # 0.

It follows that E"CP? = §"2 Usny, D" T4 £ S712\v §7+H4 and so X"h : §7H3 — §nt2
is not homotopic to a constant map for any n > 0.

In particular, in Example 2.4.5 we had calculated 74(S3) = Z/2 as abstract groups,
but it now follows that this must be generated by the suspension XA of the Hopf map.
Using Corollary 2.7.2 it then follows that m,11(S™) is generated by the appropriate
suspension of the Hopf map for any n > 3. A

Lemma 3.1.3. In H*(RP";Z/2) = 7Z/2[z]/ (") we have
(o) = (}) a4+,

i
where the binomial coefficient is taken modulo 2.
Proof. We have
Sa(z) = Sq°(«) + Sq' (x) +Se* @) + - -
=z +a?
using properties (i), (ii), and (iii) of the Steenrod squares, so by property (iv) we have
Sa(e) = Sa(e)* (@ +a3F = 3 ()

im0 \'
as required. O
Lemma 3.1.4. In H*(CP";Z/2) = Z/2[y]/(y"*') we have

Sq2i(yk) = <k> St

7

where the binomial coefficient is taken modulo 2, and Sq* 1 (y*) = 0. O

The following elementary lemma is convenient for making calculations with binomial
coefficients modulo 2.

Lemma 3.1.5. Ifn = Zfzo ni2" and k = Zf:o k2" are the binary expansions, then
n no n Ty
= P d 2
</€> (’fO) (’fl) (’W) e

The first few Steenrod squares in H*(RP°°;7Z/2) can be visualised as in Figure 3.1.
In particular we see that every z” may be linked to z by a zig-zag of Sq'’s and Sq*’s,
so there can be no decomposition RP>* ~ X VY with both X and Y having nontrivial
Z./2-cohomology. Similarly for ¥"RP*> with any n > 0.

O]
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5 6
1 X x* X x“ 5t X P4 x? x?’
o Y S, 5
o o —>e o6 —D @ o — o e ) e

7/ N

Figure 3.1 Steenrod operations in H*(RP*;Z/2).

Example 3.1.6. Let n+ 1 = 2"(2s + 1), and consider RP"/RP*. If n — 2" > k there is
a class z € H" 2 (RP"/RP*;Z/2) which under the quotient map ¢ : RP" — RP"/RP*
satisfies ¢*(z) = 2"~2". Thus

. . . -2 2rtls — 1
(f(((SCl2 (Z)) = Sq2 (x”_2 ) = <n or ).’L‘n = < 2i >xn = i‘n 7é 0
using Lemma 3.1.5, and so Sq? (2) # 0 € H™(RP"/RP*; Z/2) = Z./2.
If the map
f: RP"/RP* — RP"/RP""! = §"

had a right inverse up to homotopy, g : S™ — RIP’”/RIP”“, then
g* : H"(RP"/RP*; Z./2) — H™(S™;Z/2)

would be an isomorphism, so we would have Sq? (¢*(2)) = ¢*(Sq® (2)) # 0. But g*(2)
lies in the group H™ 2" (S";Z/2) which vanishes: this is a contradiction.
Thus the map f : RP"/RP¥ — S™ does not have a right inverse if n — 2" > k. JAN

Theorem 3.1.7 (Kudo’s trangesssion theorem). Let p : E — B be a Serre fibration
with path-connected base, and fibre ' = p~1(bg) such that 71 (B,by) acts trivially on
H*(F;Z/2). Ify € H(F;Z/2) = Ej; survives until Eéﬁ.l and then d(y) = [z], then
Sq"(y) survives until E(’)";i;tl and d""FH(Sq"(y)) = [Sq"(x)].

Proof. Under the assumptions (x,y) is a transgressive pair, so there is a z € H'*1(B, by)
so that in

H™*Y(E,F) «2— Hi(F)

al

H(B) <X HI*(B, b).

we have j*(z) = z and p*(z) = 6(y). But then Sq"(z) exhibits (Sq"(x),Sq"(y)) as being
a transgressive pair. ]
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3.2 Vector fields on spheres

For a 1-dimensional subspace ¢ C R"™, let r; denote reflection in the line ¢: so r¢|, = —1Id
and ryl,r = Id. Let rp = T(1,0,..,00- Lhen rore is an orthogonal transformation of
determinant 1, so defines a map

Jn : RP"1 — SO(n)
f— roTye.

If £ € RPF~1 ¢ RP"!, then J,(f) fixes the last (n — k) basis vectors, so lands in
SO(k) € SO(n). Ths we get map

Gn . s RP"H/RPEFL 5 SO(n)/SO(K).

The two instances of “/” have different meanings: on the left RP"~ ! /RP*~! denotes
collapsing RP*~! to a point, whereas on the right SO(n)/SO(k) denotes taking the
orbits of the SO(k)-action.

Lemma 3.2.1. If k = n — 1 then this is a map qnn—1 : Sl — 8"l and induces an
isomorphism on H.(—;Z) (i.e. it has degree +1).

Proof. The homeomorphism SO(n)/SO(n — 1) 5 5n1is given by sending a matrix in
SO(n) to its last column, considered as a unit vector in R™. In other words, it is given
by acting on the last basis vector SO(n).

Thus the composition

RP"! — RP" 1 /RP" 2 ™5 SO(n)/SO(n — 1) = 5"}

sends ¢ to ror¢(e,). The preimage of —e,, under this map consists of those ¢ such that
rore(en) = —en, so r¢(en) = —ep. There is only one such ¢, namely ¢ = (e,), so the map
Gn,n—1 has degree £1. O

Proposition 3.2.2. The map g, 1 induces an isomorphism on H*(—;Z) for x <n —1
as long as n < 2k + 1.

Proof. When k =n — 1 we have proved this in the last lemma, so we proceed by down-
wards induction on k. Consider the commutative diagram

RPF/RPF—1 —= 5 SO(k + 1)/SO(k)

I !

Adn,k

RP"1/RPF1 —2 SO(n)/SO(k)

lquotient Jﬂ

RP" ! /RPF %Y SO(n)/SO(k + 1)

where the right-hand column is a fibration sequence but the left-hand column is not.
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Figure 3.2

By inductive hypothesis the map ¢, r+1 is an isomorphism in cohomology in degrees
* < mn—1, so the Serre spectral sequence for the right-hand column takes the form shown
in Figure 3.2.

In degrees * + 1 < 2k + 1 we obtain a map of exact sequences

dE e SO(n) «/SO(n) w/SO(k+1)\ dF*t1  yrei1, SO(n)
H (SO(kil)) H (SO(Z)) H( SO(k) ) Ht (SO(kL))
lq;,k+l lqz,k l’f lq:z,,k’+1

P % n—1 % n—1 % k k) % n—1
H* (%) H* () H*(g5) H 1 (85),

where the rightmost square commutes by the zig-zag description of the transgression
(Section 2.6) and the other squares clearly commute. By the 5-lemma we find that ¢ ,
is an isomorphism for * <n — 1, as long as n — 1 < 2k. O

As RP"1/RP*~! and SO(n)/SO(k) are easily seen to be 1-connected, we deduce
Corollary 3.2.3. Ifn < 2k + 1 then the map ¢, is (n — 1)-connected.

Theorem 3.2.4. Let n+1 =2"(2s+1). Then S™ does not admit 2" linearly-independent
vector fields.

Proof. Note if s = 0 then S™ clearly does not admit 2" = n + 1 linearly independent
vector fields, and if r = 0 then n is even and so admits no nonvanishing vector fields.
Thus we may suppose that 2" < n/2.
Consider the map
7:80(n+1)/SO(n —k) — S™

given by evaluating at the last basis vector. There is a bijection

{orthonormal (k + 1)-tuples in R"™'} <=~ SO(n +1)/SO(n — k)
Aep—pr1, Aen_gyo, ... Aepy +— A
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under which the map 7 corresponds to recording the (k + 1)-st orthogonal vector.
If S™ admits k linearly independent vector fields then by applying the Gram—Schmidt
process it admits k orthonormal vector fields s1, ... sk, and so

s: 8™ — {orthonormal (k + 1)-tuples in R"™'} = SO(n +1)/SO(n — k)
x —> (s1(x), s2(x),...,sp(z), x)

satisfies wo s = Idgn.
Ifn+1<2(n—k)+1 (ie. if 2k < n) then by Corollary 3.2.3 the map ¢ 41n—k :
RP"/RP"*~1 — SO(n +1)/SO(n — k) is n-connected, and so there exists a map

s’ : S" — RP"/RP" k-1

such that gni1pn—r 08 =~ s. This map s’ would be right inverse up to homotopy to
the map RP"/RP"*~1 — RP"/RP"! = S§" but by Example 3.1.6 this means that
n—2"<n—-k—1s0k<2". O

Infact if n4+1 =2"(2s+1) and r = c+4d with 0 < ¢ < 4, then S™ admits 2¢+8d — 1
linearly-independent vector fields and no more.

3.3 Wu and Stiefel-Whitney classes
Let M be a closed compact n-dimensional manifold, so the map

H'(M;7/2) — Hom(H" (M;7Z/2),7./2)
z— (r — — [M])

is an isomorphism by Poincaré duality. There is a linear map given by

H"Y(M;Z/2) — 7]2
y — (Sd'(y), [M])

which therefore corresponds under the Poincaré duality isomorphism to a class v; €
Hi(M;Z/2), uniquely determined by

(vi—y,[M]) = (Sd'(y),[M]) ~ Vye H"(M;Z/2).

This is the ith Wu class of M. We write

o0
’U::1+v1+02+-~G@Hi(M;Zﬂ)
i=0

for the formal sum, the total Wu class. We then write
w = Sq(v) = ) Sq'(v;)
2

for the total Stiefel-Whitney class of M, with components w =14 w; + wo + - - -.
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Example 3.3.1. On RP" we have Sq‘(z"%) = ("fi)x”, and so v; = ("Z_’)a:Z Thus

v=32, ("7, and so Z

w:sq(v):ic;i)xi(ux)i:i i <”Z_Z> (;)xﬂ

i=0 i=0 j=0

It is an exercise with binomal coefficients modulo 2 to see that this is (1 + 2)"*!, so
w; = ("jl)x’ A

Remark 3.3.2. Note that Sq' : H"%(M;Z/2) — H"(M;7Z/2) vanishes if i > n — i,
by property (iii) of Steenrod squares. Thus v; = 0 for 2i > n. Thus there are fewer
Wu classes than Stiefel-Whitney classes, which means that Stiefel-Whitney classes must
satisfy certain relations.

For example, if n = 4 then v =1 4 v; + v2 and so

w =1+ (v1) + (v2 +v7) + (Sq' (v2)) + (v3).
Thus we have

ws = Sq' (v2) = Sq' (v2 + v}) = Sq' (w2)

w4:w2+w%.
So if wq = wy = 0 then w3z = wy = 0 too.

Suppose that M is a smooth manifold and is embedded in R"t* with normal bundle
v, and let M C U C R™* be a tubular neighbourhood. There is a collapse map

Sn—i—k

2t
SnJrk\U u

c: S
and the space UT may be identified with the Thom space Th(v) = g((l'j)) Recall that

the Thom class is a class u € H*(Th(v); Z/2), and the (co)homology Thom isomorphisms
are the maps

——Uu

H'(M;Z/2) = H'(D(v); Z/2) — H"**(D(v), S(v); Z/2) = H**(Th(v); Z/2)

U—~—

Hix(Th(v); Z/2) = Hy 1 (D(v), S(v); Z/2) “=5 Hy(D(v);Z/2) = Hy(M;Z/2).
Abusing notation slightly, we write
— < w: HY(M;Z/2) = H**(Th(v); Z/2).

Proposition 3.3.3. We have

Sq(u) = % — we B (Th():Z/2).
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Proof. As Sq° = Id the operator Sq is formally invertible: call its inverse Sq~'. Let us

write c,[S"T*] =: [T'h], so that u —~ [Th] = [M] under the homology Thom isomorphism.
The defining property of the Wu class gives
(Sa(x) — u, [Th]) = (Sa(z),u ~ [Th])
= (Sq(x), [M])
= (v — =, [M])
= (v —z —u,[Th])
for any x, and the left-hand side is (Sq(z — Sq~'(u)),[Th]). Now [Th] = c.[S"*] so
this is
(c*(Sa(z — Sa™H(w))), [S"™]) = (Sa(c*(z — Sa~*(u))), [$"+¥]).
But in H*(S"*;7/2) we have Sq = Id (there is no space for any other operations) so
this is
(*(z — Sa™" (), [$"**]) = (& — Sq~" (u), [Th]).
In total we obtain the identity
(@ —Sqa~'(u), [Th]) = (v — @ — u,[Th])
for all x € H*(M;Z/2), so by the Thom isomorphism and Poincaré duality we have
Sq~!(u) = v — u, and hence u = Sq(v) — Sq(u) giving Sq(u) = L — u as required. [
Corollary 3.3.4. If M™ embeds into R"* then [%]Z =0 for alli > k.
Proof. If i > k thenASqi(u) =0as |u| =k, so [2]; = 0.
If i = k then Sq’(u) = u? = [1]y — w. If 2] # 0 then by Poincaré duality there is
an x € H"%(M;7Z/2) such that
1= (2 — [k, [M]) = (& — [5]r — u, [Th])
= (< u— u,[Th])
= (c*(z — u) — " (u), ["))
which is a contradiction as all nontrivial cup products in H*(S"+¥;7Z/2) vanish. O
Example 3.3.5. On the manifold RP2* by Example 3.3.1 we have
w=(1+z)¥"
= (L+2)(1+2)”
= (142)(1+2%)

and so
1 1

w o (1+2)(1+2%)
=(Q+ata®+a®+ )1+ 122 )
=l+o+a’ 4+ +a” ! e H'(RPY;2/2) = 2/2[a]/ (= ).
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Thus RIP’ZIC does not embed into R 11 A

3.4 Constructing the Steenrod squares

Let us write K,, = K(Z/2,n) in this section, and take (co)homology with Z/2 coefficients.
Recall that there is a ¢, € H"(K,,) such that
(X, K,] — H"(X)
[ ()
is a bijection for any CW-complex X. We are only interested in n > 0, so ¢, may
be represented by a reduced cohomology class ¢, € H"(K,,x). If (X,z) is a based
CW-complex, the same argument shows that
(X, K] — H"(X)
f = (),
where [—, —]. denotes the homotopy classes of based maps.

Suppose that we are given a class 0i,, € H""(K,). Then for any based CW-complex
we have an operation

6: H"(X) — H"(X)
fr(en) — f1(0tn)
which by construction is natural for maps of based CW-complexes. We can promote it
to an operation on the cohomology of all based spaces via CW approximation.
Question: Under what conditions on the class 6, is the function § a homomorphism?

To answer this question, note that 1, ® 1 +1® ¢, € ﬁ”(Kn x K,) corresponds to a
based map

pn 2 Koy X Ky — Koy,

well-defined up to homotopy.
Lemma 3.4.1. This map satisfies
(1) pn(*,—) = Id = p,(—, %) : K, = K,
(i) pn(pn( =5 =), =) = b (=, pin (=, =)+ K X K X Ky — Kp.

Proof. We are claiming that certain maps to K, are homotopic, which is the case if they
pull back ¢, to the same class.
For (i) the composition

K, = K, x {x} "2%° K, x K, 2 K,

Tt is a theorem of H. Whitney than any smooth n-manifold may be smoothly embedded in R*".
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pulls back ¢, to
(Id x ine)* (un)*(tn) = (Id X inc)* (1, @ 1 + 1@ 1) =

so this composition is homotopic to the identity; similarly for p, (%, —).
For (i), pn(pn(—,—),—) is the composition

x1d

K, x K, x K, """ K, x K,, 2~ K,

so it pulls back ¢, to
(e, X Id)* (pon)" (tn) = (i X 1) (tn @1+ 1R 1) = (ln @1+ 1R 1) L+ 1 ® ¢y.
The map pin(—, pn(—, —)) does too. O
Corollary 3.4.2. The operation 0 is o homomorphism if and only if
115 (0p) = 01, ©1+1® 01, € H(K,, x K,). (3.4.1)

Proof. The function 6 is defined by naturality and (ty,) = 61y, so if it is a homomorphism
then

i, (On) = b, (0(en)) = O, (
= 0(71 (tn) + 3 (tn))
= 0(71 (tn)) + 0(73(tn))
=71 (Ouy,) + 75 (Oty)
=01, ®1+1® 0y,.

tn)) =0(tn ®1+1® ty)

Conversely, if f*(tn),g*(tn) € H™(X) then the composition

X 9k, < K, 2 K,
pulls back ¢, to

(f X 9)" ()" (tn) = (f X 9)" (tn @1+ 1@ 1) = [*(tn) + g" (tn)-
Thus assuming (3.4.1) holds we have
0(f*(tn) + 97 (tn)) 1= (f X 9)" (1n)" (Otn)
=(fx9) O, @14+1®0iy,)
= [7(0en) + 9" (O1n)
O(f"(1n)) +0(g" (tn))

as required. ]

Definition 3.4.3. Say that 2 € H*(K,,) is primitive if z%(z) =2 ® 1+ 1 ® z.

Lemma 3.4.4. Under the identification QK11 ~ Kn, Qun+1 = fin.
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Proof. Let

K, ~OK,41 — P.K, 1 — Kni1
be the path fibration. Then P, (K41 X Kny1) = Po(Kpt+1) X Pu(K,41) and there is a
map of fibrations

QK1 x QK SLLEEN QKpi1

| |

P* n
P*(Kn+1 X Kn—l—l) L; P*Kn+1

|mxm |7

Hn+1
Kn+1 X Kn—i—l - Kn—l—l

In the Serre spectral sequence for the fibration 7, the class
tn € H'(Ky) = H"(QKn 1) = Ef,

transgresses to (11 € H" T (K1) = Ea%+1 o- Thus there is a commutative square

HY(K,) —2 s g4 ()

l(ﬂﬂrwrl)* lufwl

HM (K x Kp) 2% H ™ (K Kpa)

where the horizontal maps are isomorphisms, and d"*! is the differential in the Serre
spectral sequence {7 ,} for the fibration 7 x 7. We have

p1 @ (1n) = 1 (tng1) = i1 @ 1+ 1Q

and B
i1 Q1+ 1® g = d"+1(Ln RL+1®y),

S0 (Qnt1) (tn) = tn @ 1 +1® ty, 80 Qup41 = py, as this is its defining property. O

Theorem 3.4.5. If 0, € H™"(K,) is primitive, transgresses in the Serre spectral
sequence for
Kn = QKTL+1 — P*Kn—i—l i> Kn—f—h

and i < n, then it transgresses to a unique class, called Ot 11 € H" 7K, 1 1), which
1s also primitive.

Proof. From the Serre spectral sequence for m as shown in Figure 3.3 we see that the
lowest degree in which transgressions are not unique is 2n+2. Asn+i+1<2n+1 by
assumption, the transgression of 6i,, is indeed unique.

To see that Oy is primitive, we consider the map of Serre spectral sequences for
the map of fibrations in the previous lemma. We find a commutative diagram

dn+i+1

HnJri (Kn) ) E&—rll-ﬁr—&;l Hn+i+1 (Kn+1)

lﬂ% L“;H

. _ i1 qntit+l i1
H" Ky x Kn) D EN o = H"W (K X Knpa).
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A 90

N Lim

© 72“7 B o ——

Q AN 2 73

Figure 3.3 The Serre spectral sequence for the path fibration over K, ; with Z/2-coefficients.

We have
AT (00,) = AT 00, @ 1+ 1@00,) = Oty 1 @14+ 1@ 011y
and d"t 0., = 1,41, s0
fi 1 (Oeni1) = 1 (d"700) = Oy @1 4+1@ O

as required. OJ
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Corollary 3.4.6. In the situation above, if 6 : I:.i"(—) — ITI"”(—) is the function defined
by Oty, and 0 - H" (=) — H" Y (=) is the function defined by Ou,, .1, then the square

H"(X) —%Z— H""(2X)
ls I
H'" (X)) —%— H"H+L(3X)
commutes.

Proof. By naturality, it suffices to show it commutes when X = K,, on the class ¢,.
Choosing a nullhomotopy of the inclusion K,, = QK, 11 — P.K,+1 gives maps of pairs

(CKn, Kp) —= (PuKpy1, Kn)

| [

(SKp, %) —— (Kpp1, %)
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and because 7* : H" Y (K, 1,*) — H" Y (P,K, 1, K},) is an isomorphism, as it is part
of the transgression of ¢, to ty41, it follows that

f*H" YK, %) — H"Y(ZK,, )

is an isomorphism too, and so f represents the cohomology class ot,, € ﬁ"*l(EKn). The
definition of transgression gives the diagram

H"HH(CKn,Kn) = Hn+i+1(P*Kn+1,Kn) # ﬁn+z(Kn)

| dl
Hn—l—i-l—l (EKTL) <f— Hn-‘,—i—l—l (Kn—H)

in which the square and outer boundary commutes. We have 0(0i,) = 7*(01p41) by
definition of transgression, and so o(0i,) = f*(0tn+1) = 6(oLy,) as required. O

Corollary 3.4.7. In the situation above, if we define
0: H'(X,A) — H"" (X, A)

for a CW-pair (X, A) using H*(X/A) = H*(X, A), then the square

H"(A) —%— H"(X, A)

I Js

H”H(A) _0 H"+i+1(X, A)
commutes.

Proof. We can extend the inclusion A — CA ~ % to a map f : X — CA, and hence get
a map of pairs f: (X, A) — (CA, A), and an induced map f: X/A — CA/A =X A. By
naturality the diagram

H™(A) —%— H"™(X, A) «=— H " (X/A)

] al

Hn+1 CA A) Hn—i—l EA)

commutes, so as # commutes with ¢ and with f * the claim follows. O
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So far the discussion has been completely general; we now construct the Sq’.
Theorem 3.4.8. There are natural homomorphisms Sq' of degree i such that
(1) Sq” =1d,
(ii) Sai(z) = 2 if i = [a],
(i) Sq'(z) =0 if i > |z|,
(iv) §08q" =Sq’ o for the connecting map § : H*(A) — H" (X, A),
(v) 00Sq’" = Sq’ o for the suspension isomorphism o : H*(X) — H" 1($X).
Proof. Define Sq° = Id. For n > 0, define Sq™¢,, = 12 € H*"(K,). Now
pn(n) = (pn(n)? = (tn @1+ 1@ ) = @1+ 1@
80 Sq"iy, is primitive. In the Serre spectral sequence for
K, ~QKp+1 — PiKh11 — Kpt

we have d"*'(12) = 2i, @ tny1 = 0. Thus (2 is transgressive: by Theorem 3.4.5 it
transgresses to a unique element Sq"t,, 41 € H?"1(K, ;1) which is again primitive.
Now consider the Serre spectral sequence for

Kn+1 ~ QKn+2 — P*Kn+2 — Kn+2.

The class not lying on an edge of lowest total degree is ¢y, 42 ® tp+1 of degree 2n+ 3, so all
classes of degree < 2n + 1 transgress. In particular Sq"t,+1 does, so by Theorem 3.4.5
it transgresses to a unique element Sq"t,1 2 € H?*""2(K, o) which is again primitive.
Continuing in this way we define Sq"**, for all k > 0.

Defining Sq"¢; = 0 for j < n, we obtain an operation Sq" defined on cohomology
classes of every degree, which satisfy all the required properties, except possibly

H"™Y(X) —2— H"(SX)
lSq"zO lSq":square
H?Y(X) —2— H?"(XX)

commuting: but this does in fact commute, as cup products vanish on any suspension
(the analogous naturality for § follows from this as in Corollary 3.4.7). O

To study how the Sq’ interact with cup products, we must first discuss products of
based spaces. If (X, zp) and (Y, yp) are based spaces, their smash product is
X xY
X x{yo} U{zo} x Y~

Note that ©X = S A X. The usual Kiinneth theorem shows that

XANY =

—_——— i

A= HY(X, 20) @ H* (Y, y0) —5 H*(X x Y, X x {yo} U{zo} x Y) = H*(X AY)

is an isomorphism (as we are working with coefficients in the field Z/2).

Lecture 24



80 Chapter 3  Cohomology operations

Lemma 3.4.9. The map o, : XK, — K,y is injective on cohomology in degrees
* < 2n + 1.

Proof. Return to the diagram

H"WHY(CK,, K,) «=— H"W 1 (P,K,1, Ky) <2— H"(K,,)

-7

:T W*T k,/’/t’ransgresson
H™H(EK,) 2 fntidi(K,, )
which shows that (oty,)* is injective in the range of degrees in which the transgression is
single-valued. From the Serre spectral sequence

o T

Q

this is seen to be degrees x < 2n + 1. (]

Consider the maps

n—1AId
op K,  AK, TN K AK,,

IdAotm—1

op: Kh NYXKp1 — K, ANK,,.
It follows from the previous lemma that the maps

o @ H(Kn) ®H (Kp) — H (SKy-1) © H (Kp)
i<2n—1
J

op: P H(K.) ® H (Ky) — H(K,) @ H (5K 1)

i
j<2m—1
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are both injective, so in total degrees * < 2(n +m) — 1 the map
o1 ®oh: B () © B (Kom) — (F(SKn 1) © B (Kpn)) © (H*(Kn) © H*(SKp 1))
is injective.
Theorem 3.4.10. We have
SA (1 A L) = Z Sq*(tn) A SY (tm) € H* (Kn A Kpn).
itj=k
Proof. If k =n + m this becomes the identity
(bn A tm)? = 12 N2,

which is certainly true. So we proceed by induction on the quantity n +m — k.
Let 2 € H"™H*(K,,AK,,) be the difference of the two terms. Under o this becomes

0% (2) = Sq (otn_1 A tm) + Z Sq' (o) A Sq (1m) € H™ M H(SK,_1 A Kp)
i+j=k
which under the suspension isomorphism is
SAF (b1 A L) + Z Sq’(1n) ASAF (1) € HPDHMHR(F A K.
i+j=k
As (n — 1) +m — k < n+m — k this vanishes by induction. Similarly o%(z) = 0, so
z=0. O

The final property of Steenrod squares, that Sq' agrees with Bockstein operation, is
Example Sheet 4 Q2.

3.5 Outlook

The Steenrod squares satisfy the Adem relations: if 0 < i < 2j then the identity

i/2

iq g _ J=k =1\ itj—ka k
Sq'Sq kZ:O<Z._2k Sq Sq

holds. Tt is not hard to show using this that if a is not a power of 2 then Sq* is
decomposable (as we can write a = i + j with 0 < 7 < 2j and (321) =1 mod 2): the
first few are

Sq3 — SqISqQ

Sq5 — Sqlsq4

Sq® = Sq?Sq* + Sq°Sq' = Sq?Sq* + Sq'Sq*Sq’

Sq” =Sq'Sq® = Sq'Sq?*Sq*  (using Sq'Sq! =0)

Sq” = Sq'Sq®.
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Example 3.5.1. Suppose X is a space having H*(X;Z/2) = Z/2[z]/(z3) with |z| = n
(so X is analogous to RP?, CP?, HP?). Then

0 # 22 = Sq"(z).

If n is not a power of 2 then Sq" is decomposable, but Sq’(z) = 0 for all 0 < i < n
because the group it lies in is zero. Thus n must be a power of 2. A

In fact, J. F. Adams has showed that Sq?' is “decomposable in terms of higher-order
operations” if ¢ > 4, which implies that in the above example we must have n = 1,2,4,8;
the last example is provided by the octonionic projective plane QP2. This is the famous
Hopf Invariant 1 Theorem.

In a different direction, given a word Sq’ := SqSq’? - - - Sq’" in Steenrod squares, if
ij < 2ij41 then we can apply an Adem relation to write Sq%Sq¥+! as a linear combination
of Sq®Sq”’s with a > 2b. Tterating this, we can write any word in the Steenrod squares
as a linear combination of Sq’’s with ij > 2i;41: such an Sq’ is called admissible.

Theorem 3.5.2. H*(K(Z/2,n);7Z/2) is a polynomial ring over Z./2 on the classes Sql iy,
such that

(i) Sq’ is admissible, and
(ii) I = (i1,d2,...,ir) has excess e(I) :== Y%, (ij — 2ij41) < n.

Example 3.5.3. Only I = (0) has e(/) = 0. Only the admissible sequences
I=(1),(2,1),(4,2,1),(8,4,2,1),...
have e(I) = 1. Thus
H*(K(Z/2,2);Z/2) = 7./2[12,Sq 12, S4*Sq 12, Sq*Sq?Sq o, . . .].
A

The proof of this theorem does not go beyond the methods of this course: it holds
for n = 1 by observation, and can then be proved inductively using Kudo’s transgression
theorem and some spectral sequence yoga: in particular it does not use the Adem rela-
tions. To prove the Adem relations one can proceed as follows. As the Steenrod squares
commute with the suspension isomorphism, it suffices to check the Adem relation for
Sq’Sq’ on cohomology classes of degree n > i + j. From the theorem it is easy to check
that the map

1y X oxuy K(Z/2,1) x -+ x K(Z/2,1) — K(Z/2,n)

n times

is injective on cohomology in degrees < 2n, and from this it is a matter of algebra to
verify that the Adem relation for Sq*Sq’t,, holds, as n+i+j < 2n and we know how the
Steenrod squares act on H*(K(Z/2,1);Z/2) = 7Z/2[t1]. (Of course one has to get quite
good at binomial coefficients modulo 2.)
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