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1 Groups

1.1 Basic concepts

We will begin by quickly recapping some definitions and results from IA Groups.

Definition (Group). A group is a triple (G, · , e), where G is a set, · : G × G → G is a
function and e ∈ G is an element such that

(i) For all a, b, c ∈ G, we have (a · b) · c = a · (b · c). (associativity)

(ii) For all a ∈ G, we have a · e = e · a = a. (identity)

(iii) For all a ∈ G, there exists a−1 ∈ G such that a · a−1 = a−1 · a = e. (inverse)

Some people add an axiom that says g · h ∈ G for all g, h ∈ G, but this is already implied
by saying · is a function with codomain G, so right-thinking people omit it.

Lemma. The inverse of an element is unique.

Proof. Let a−1, b be inverses of a. Then b = b · e = b · a · a−1 = e · a−1 = a−1.

Definition (Subgroup). If (G, · , e) is a group and H ⊆ G is a subset, then it is a subgroup if

(i) e ∈ H,

(ii) a, b ∈ H implies a · b ∈ H,

(iii) · : H ×H → H makes (H, · , e) a group in its own right.

We write H ≤ G if H is a subgroup of G.

Note that the last condition in some sense encompasses the first two, but we need the first
two conditions to hold before the last statement makes sense at all. The following lemma is
the most convenient way to check that a subset forms a subgroup.

Lemma. A subset H ⊆ G is a subgroup if H is non-empty and for any h1, h2 ∈ H, we have
h1h

−1
2 ∈ H.

Definition (Abelian group). A group G is abelian if a · b = b · a for all a, b ∈ G.

Example. We have the following familiar examples of groups

(i) (Z,+, 0), (Q,+, 0), (R,+, 0), (C,+, 0).

(ii) We also have groups of symmetries:

(a) The symmetric group Sn is the collection of all permutations of {1, 2, · · · , n}.
(b) The dihedral group D2n is the symmetries of a regular n-gon.

(c) The group GLn(R) is the group of invertible n× n real matrices, which also is the
group of invertible R-linear maps from the vector space Rn to itself.

(iii) The alternating group An ≤ Sn.

(iv) The cyclic group Cn ≤ D2n.

(v) The special linear group SLn(R) ≤ GLn(R), the subgroup of matrices of determinant 1.

(vi) The Klein four-group C2 × C2.
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(vii) The quaternions Q8 = {±1,±i,±j,±k} with ij = k, ji = −k, i2 = j2 = k2 = −1,
(−1)2 = 1.

With groups and subgroups, we can talk about cosets.

Definition (Coset). If H ≤ G, g ∈ G, the left coset gH is the set

gH := {x ∈ G : x = g · h for some h ∈ H}.

For example, since H is a subgroup, we know e ∈ H. So for any g ∈ G, we must have
g ∈ gH. The collection of H-cosets in G forms a partition of G, and furthermore, all H cosets
gH are in bijection with H itself, via h 7→ gh : H → gH. An immediate consequence of this
is

Theorem (Lagrange’s theorem). Let G be a finite group, and H ≤ G. Then

|G| = |H||G : H|,

where |G : H| is the number of H cosets in G.

We can of course do exactly the same thing with right cosets and get the same conclusion.
We have implicitly used the following notation:

Definition (Order of group). The order of a group is the number of elements in G, written
|G|.

Instead of order of the group, we can ask what the order of an element is.

Definition (Order of element). The order of an element g ∈ G is the smallest positive n
such that gn = e. (If there is no such n, we say g has infinite order.) We write ord(g) = n.

A basic consequence of Lagrange’s theorem is the following.

Lemma. If G is a finite group and g ∈ G has order n, then n divides |G|.

Proof. Consider the subset
H = {e, g, g2, · · · , gn−1}

of G. This is a subgroup of G, because it is non-empty and grg−s = gr−s lies in H (we might
have to add n to the power of g to make it positive, but this is fine since gn = e). Moreover,
there are no repeats in the list: if gi = gj , and say i ≥ j, then gi−j = e. So i − j < n. By
definition of n, we must have i− j = 0, i.e. i = j.

Hence Lagrange’s theorem tells us that n = |H| divides |G|.

1.2 Normal subgroups, quotients, homomorphisms, isomorphisms

We all know what the definition of a normal subgroup is. However, instead of just stating the
definition and proving things about it, lets motivate the definition by seeing how one could
naturally come up with it.

Let H ≤ G be a subgroup. The objective is to try to make the collection of cosets

G/H := {gH : g ∈ G}

into a group.
Before we do that, we quickly come up with a criterion for when two cosets gH and g′H

are equal. Notice that if gH = g′H, then g′ ∈ gH. So g′ = g · h for some h. In other words,
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g−1 · g′ = h ∈ H. So if two elements represent the same coset, their difference is in H. The
argument is also reversible. Hence two elements g, g′ ∈ G represent the same H-coset if and
only if g−1g′ ∈ H.

Suppose we try to make the set G/H = {gH : g ∈ G} into a group by the formula

(g1H) · (g2H) := g1g2H.

This is not necessarily well-defined: if we take a different representative for the same coset,
we want to make sure that we get the same answer.

If g2H = g′2H, then we know g′2 = g2 · h for some h ∈ H. So

(g1H) · (g′2H) = g1g
′
2H = g1g2hH = g1g2H = (g1H) · (g2H),

and we are safe. If g1H = g′1H, then g′1 = g1 · h for some h ∈ H. So

(g′1H) · (g2H) = g′1g2H = g1hg2H.

We need the equality
g1hg2H = g1g2H

to hold, which requires
(g1g2)−1g1hg2 ∈ H.

This is equivalent to asking that
g−1

2 hg2 ∈ H.

So for G/H to be a group under this operation we must have, for any h ∈ H and g ∈ G, that
g−1hg ∈ H. This is not necessarily true for a given subgroup H.

Definition (Normal subgroup). A subgroup H ≤ G is normal if for any h ∈ H and g ∈ G,
we have g−1hg ∈ H. We write H CG.

This allows us to make the following definition:

Definition (Quotient group). If H C G is a normal subgroup, then the set G/H of left
H-cosets forms a group with multiplication

(g1H) · (g2H) := g1g2H.

with identity eH = H. This is known as the quotient group.

The quotient group is indeed a group: the definition of normal subgroup was chosen so
that the multiplication is well-defined, it is associative as multiplication in G is associative,
eH is easily seen to be an identity element and the inverse of gH is g−1H.

So far, we have just been looking at individual groups, but we would also like to know how
groups interact with each other. In other words, we want to study functions between groups.
However, we should not consider arbitrary functions: since groups have some structure, we
should only consider the functions which respect this structure. These are the homomorphisms.

Definition (Homomorphism). If (G, · , eG) and (H, ∗, eH) are groups, a function φ : G→ H
is called a homomorphism if φ(eG) = eH , and for g, g′ ∈ G, we have

φ(g · g′) = φ(g) ∗ φ(g′).

(One can derive φ(eG) = eH from the second condition, but it doesn’t hurt to put it in as
well.)
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Lemma. If φ : G→ H is a homomorphism, then φ(g−1) = φ(g)−1.

Proof. We compute φ(g ·g−1) in two ways. On the one hand, we have φ(g ·g−1) = φ(eG) = eH .
On the other hand, we have φ(g · g−1) = φ(g) ∗ φ(g−1). By the uniqueness of inverse, we
must have φ(g−1) = φ(g)−1.

Given a homomorphism, there are two groups we can associate to it.

Definition (Kernel). The kernel of a homomorphism φ : G→ H is

ker(φ) := {g ∈ G : φ(g) = eH}.

Definition (Image). The image of a homomorphism φ : G→ H is

im(φ) := {h ∈ H : h = φ(g) for some g ∈ G}.

Lemma. For a homomorphism φ : G→ H, the kernel ker(φ) is a normal subgroup of G, and
the image im(φ) is a subgroup of H.

Proof. To see ker(φ) is a subgroup, let g, h ∈ kerφ. Then

φ(g · h−1) = φ(g) ∗ φ(h)−1 = eH ∗ e−1
H = eH .

So gh−1 ∈ ker(φ). Also, φ(eG) = eH , so ker(φ) is non-empty. Hence it is a subgroup.

To show it is normal, let g ∈ ker(φ) and x ∈ G. We want to show x−1gx ∈ ker(φ). We
have

φ(x−1xg) = φ(x−1) ∗ φ(g) ∗ φ(x) = φ(x−1) ∗ φ(x) = φ(x−1x) = φ(eG) = eH .

So x−1gx ∈ ker(φ) and hence ker(φ) is normal.

If φ(g), φ(h) ∈ im(φ) then

φ(g) ∗ φ(h)−1 = φ(gh−1) ∈ im(φ).

Furthermore, eH = φ(eG) ∈ im(φ), so im(φ) is non-empty. Hence im(φ) is a subgroup.

Definition (Isomorphism). An isomorphism is a homomorphism which is also a bijection.

If a function φ : G→ H is an isomorphism, then the inverse function φ−1 : H → G is too.

Definition (Isomorphic group). Two groups G and H are isomorphic if there is an isomor-
phism between them. We write G ∼= H.

Often, we consider isomorphic groups as being “the same”, and do not distinguish between
them. We are being careless when we do this, and should be aware that we are being careless.

It is often helpful to be able to break groups apart into smaller pieces. The following
three “isomorphism theorems” allow us to do this in various ways. The first relates the kernel
and image of a homomorphism.

Theorem (First isomorphism theorem). Let φ : G→ H be a homomorphism. Then ker(φ)
is a normal subgroup of G and

G

ker(φ)
∼= im(φ).
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Proof. We have already shown that ker(φ) is a normal subgroup. We now have to construct
a homomorphism f : G/ ker(φ)→ im(φ), and prove it is an isomorphism.

We define f as follows:

f :
G

ker(φ)
−→ im(φ)

g ker(φ) 7−→ φ(g).

As the function f is defined using a coset representative, we must show it is well-defined. If
g ker(φ) = g′ ker(φ), then g−1 · g′ ∈ ker(φ) and so φ(g−1 · g′) = eH . Thus

eH = φ(g−1 · g′) = φ(g)−1 ∗ φ(g′),

and so multiplying by φ(g) gives φ(g) = φ(g′), so the function is well-defined.
To show that f is a homomorphism, we calculate

f(g ker(φ) · g′ ker(φ)) = f(gg′ ker(φ))

= φ(gg′)

= φ(g) ∗ φ(g′)

= f(g ker(φ)) ∗ f(g′ ker(φ)).

Finally, we show f is a bijection. To show that it is surjective, let h ∈ im(φ). Then
h = φ(g) for some g. So h = f(g ker(φ)) is in the image of f . To show that it is injective,
suppose that f(g ker(φ)) = f(g′ ker(φ)). Then φ(g) = φ(g′), so φ(g−1 · g′) = eH . Hence
g−1 · g′ ∈ ker(φ), and hence g ker(φ) = g′ ker(φ), as required.

Before we move on to further isomorphism theorems, lets seen an example of how this
one can be used to identify otherwise mysterious groups.

Example. Consider the function φ : C → C \ {0} given by z 7→ ez. As ez+w = ezew, the
function φ defines a homomorphism φ : (C,+, 0)→ (C \ {0},×, 1).

The existence of log shows that φ is surjective, and so imφ = C \ {0}. The kernel is given
by

ker(φ) = {z ∈ C : ez = 1} = 2πiZ,

i.e. the set of all integer multiples of 2πi. The conclusion is that

(C/(2πiZ),+, 0) ∼= (C \ {0},×, 1).

The second isomorphism theorem has a slightly more complicated statement.

Theorem (Second isomorphism theorem). Let H ≤ G and K CG. Then HK := {h · k : h ∈
H, k ∈ K} is a subgroup of G, and H ∩K is a normal subgroup of H. Moreover,

HK

K
∼=

H

H ∩K
.

Proof. Let hk, h′k′ ∈ HK. Then

h′k′(hk)−1 = h′k′k−1h−1 = (h′h−1)(hk′k−1h−1).

The first term is in H, while the second term is k′k−1 ∈ K conjugated by h, which also has
to be in K be normality. So this is something in H times something in K, and hence lies in
HK. The set HK also contains eG, and is hence a subgroup.
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To see that H ∩K is normal in H and to prove the second isomorphism theorem, we
apply the first isomorphism theorem to a certain homomorphism. Define

φ : H −→ G/K

h 7−→ hK

This is a homomorphism. The image of φ is the set of K-cosets which may be represented by
an element of H, i.e.

im(φ) =
HK

K
.

The kernel of φ is

ker(φ) = {h ∈ H : hK = eK} = {h ∈ H : h ∈ K} = H ∩K;

as it is the kernel of a homomorphism, it is normal in H. By the first isomorphism theorem
we have

H

H ∩K
∼=
HK

K
.

Before moving on to the third isomorphism theorem, notice that if K CG, then there is a
bijection between subgroups of G/K and subgroups of G containing K, given by

{subgroups of G/K} ←→ {subgroups of G which contain K}

X ≤ G

K
7−→ {g ∈ G : gK ∈ X}

L

K
≤ G

K
←− [ K C L ≤ G.

This specialises to a bijection between normal subgroups, too:

{normal subgroups of G/K} ←→ {normal subgroups of G which contain K}.

We will often use this correspondence.

Theorem (Third isomorphism theorem). Let K ≤ L ≤ G be normal subgroups of G. Then

G

K

/ L
K
∼=
G

L
.

Proof. Define a homomorphism

φ : G/K −→ G/L

gK 7−→ gL

As always, we have to check this is well-defined. If gK = g′K, then g−1g′ ∈ K ⊆ L, and so
gL = g′L. It is a homomorphism since

φ(gK · g′K) = φ(gg′K) = gg′L = (gL) · (g′L) = φ(gK) · φ(g′K).

The function φ is surjective, since gL = φ(gK), so the image of φ is G/L. The kernel of
φ is

ker(φ) = {gK ∈ G/K : gL = L} = {gK ∈ G/K : g ∈ L} = L/K.

So the conclusion follows by the first isomorphism theorem.
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The idea of all three of these theorems is to take a group, find a normal subgroup, and
then quotient it out: hopefully the normal subgroup and the quotient group will be simpler.
However, such a simplification is not always possible.

Definition (Simple group). A (non-trivial) group G is simple if it has no normal subgroups
except {e} and G.

In general, simple groups are complicated. However, if we only look at abelian groups,
then it is not difficult to describe all simple groups. Note that by commutativity, the normality
condition is always trivially satisfied, so any subgroup is normal. Hence an abelian group can
be simple only if it has no non-trivial subgroups at all.

Lemma. An abelian group is simple if and only if it is isomorphic to the cyclic group Cp for
some prime number p.

Proof. By Lagrange’s theorem, any subgroup of Cp has order dividing |Cp| = p. Hence, if p
is prime, any subgroup must have order 1 or p, i.e. be either {e} or Cp. In particular any
normal subgroup must be {e} or Cp, so it is simple.

Now suppose that G is abelian and simple. Let e 6= g ∈ G be a non-trivial element, and
consider the subset H = {· · · , g−2, g−1, e, g, g2, · · · } of G, which is a subgroup. Since G is
abelian every subgroup is normal, so H is a normal subgroup. As G is simple, H = {e} or
H = G. Since it contains g 6= e it is non-trivial, so we must have H = G, and so G is cyclic.

If G is infinite cyclic, then it is isomorphic to Z. But Z is not simple, since 2ZC Z. So G
must be a finite cyclic group, i.e. G ∼= Cm for some finite m.

If n | m, then gm/n generates a (normal) subgroup of G of order n, so for G to be simple
n must be m or 1. Hence G cannot simple unless m has no divisors except 1 and m, i.e. m is
a prime number.

Simple finite groups are the building blocks for all finite groups, in the following sense.

Theorem. If G is a finite group, then there are subgroups

G = H1 BH2 BH3 BH4 B · · ·BHn = {e}

such that each quotient Hi+1/Hi is simple.

We only claim that Hi is normal in Hi+1, not necessarily in G.

Proof. If G is simple, let H2 = {e}. Then we are done.

If G is not simple, let H2 be a proper normal subgroup of G of maximal order. We claim
that G/H2 is simple.

If G/H2 is not simple, then it contains a proper non-trivial normal subgroup LCG/H2

such that L 6= {e}, G/H2. However, by the correspondence between normal subgroups of
G/H2 and normal subgroups of G containing H2, L must be K/H2 for some K C G such
that K ≥ H2. Moreover, since L is non-trivial and not G/H2, we know K is not G or H2.
So K is a larger normal subgroup than H2, which is a contradiction.

So we have found an H2 CG such that G/H2 is simple. Iterating this process with H2

gives the desired result. Note that this process eventually stops, as Hi+1 < Hi, and hence
|Hi+1| < |Hi|, and all these numbers are finite.

7



1.3 Actions and permutations

Recall that the symmetric group Sn is the group of all permutations of {1, 2, . . . , n}, i.e. of
bijections from this set to itself. We have seen in IA Groups that it is convenient to write
permutations in disjoint cycle form, e.g. (1 2 3)(4 5)(6) (1-cycles are usually omitted). We
have also seen that every permutation can be written as a product of transpositions: we say
that a permutation is even (or odd) if it can be written as a product of an even (or odd)
number of transpositions, called its sign; we have seen that this is well-defined. The even
permutations form a subgroup An ≤ Sn, the alternating group. As the function

sgn : Sn −→ ({±1},×, 1)

σ 7−→

{
+1 σ is even

−1 σ is odd

is a homomorphism, and is onto for n ≥ 2, it follows from the first isomorphism theorem that
An = ker(sgn) is a normal subgroup of Sn, and has index 2.

More generally, for a set X, we can define its symmetric group as follows:

Definition (Symmetric group of X). Let X be a set. We write Sym(X) for the group of all
permutations of X.

However, we don’t always want the whole symmetric group. Sometimes, we just want
some subgroups of symmetric groups, as in our initial motivation. So we make the following
definition.

Definition (Permutation group). A group G is called a permutation group if it is a subgroup
of Sym(X) for some X, i.e. it is given by some—but not necessarily all—permutations of a
set.

We say G is a permutation group of degree n if |X| = n.

This is not really a good or interesting definition, since, as we will soon see, every group
is (isomorphic to) a permutation group. However, in some cases, thinking of a group as a
permutation group of some object gives us better intuition about it.

Example. Sn and An are obviously permutation groups (of degree n). Also, the dihedral
group D2n is a permutation group of degree n, viewing it as a permutation of the vertices of
a regular n-gon.

If G ≤ Sym(X), then each g ∈ G gives us a permutation of X, in a way that is compatible
with the group structure. We say the group G acts on X. In general, we make the following
definition:

Definition (Group action). An action of a group (G, · , e) on a set X is a function

− ∗ − : G×X −→ X

such that

(i) g1 ∗ (g2 ∗ x) = (g1 · g2) ∗ x for all g1, g2 ∈ G and x ∈ X.

(ii) e ∗ x = x for all x ∈ X.

There is another way of defining group actions, which is arguably a better way of thinking
about them.
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Lemma. An action of G on a set X is equivalent to a homomorphism φ : G→ SymX.

The statement of this lemma by itself is useless, since it does not say how to translate
between the homomorphism and a group action. The important part is the proof.

Proof. Let ∗ : G×X → X be an action. Define φ : G→ SymX by sending g to the function
φ(g) = (g ∗ − : X → X). This is indeed a permutation, as the function g−1 ∗ − is an inverse:

φ(g−1)(φ(g)(x)) = g−1 ∗ (g ∗ x) = (g−1 · g) ∗ x = e ∗ x = x,

and a similar argument shows that φ(g) ◦ φ(g−1) = idX . So φ is at least a well-defined
function.

To show that φ is a homomorphism, we calculate

φ(g1)(φ(g2)(x)) = g1 ∗ (g2 ∗ x) = (g1 · g2) ∗ x = φ(g1 · g2)(x).

Since this is true for all x ∈ X, it follows that φ(g1)◦φ(g2) = φ(g1·g2). Also, φ(e)(x) = e∗x = x.
So φ(e) = idX . Hence φ is a homomorphism.

We now show how to construct a group action from a homomorphism φ : G→ SymX.
Given φ, define a function − ∗ − : G×X → X by g ∗ x = φ(g)(x). We now check that this
indeed defines a group action. Using the definitions of a homomorphism, we know

(i) g1 ∗ (g2 ∗ x) = φ(g1)(φ(g2)(x)) = (φ(g1) ◦ φ(g2))(x) = φ(g1 · g2)(x) = (g1 · g2) ∗ x.

(ii) e ∗ x = φ(e)(x) = idX(x) = x.

So φ gives a group action. These two operations are clearly inverses to each other, showing
that group actions of G on X are the same as homomorphisms G→ Sym(X).

Definition (Permutation representation). A permutation representation of a group G is a
homomorphism G→ Sym(X).

The lemma above has shown that a permutation representation is the same as a group
action. The good thing about thinking of group actions as homomorphisms is that we can
use all we know about homomorphisms on them.

Notation. For an action of G on X given by φ : G→ Sym(X), we write GX = im(φ) and
GX = ker(φ).

The first isomorphism theorem theorem immediately gives

Proposition. GX CG and G/GX ∼= GX .

In particular, if GX = {e} is trivial, then G ∼= GX ≤ Sym(X).

Example. Let G be the group of symmetries of a cube. Let X be the set of diagonals of the
cube.
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Then G acts on X, and so we get φ : G → Sym(X). What is its kernel? To preserve the
diagonals, it either does nothing to the diagonal, or flips the two vertices. So

GX = ker(φ) = {id, symmetry that sends each vertex to its opposite} ∼= C2.

How about the image? We have GX = Im(φ) ≤ Sym(X) ∼= S4. It is an easy exercise to
show that im(φ) = Sym(X), i.e. it is surjective. Then the first isomorphism theorem tells us
GX ∼= G/GX . So

|G| = |GX ||GX | = 4! · 2 = 48.

This is an example of how we can use group actions to count elements in a group.

Example (Cayley’s theorem). For any group G, we have an action of the group G on the
set G via

g ∗ g1 = gg1.

This is indeed an action. This gives a group homomorphism φ : G→ Sym(G). What is its
kernel? If g ∈ ker(φ), then it acts trivially on every element. In particular, it acts trivially on
the identity. So g ∗ e = e, which means g = e. So ker(φ) = {e}. By the first isomorphism
theorem, we get

G ∼= G/{e} ∼= imφ ≤ Sym(G).

So we see that every group is (isomorphic to) a subgroup of a symmetric group.

Example. Let H be a subgroup of G, and X = G/H be the set of left cosets of H. We let
G act on X via

g ∗ g1H = gg1H.

This is well-defined and is indeed a group action. So we get φ : G→ Sym(X).
Now consider GX = ker(φ). If g ∈ GX , then for every g1 ∈ G, we have g ∗ g1H = g1H.

This means g−1
1 gg1 ∈ H. In other words, we have g ∈ g1Hg

−1
1 . This has to hold for all

g1 ∈ G, so

GX ⊆
⋂
g1∈G

g1Hg
−1
1 .

This argument is completely reversible: if g ∈
⋂
g1∈G g1Hg

−1
1 , then for each g1 ∈ G, we know

that g−1
1 gg1 ∈ H and hence gg1H = g1H. So g ∗ g1H = g1H and hence g ∈ GX . Thus we

have
ker(φ) = GX =

⋂
g1∈G

g1Hg
−1
1 .

Since this is a kernel, it is a normal subgroup of G, and is contained in H. Starting with an
arbitrary subgroup H, this allows us to generate a normal subgroup. (If we think about the
construction, we see that this is the largest normal subgroup of G that is contained in H.)

We can use this construction to prove the following theorem.

Theorem. Let G be a finite group, and H ≤ G a subgroup of index n. Then there is a
normal subgroup K C G with K ≤ H such that G/K is isomorphic to a subgroup of Sn.
Hence |G/K| | n! and |G/K| ≥ n.

Proof. We apply the previous example, giving φ : G→ Sym(G/H), and let K be the kernel
of this homomorphism. We have already shown that K ≤ H. Then the first isomorphism
theorem gives

G/K ∼= imφ ≤ Sym(G/H) ∼= Sn.

Then by Lagrange’s theorem, we know |G/K| | |Sn| = n!, and we also have |G/K| ≥ |G/H| =
n.
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Corollary. Let G be a non-abelian simple group. Let H ≤ G be a proper subgroup of index
n > 1. Then G is isomorphic to a subgroup of An. Moreover, we must have n ≥ 5, ie. G
cannot have a subgroup of index less than 5.

Proof. The action of G on X = G/H gives a homomorphism φ : G → Sym(X). Then
ker(φ)CG. Since G is simple, ker(φ) is either G or {e}. We first show that it cannot be G.
If ker(φ) = G, then every element of G acts trivially on X = G/H. But if g ∈ G \H, which
exists since H is a proper subgroup, then g ∗H = gH 6= H and so g does not act trivially. So
the kernel cannot be the whole of G. Hence, and hence it must be {e}.

By the first isomorphism theorem, we have

G ∼= im(φ) ≤ Sym(X) ∼= Sn.

We now need to show that G is in fact a subgroup of An.
We know that An C Sn, so im(φ) ∩An C im(φ) ∼= G. As G is simple, im(φ) ∩An is either

{e} or G = im(φ). We want to show that the second case occurs, i.e. that the intersection is
not the trivial group. We use the second isomorphism theorem: if we had im(φ) ∩An = {e},
then

im(φ) ∼=
im(φ)

im(φ) ∩An
∼=

im(φ)An
An

≤ Sn
An
∼= C2.

So G ∼= im(φ) is a subgroup of C2, so abelian: this is a contradiction. So we must have
im(φ) ∩An = im(φ), i.e. im(φ) ≤ An.

The last part follows from the fact that S1, S2, S3, S4 have no non-abelian simple subgroups,
which one may check by going to a quiet room and listing all their subgroups.

Let us recall some definitions from IA Groups.

Definition (Orbit). If G acts on a set X, the orbit of x ∈ X is

G · x = {g ∗ x ∈ X : g ∈ G}.

Definition (Stabiliser). If G acts on a set X, the stabiliser of x ∈ X is

Gx = {g ∈ G : g ∗ x = x}.

The main theorem relating these concepts is the orbit-stabiliser theorem.

Theorem (Orbit-stabiliser theorem). Let G act on X. Then for any x ∈ X, there is a
bijection between G · x and G/Gx, given by g · x↔ g ·Gx.

In particular, if G is finite then |G| = |Gx||G ·X|.

It takes some work to show that this is well-defined and a bijection, but it has been done
in IA Groups. In that course, you perhaps saw just the second statement instead, but the
first statement remains is true for not necessarily finite groups.

1.4 Conjugacy classes, centralisers, and normalisers

We have seen that every group G acts on the set G by multiplying on the left. A group G
can also act on the set G in a different way, by conjugation:

g ∗ g1 := gg1g
−1.

Let φ : G→ Sym(G) be the associated permutation representation. We know, by definition,
that φ(g) is a bijection from G to G as sets. However, here G is not an arbitrary set, but is a
group. A natural question to ask is whether φ(g) is a homomorphism or not. Indeed, we have

φ(g)(g1 · g2) = gg1g2g
−1 = (gg1g

−1)(gg2g
−1) = φ(g)(g1)φ(g)(g2).

11



So φ(g) is a homomorphism from G to G. Since φ(g) is bijective (as in any group action), it
is in fact a group isomorphism.

We can take the collection of all isomorphisms of G, and form a new group out of it.

Definition (Automorphism group). The automorphism group of G is

Aut(G) := {f ∈ SymG : f is a group isomorphism}.

This is a group under composition, with the identity map as the identity element.

This is a subgroup of Sym(G), and the homomorphism φ : G → Sym(G) given by
conjugation has image in Aut(G).

Definition (Conjugacy class). The conjugacy class of g ∈ G is

cclG(g) := {hgh−1 ∈ G : h ∈ G},

i.e. the orbit of g ∈ G under the conjugation action.

Definition (Centraliser). The centraliser of g ∈ G is

CG(g) := {h ∈ G : hgh−1 = g},

i.e. the stabiliser of g under the conjugation action. Alternatively it is the set of all h ∈ G
which commute with g.

Definition (Centre). The centre of a group G is

Z(G) := {h ∈ G : hgh−1 = g for all g ∈ G} =
⋂
g∈G

CG(g) = ker(φ),

i.e. the set of all h ∈ G which commute with all g ∈ G.

Proposition. Let G be a finite group. Then

| ccl(x)| = |G : CG(x)| = |G|/|CG(x)|.

In particular, the size of each conjugacy class divides the order of the group.

Proof. Apply the orbit-stabiliser theorem to the action of G on itself by conjugation, giving
a bijection ccl(x)↔ G/CG(x).

Definition (Normaliser). Let H ≤ G. The normaliser of H in G is

NG(H) = {g ∈ G : g−1Hg = H}.

We certainly have H ≤ NG(H). Even better, H CNG(H), essentially by definition: the
normaliser is the biggest subgroup of G in which H is normal.

We are now going to look at conjugacy classes of Sn. Recall from IA Groups that
permutations in Sn are conjugate if and only if they have the same cycle type when written as
a product of disjoint cycles. We can think of the cycle types as partitions of n. For example,
the partition 2, 2, 1 of 5 corresponds to the conjugacy class of (1 2)(3 4)(5). So the conjugacy
classes of Sn are exactly the partitions of n.

Example. In S5 we have the following conjugacy classes

12



Cycle type 15 2 · 13 22 · 1 3 · 12 3 · 2 4 · 1 5

# elements 1 10 15 20 20 30 24

Theorem. The alternating groups An are simple for n ≥ 5 (also for n = 2, 3).

The cases in brackets follow from a direct check since A2
∼= {e} and A3

∼= C3, all of which
are simple. We can also check manually that A4 has non-trivial normal subgroups, and hence
not simple.

Recall we also proved that A5 is simple in IA Groups by brute force — we listed all its
conjugacy classes, and see they cannot be put together to make a normal subgroup. This
obviously cannot be easily generalized to higher values of n. Hence we need to prove this
with a different approach.

Proof. We start with the following claim:

Claim. An is generated by 3-cycles.

As any element of An is a product of evenly-many transpositions, it suffices to show that
every product of two transpositions is also a product of 3-cycles.

There are three possible cases: let a, b, c, d be distinct. Then

(i) (a b)(a b) = e.

(ii) (a b)(b c) = (a b c).

(iii) (a b)(c d) = (a c b)(a c d).

So we have shown that every possible product of two transpositions is a product of three-cycles.

Claim. Let H CAn. If H contains a 3-cycle, then H = An.

We show that if H contains any 3-cycle, then it contains every 3-cycle: then we are done
since An is generated by 3-cycles. For concreteness, suppose we know (a b c) ∈ H, and we
want to show (1 2 3) ∈ H.

Since they have the same cycle type, there is a σ ∈ Sn such that (a b c) = σ(1 2 3)σ−1. If
σ is even, i.e. σ ∈ An, then we have that (1 2 3) ∈ σ−1Hσ = H, by the normality of H and
we are done. If σ is odd, replace it by σ̄ = σ · (4 5). This is where we first use the fact that
n ≥ 5 (we will use it again later). Then we have

σ̄(1 2 3)σ̄−1 = σ(4 5)(1 2 3)(4 5)σ−1 = σ(1 2 3)σ−1 = (a b c),

using the fact that (1 2 3) and (4 5) commute. Now σ̄ is even, so (1 2 3) ∈ H as above.
So far we have shown that if H CAn contains any 3-cycle, then it is An. Finally, we have

to show that every normal subgroup must contain at least one 3-cycle.

Claim. Let H CAn be non-trivial. Then H contains a 3-cycle.

We separate this into many cases.

(i) Suppose H contains an element which can be written in disjoint cycle notation

σ = (1 2 3 · · · r)τ,

for r ≥ 4. We now let δ = (1 2 3) ∈ An. Then by normality of H, we have δ−1σδ ∈ H,
and so σ−1δ−1σδ ∈ H too. As τ does not contain 1, 2, 3 it commutes with δ, and also
by assumption with (1 2 3 · · · r). We can expand this to obtain

σ−1δ−1σδ = (r · · · 2 1)(1 3 2)(1 2 3 · · · r)(1 2 3) = (2 3 r),
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which is a 3-cycle, so we are done.

The same argument goes through if σ = (a1 a2 · · · ar)τ for any a1, · · · , ar and r ≥ 4.

(ii) Suppose H contains an element consisting of at least two 3-cycles in disjoint cycle
notation, say

σ = (1 2 3)(4 5 6)τ

We now let δ = (1 2 4), and again calculate

σ−1δ−1σδ = (1 3 2)(4 6 5)(1 4 2)(1 2 3)(4 5 6)(1 2 4) = (1 2 4 3 6).

This is a 5-cycle, which is necessarily in H. By the previous case, we get a 3-cycle in H
too, and hence H = An.

(iii) Suppose H contains σ = (1 2 3)τ in disjoint cycle notation, with τ a product of 2-cycles
(if τ contains anything longer, then it would fit in one of the previous two cases). Then
σ2 = (1 2 3)2 = (1 3 2) is a 3-cycle.

(iv) Suppose H contains σ = (1 2)(3 4)τ , where τ is a product of 2-cycles. We first let
δ = (1 2 3) and calculate

u = σ−1δ−1σδ = (1 2)(3 4)(1 3 2)(1 2)(3 4)(1 2 3) = (1 4)(2 3),

which is again in H. We landed in the same case, but instead of two transpositions
times a mess, we just have two transpositions, which is nicer. Now let

v = (1 5 2)u(1 2 5) = (1 3)(4 5) ∈ H.

Note that we have used the assumption n ≥ 5 again here. We have yet again landed in
the same case. Notice however, that these are not the same transpositions. We multiply

uv = (1 4)(2 3)(1 3)(4 5) = (1 2 3 4 5) ∈ H.

This is covered by the first case, so we are done.

1.5 Finite p-groups

When studying the orders of groups and subgroups we always talk about divisibility, since
that is what Lagrange’s theorem tells us about; we never talk about things like the sum of the
orders to two subgroups. From this point of view, the simplest groups are those whose order
is prime, but we have classified all such groups already: they are cyclic. The next simplest
groups are perhaps those whose order is a power of a prime.

Definition (p-group). A finite group G is a p-group if |G| = pn for some prime number p
and n ≥ 1.

Theorem. If G is a finite p-group, then its centre Z(G) = {x ∈ G : xg = gx for all g ∈ G}
is non-trivial.

Proof. Let G act on itself by conjugation. Each orbit of this action (which are precisely the
conjugacy classes) has size dividing |G| = pn, so is either a singleton, or has size divisible by
p.

Since the conjugacy classes partition G, we know the sum of the size of the conjugacy
classes is |G|. In particular,

|G| = #{conjugacy class of size 1}+
∑

order of all other conjugacy classes.
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By the above discussion, the second term is divisible by p, as is |G| = pn. Hence the number
of conjugacy classes of size 1 is divisible by p. We know that {e} is a conjugacy class of size
1, so there must be at least p conjugacy classes of size 1. Since p ≥ 2, there is a conjugacy
class {x} 6= {e}.

But if {x} is a conjugacy class of size 1, then by definition g−1xg = x for all g ∈ G, i.e.
xg = gx for all g ∈ G. So x ∈ Z(G). So Z(G) is non-trivial.

As the centre of a group is normal this immediately tells us that, for n ≥ 2, a p-group is
never simple. This will allow us to prove interesting things about p-groups by induction on
their order—by considering the smaller p-group G/Z(G). One way to do this is via the below
lemma.

Lemma. For any group G, if G/Z(G) is cyclic, then G is abelian.

In other words, if G/Z(G) is cyclic, then it is in fact trivial, since the centre of an abelian
group is the abelian group itself.

Proof. Let the coset gZ(G) be a generator of the cyclic group G/Z(G), so every coset of
Z(G) is of the form grZ(G). It follows that every element x ∈ G must be of the form grz for
some z ∈ Z(G) and r ∈ Z. To show that G is abelian, let x̄ = gr̄z̄ be another element, with
z̄ ∈ Z(G), r̄ ∈ Z. As z and z̄ are in the centre they commute with every element, so we have

xx̄ = grzgr̄z̄ = grgr̄zz̄ = gr̄grz̄z = gr̄z̄grz = x̄x.

So x and x̄ commute, and hence G is abelian.

This lemma holds for all groups, but is particularly useful when applied to p-groups.

Corollary. If p is prime and |G| = p2, then G is abelian.

Proof. Since Z(G) ≤ G, its order must be 1, p or p2. Since it is not trivial, it can only be
p or p2. If it has order p2, then it is the whole group and the group is abelian. Otherwise,
G/Z(G) has order p2/p = p. But then it must be cyclic, and hence G must be abelian by the
above lemma.

Theorem. Let G be a group of order pa, where p is a prime number. Then G has a subgroup
of order pb for any 0 ≤ b ≤ a.

This means that G has a subgroup of every possible order. This is not true for general
groups. For example, A5 (of order 60) has no subgroup of order 30 (as such a subgroup would
have to be normal).

Proof. We induct on a. If a = 1, then {e} and G give subgroups of order p0 and p1, so we
are done.

Now suppose that a > 1, and we want to construct a subgroup of order pb. If b = 0, then
this is trivial, as {e} ≤ G has order 1.

Otherwise, we know Z(G) is non-trivial. So let x 6= e ∈ Z(G). Since ord(x) | |G|, its
order is a power of p. If it in fact has order pc, then xp

c−1
has order p. So we can suppose,

by renaming, that x has order p. We have thus generated a subgroup 〈x〉 of order exactly p.
Moreover, since x is in the centre, 〈x〉 commutes with everything in G. So 〈x〉 is in fact a
normal subgroup of G. (This is the point of choosing x to be in the centre.) Therefore G/〈x〉
has order pa−1.

Since this is a strictly smaller group, we may suppose by induction that G/〈x〉 has a
subgroup of any order. In particular, it has a subgroup L of order pb−1. By the subgroup
correspondence, there is some K ≤ G such that 〈x〉CK and L = K/〈x〉. But then K has
order pb, as required.
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1.6 Finite abelian groups

In this short section we will state the classification of finite abelian groups, which we will
prove in Chapter 3 as a special case of the classification of modules over certain rings.

Theorem (Classification of finite abelian groups). Let G be a finite abelian group. Then
there exists some d1, · · · , dr such that

G ∼= Cd1 × Cd2 × · · · × Cdr .

Moreover, we can choose the di so that di+1 | di for each i, in which case this expression is
unique.

Example. The abelian groups of order 8 are C8, C4 × C2, C2 × C2 × C2.

Sometimes the decomposition given by this theorem is not the most useful form. To get a
nicer decomposition, we can use the following lemma:

Lemma. If n and m are coprime, then Cmn ∼= Cm × Cn.

This is essentially the Chinese remainder theorem, and this formulation is how you should
think of that theorem.

Proof. It suffices to find an element of order nm in Cm×Cn. Then, since Cn×Cm has order
nm, it must be cyclic and hence isomorphic to Cnm.

Let g ∈ Cm have order m and h ∈ Cn have order n, and consider the element (g, h) ∈
Cm × Cn. Suppose the order of (g, h) is k. Then (g, h)k = (e, e). Hence (gk, hk) = (e, e). So
the order of g and h divide k, ie. m | k and n | k. As m and n are coprime, this means that
mn | k. As k = ord(g, h) and (g, h) ∈ Cm ×Cn is a group of order mn, we must have k | nm.
So k = nm.

Corollary. For any finite abelian group G, we have

G ∼= Cd1 × Cd2 × · · · × Cdr ,

where each di is a prime power.

Proof. From the classification theorem, iteratively apply the previous lemma to break each
component up into products of prime powers.

We shall return to this result, and generalisations of it, in Chapter 3.

1.7 Sylow’s theorems

Definition. Let G be a finite group of order pa · m, with p prime and p - m. A Sylow
p-subgroup of G is a subgroup P ≤ G of order pa.

The main theorem of this part of the course is as follows.

Theorem (Sylow’s theorems). Let G be a finite group of order pa ·m, with p prime and
p - m. Then

(i) The set

Sylp(G) := {P ≤ G : |P | = pa}

of Sylow p-subgroups of G is non-empty. In other words, G has a Sylow p-subgroup.
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(ii) All elements of Sylp(G) are conjugate in G.

(iii) The number np = |Sylp(G)| of Sylow p-subgroups satisfies np ≡ 1 (mod p) and np | |G|
(in fact np | m, since p is coprime to np).

These are sometimes known as Sylow’s first, second, and third theorem respectively. We
will not prove them immediately, but first look at how they can be applied.

Lemma. If there is a unique Sylow p-subgroup, i.e. np = 1, then it is normal in G.

Proof. Let P be the unique Sylow p-subgroup, and let g ∈ G, and consider the conjugate
subgroup g−1Pg. Since this is isomorphic to P , we must have |g−1Pg| = pa, i.e. it is also a
Sylow p-subgroup. Since there is only one, we must have P = g−1Pg, so P is normal.

Corollary. Let G be a non-abelian simple group. Then for every prime number p such that
p | |G| we have |G| | np!

2 , and np ≥ 5.

Proof. The group G acts on Sylp(G) by conjugation, giving a permutation representation
φ : G→ Sym(Sylp(G)) ∼= Snp . We know kerφCG. But G is simple, so ker(φ) is either {e}
or G.

If G = ker(φ), then g−1Pg = P for all g ∈ G and so P is a normal subgroup of G. As G
is simple, we must then have P = {e} or P = G. The group P cannot be trivial since p | |G|,
but if G = P then G is a p-group, so has a non-trivial centre, and hence G is not non-abelian
simple. So we must have ker(φ) = {e}.

Then, by the first isomorphism theorem, we have G ∼= imφ ≤ Snp which proves the
theorem without the divide-by-two part. To prove the full result we will show that in fact
im(φ) ≤ Anp . To see this we consider the composition

G Snp {±1}.φ sgn

If this is surjective, then ker(sgn ◦φ)CG has index 2 (since the index is the size of the image)
so is not the whole of G, and hence G is not simple (the case |G| = C2 is ruled out since it is
abelian).

It follows that the kernel of sgn ◦φ must be the whole of G, so sgn(φ(g)) = +1 and hence

φ(g) ∈ Anp . So in fact we have G ∼= im(φ) ≤ Anp , and |G| | np!
2 . For the final statement, one

can check that all non-abelian subgroups of A2, A3, and A4 are not simple, so np ≥ 5.

Example. Let us show that if |G| = 1000 then |G| is not simple.
We have 1000 = 23 · 53. Choose p = 5. Then by Sylow’s theorem n5 ≡ 1 (mod 5), and

n5 | 23 = 8. The only number that satisfies this is n5 = 1, so the Sylow 5-subgroup is normal,
and hence G is not simple.

Example. Let us show that if |G| = 132 = 22 ·3 ·11 then G is not simple. For a contradiction
we suppose it is.

We start by looking at p = 11. We know n11 ≡ 1 (mod 11) and n11 | 12. As G is simple
we cannot have n11 = 1 so must have n11 = 12.

Now we look at p = 3. We know n3 ≡ 1 (mod 3) and n3 | 44. As G is simple the possible
values of n3 are 4 and 22. If n3 = 4, then the corollary above says |G| | 4!

2 = 12, which is
impossible, so we must have n3 = 22 instead.

At this point, we count how many elements of each order there are. (This is particularly
useful when p | |G| but p2 - |G|, i.e. the Sylow p-subgroups have order p and hence are cyclic.)
As any two Sylow 11-subgroups intersect only in {e}, we know there are 12 · (11− 1) = 120
elements of order 11. By the same argument with the Sylow 3-subgroups we find that there
are 22 · (3− 1) = 44 elements of order 3. But this gives more elements than there are in the
group, a contradiction. So G must be simple.
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We will now prove Sylow’s theorem. This involves a non-trivial amount of trickery. Let G
be a finite group with |G| = pa ·m, and p - m.

Proof of Sylow’s first theorem. We need to show that Sylp(G) 6= ∅, i.e. we need to find some
subgroup of order pa. As always, we find something clever for G to act on. Let

Ω := {X subset of G : |X| = pa}.

(We indeed mean subset here, not subgroup.) Let G act on Ω by

g ∗ {g1, g2, · · · , gpa} := {gg1, gg2, · · · , ggpa},

and let Σ ≤ Ω be some orbit.
First note that if {g1, · · · , gpa} ∈ Σ, then by the definition of an orbit, for every g ∈ G,

gg−1
1 ∗ {g1, · · · , gpa} = {g, gg−1

1 g2, · · · , gg−1
1 gpa} ∈ Σ,

so Σ contains a set which contains g. Since each set X has size pa, we must have

|Σ| ≥ |G|
pa

= m.

Suppose that |Σ| = m. Then the orbit-stabiliser theorem says the stabiliser of any
{g1, · · · , gpa} ∈ Σ has index m, so has order pa, and thus is a Sylow p-subgroup.

So we will be finished if we show that not every orbit Σ can have size > m. Again, by the
orbit-stabiliser theorem, the size of any orbit divides the order of the group, |G| = pam. So if
|Σ| > m, then p | |Σ|. If we can show that p - |Ω| then not every orbit Σ can have size > m,
since Ω is the disjoint union of all the orbits, and we will be done.

So we have to show p - |Ω|. This is just some basic counting: we have

|Ω| =
(
|G|
pa

)
=

(
pam

pa

)
=

pa−1∏
j=0

pam− j
pa − j

.

As j < pa, the largest power of p dividing pam − j is the largest power of p dividing j.
Similarly, the largest power of p dividing pa − j is also the largest power of p dividing j. So
we have the same power of p on top and bottom for each term in the product, so they cancel
and the result is not divisible by p.

This proof is not straightforward. We first needed the clever idea of letting G act on Ω,
but even if we are given this set, the obvious thing to do would be to find an element of Ω
which also happens to be a group. This is not what we do! Instead, we find an orbit whose
stabilizer is a Sylow p-subgroup.

Proof of Sylow’s second theorem. We instead prove something stronger: if Q ≤ G is a p-
subgroup (ie. |Q| = pb, for b not necessarily equal to a), and P ≤ G is a Sylow p-subgroup,
then there is a g ∈ G such that g−1Qg ≤ P . (Applying this to the case where Q is another
Sylow p-subgroup says there is a g such that g−1Qg ≤ P , but since g−1Qg has the same size
as P , they must be equal.)

We let Q act on the set of cosets G/P via

q ∗ gP := qgP.

We know the orbits of this action have size dividing |Q|, so either 1 or divisible by p. They
cannot all be divisible by p, since |G/P | is coprime to p, so at least one of them have size 1,
say {gP}. In other words, for every q ∈ Q, we have qgP = gP , which means that g−1qg ∈ P .
This holds for every element q ∈ Q so we have found a g such that g−1Qg ≤ P .
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Proof of Sylow’s third theorem. We need to show that np ≡ 1 (mod p) and that np | |G|,
where np = | Sylp(G)|.

The second part is easier — by Sylow’s second theorem, the action of G on Sylp(G) by
conjugation has one orbit. By the orbit-stabiliser theorem the size of the orbit, which is
| Sylp(G)| = np, divides |G|. This proves the second part.

For the first part, let P ∈ Sylp(G). Consider the action by conjugation of P on Sylp(G).
Again by the orbit-stabiliser theorem, the orbits each have size 1 or divisible by p. There is
one orbit of size 1, namely {P} itself, so to show that np ≡ 1 (mod p) it is enough to show
there are no other orbits of size 1.

Suppose {Q} is an orbit of size 1. This means for every p ∈ P , we get

p−1Qp = Q.

In other words, P ≤ NG(Q). Now NG(Q) is itself a group, and we can look at its Sylow
p-subgroups. We know that Q ≤ NG(Q) ≤ G, so pa | |NG(Q)| | pam. Thus pa is the biggest
power of p that divides |NG(Q)|, so Q is a Sylow p-subgroup of NG(Q).

Now P ≤ NG(Q) is also a Sylow p-subgroup of NG(Q), so by Sylow’s second theorem
Q and P must be conjugate in NG(Q). But conjugating Q by something in NG(Q) does
nothing, by definition of the normaliser NG(Q), so we must have P = Q. So the only orbit of
size 1 is {P} itself.

Example. Let G = GLn(Z/p), i.e. the set of invertible n× n matrices with entries in Z/p,
the integers modulo p, a prime number. (When we discuss rings in the next chapter, we will
study this more extensively.)

First of all, we would like to know the order of this group. Giving a matrix A ∈ GLn(Z/p)
is the same as giving n linearly independent vectors in the vector space (Z/p)n. We can pick
the first vector to be anything except zero, so there are pn − 1 ways of choosing the first
vector. Next, we need to pick the second vector, which can be anything that is not in the
span of the first vector, so there are pn− p ways of choosing the second vector. Continuing in
this way we have

|GLn(Z/p)| = (pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1).

We can factorise this as

|GLn(Z/p)| = (1 · p · p2 · · · · · pn−1)((pn − 1)(pn−1 − 1) · · · (p− 1)),

so the largest power of p which divides |GLn(Z/p)| is p(
n
2).

To give a Sylow p-subgroup of GLn(Z/p), we consider the subgroup of matrices of the
following form

U :=




1 ∗ ∗ · · · ∗
0 1 ∗ · · · ∗
0 0 1 · · · ∗
...

...
...

. . .
...

0 0 0 · · · 1

 ∈ GLn(Z/p)


.

We have |U | = p(
n
2), as each ∗ can be chosen to be anything in Z/p, and there are

(
n
2

)
∗’s.

(There is not a unique Sylow p-subgroup: we could also take the lower triangular matrices, or
other things.)

Example. Let’s be less ambitious and consider GL2(Z/p), with

|G| = p(p2 − 1)(p− 1) = p(p− 1)2(p+ 1).
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Suppose that ` is another prime number such that ` | p− 1 and `3 - |G|.
Let us find an explicit Sylow `-subgroup. First, we find elements of order `. From IA

Numbers and Sets we know that

(Z/p)× = {x ∈ Z/p : (∃y) s.t. xy ≡ 1 (mod p)} ∼= Cp−1,

so as ` | p− 1, there is a subgroup C` ≤ Cp−1
∼= (Z/p)×. We immediately find a subgroup of

order `2: we have
C` × C` ≤ (Z/p)× × (Z/p)× ≤ GL2(Z/p),

where the second inclusion is the diagonal matrices, identifying

(a, b)↔
(
a 0
0 b

)
.

So this is a Sylow `-subgroup.
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2 Rings

2.1 Definitions and examples

We now move on to something completely different — rings. In a ring, we are allowed to add,
subtract, multiply but not divide. Our canonical example of a ring would be Z, the integers,
as studied in IA Numbers and Sets.

In this course we are only going to consider rings in which multiplication is commutative,
since these rings behave like “number systems”, in which we can often ask the usual questions
of number theory. However, many commutative rings do not behave much like Z. Thus one
major goal of this part is to understand the special properties of Z, whether they are present
in arbitrary rings, and how these different properties relate to one another.

Definition (Ring). A ring is a quintuple (R,+, · , 0R, 1R) where 0R, 1R ∈ R, and +, · :
R×R→ R are binary operations such that

(i) (R,+, 0R) is an abelian group.

(ii) The operation · : R×R→ R satisfies associativity, i.e.

a · (b · c) = (a · b) · c,

and identity:
1R · r = r · 1R = r.

(iii) Multiplication distributes over addition, i.e.

r1 · (r2 + r3) = (r1 · r2) + (r1 · r3)

(r1 + r2) · r3 = (r1 · r3) + (r2 · r3).

Notation. If R is a ring and r ∈ R, we write −r for the inverse to r in the group (R,+, 0R).
This satisfies r + (−r) = 0R, and we write r − s to mean r + (−s) and so on.

Some authors do not insist on the existence of the multiplicative identity, but we do.
Since we can add and multiply two elements, by induction, we can add and multiply any

finite number of elements. However, the notions of infinite sum and product are not defined:
it does not make sense to ask if an infinite sum converges.

Definition (Commutative ring). We say a ring R is commutative if a ·b = b ·a for all a, b ∈ R.

From now onwards, all rings in this course are commutative.

Definition (Subring). Let (R,+, · , 0R, 1R) be a ring, and S ⊆ R is a subset. We say S is a
subring of R if 0R, 1R ∈ S, and the operations +, · make S into a ring in its own right. In
this case we write S ≤ R.

Example. The familiar number systems are all rings: we have Z ≤ Q ≤ R ≤ C, under the
usual 0, 1,+, · .

Example. The set Z[i] := {a + ib : a, b ∈ Z} ≤ C of Gaussian integers is a subring of the
complex numbers. The set Q[

√
2] := {a+ b

√
2 ∈ R : a, b ∈ Q} ≤ R is a subring of the real

numbers.

We will use this square brackets notation quite frequently; it should be clear what it
means, but we will define it properly later.
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Definition (Unit). An element u ∈ R is a unit if there is another element v ∈ R such that
u · v = 1R. We call v the inverse of u.

It is important that this depends on R, not just on u. For example, 2 ∈ Z is not a unit,
but 2 ∈ Q is a unit (since 1

2 is its inverse).

Definition (Field). A field is a non-zero ring in which every non-zero element is a unit.

Example. Z is not a field, but Q,R,C are all fields. Similarly, Z[i] is not a field, while Q[
√

2]
is.

Example. Let R be a ring. Then 0R + 0R = 0R, since this is true in the group (R,+, 0R).
Then for any r ∈ R, we get

r · (0R + 0R) = r · 0R.

We now use the fact that multiplication distributes over addition. So

r · 0R + r · 0R = r · 0R.

Adding (−r · 0R) to both sides give
r · 0R = 0R.

This is true for any element r ∈ R. From this, it follows that if R 6= {0}, then 1R 6= 0R — if
they were equal, then choose any r 6= 0R and calculate r = r · 1R = r · 0R = 0R, which is a
contradiction.

Note, however, that {0} forms a ring (with the only possible operations and identities),
the zero ring, albeit a boring one. (However, it is often a counterexample to incautious claims
about rings.)

Definition (Product of rings). Let R,S be rings. Then the product R× S is a ring via

(r, s) + (r′, s′) = (r + r′, s+ s′), (r, s) · (r′, s′) = (r · r′, s · s′).

The zero element is (0R, 0S) and the one element is (1R, 1S).

One can (and should) check that these are indeed rings.

Definition (Polynomial). Let R be a ring. Then a polynomial with coefficients in R is an
expression

f = a0 + a1X + a2X
2 + · · ·+ anX

n,

with ai ∈ R. The Xi are formal symbols.

We identify polynomials f and f + 0R ·Xn+1 as the same.

Definition (Degree of polynomial). The degree of a polynomial f is the largest m such that
am 6= 0.

Definition (Monic polynomial). Let f have degree m. If am = 1, then f is called monic.

Definition (Polynomial ring). We write R[X] for the set of all polynomials with coefficients
in R. The operations are performed in the obvious way, ie. if f = a0 + a1X + · · ·+ anX and
g = b0 + b1X + · · ·+ bkX

k are polynomials, then

f + g =

max{n,k}∑
r=0

(ai + bi)X
i,
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and

f · g =
n+k∑
i=0

 i∑
j=0

ajbi−j

Xi,

We identify R with the subring of constant polynomials, i.e. polynomials
∑
aiX

i with ai = 0
for i > 0. In particular, 0R ∈ R and 1R ∈ R are the zero and one of R[x].

One can (and should) check that these are indeed rings.

Remark. A polynomial with coefficients in R is just a sequence of elements of R, interpreted
as the coefficients of some formal symbols. While it does indeed induce a function from R to
R in the obvious way, we shall not identify the polynomial with the function it induces, since
different polynomials can give rise to the same function.

For example, in Z/2Z[X], f = X2 +X is not the zero polynomial, since its coefficients are
not zero. However, f(0) = 0 and f(1) = 0, so the function induced by f is identically zero.

Definition (Power series). We write R[[x]] for the ring of (formal) power series with
coefficients in R, i.e.

f = a0 + a1X + a2X
2 + · · · ,

where each ai ∈ R. This has addition and multiplication the same as for polynomials, but
without upper limits.

A power series is also very much not a function. We do not ask whether the sum converges
or not, because it is not a sum: it is a formal symbol which can be manipulated similarly to
a convergent infinite sum.

Example. Is 1−X ∈ R[X] a unit? For any g = a0 + · · ·+ anX
n (with an 6= 0), we get

(1−X)g = a0 + (a1 − a0)X + · · ·+ (an − an−1)Xn − anXn+1,

which is not 1 as the coefficient of Xn+1 is not zero. So g cannot be the inverse of 1 −X,
and hence 1−X is not a unit in R[X].

However, 1− x ∈ R[[X]] is a unit, since

(1−X)(1 +X +X2 +X3 + · · · ) = 1.

Definition (Laurent polynomials). We write R[X,X−1] for the set of Laurent polynomials
with coefficients in R, i.e.

f =
∑
i∈Z

aiX
i

where ai ∈ R and only finitely many ai are non-zero. The operations of addition and
multiplication are the obvious ones.

We can also think of Laurent series, but we have to be careful: we allow infinitely
many positive coefficients, but only finitely many negative ones. Or else, in the formula for
multiplication, we will have an infinite sum of elements in R, which is not defined.

Example. Let X be a set, and R be a ring. Then the set of all R-valued functions on X, i.e.
functions f : X → R, is a ring given by

(f + g)(x) = f(x) + g(x), (f · g)(x) = f(x) · g(x).

Here zero is the constant function 0 and one is the constant function 1.
Usually, we do not want to consider all functions X → R but instead certain subrings of

this. For example, we can consider the ring of all continuous functions R→ R. This contains,
for example, the polynomial functions, which is just R[X] (since over R, polynomials are
functions).
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2.2 Homomorphisms, ideals, quotients and isomorphisms

Just like groups, we will come up with analogues of homomorphisms, normal subgroups
(which are now known as ideals), and quotients.

Definition (Homomorphism of rings). Let R and S be rings. A function φ : R→ S is a ring
homomorphism if it satisfies

(i) φ(r1 + r2) = φ(r1) + φ(r2),

(ii) φ(0R) = 0S ,

(iii) φ(r1 · r2) = φ(r1) · φ(r2),

(iv) φ(1R) = 1S .

Definition (Isomorphism of rings). If a homomorphism φ : R→ S is a bijection, we call it
an isomorphism. The inverse function φ−1 : S → R is then also a ring homomorphism.

Definition (Kernel). The kernel of a homomorphism φ : R→ S is

ker(φ) := {r ∈ R : φ(r) = 0S}.

Definition (Image). The image of a homomorphism φ : R→ S is

im(φ) := {s ∈ S : s = φ(r) for some r ∈ R}.

Lemma. A homomorphism φ : R→ S is injective if and only if kerφ = {0R}.

Proof. A ring homomorphism is in particular a homomorphism φ : (R,+, 0R)→ (S,+, 0S) of
(abelian) groups, so this follows from the case of groups.

In the group scenario, we had groups, subgroups and normal subgroups, which are special
subgroups. Here, we have a special kind of subsets of a ring that act like normal subgroups,
known as ideals.

Definition (Ideal). A subset I ⊆ R is an ideal, written I CR, if

(i) It is a subgroup of (R,+, 0R). (additive closure)

(ii) If a ∈ I and b ∈ R, then a · b ∈ I. (strong closure)

We say I is a proper ideal if I 6= R.

Multiplicative closure is stronger than what we required for subrings — for subrings, it
has to be closed under multiplication by its own elements; for ideals, it has to be closed under
multiplication by everything. This is similar to how normal subgroups not only have to be
closed under internal multiplication, but also conjugation by external elements.

Lemma. If φ : R→ S is a homomorphism, then ker(φ)CR.

Proof. Since φ : (R,+, 0R)→ (S,+, 0R) is a group homomorphism, ker(φ) is a subgroup of
(R,+, 0R). For the second part, let a ∈ ker(φ), b ∈ R. We need to show that their product is
in the kernel. We have

φ(a · b) = φ(a) · φ(b) = 0 · φ(b) = 0.

So a · b ∈ ker(φ).
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Example. Suppose I CR is an ideal, and 1R ∈ I. Then for any r ∈ R, we have 1R · r ∈ I.
But 1R · r = r. So if 1R ∈ I, then I = R. In other words, a proper ideal does not contain 1.
In particular, a proper ideal is definitely not a subring, since a subring must contain 1.

We are starting to diverge from the situation with groups: in groups, a normal subgroup
is a subgroup, but here an ideal is not a subring.

Example. We can generalize the above example a bit. Suppose I CR and u ∈ I is a unit,
i.e. there is some v ∈ R such that uv = 1R. Then by strong closure, 1R = u · v ∈ I. So I = R.
Hence proper ideals cannot contain any unit at all.

Example. Consider the ring Z of integers. Then every ideal of Z is of the form

nZ := {· · · ,−2n,−n, 0, n, 2n, · · · } ⊆ Z.

It is easy to see this is indeed an ideal. To show these are all the ideals, let I C Z. If
I = {0}, then I = 0Z. Otherwise, let n ∈ N be the smallest positive element of I. We want
to show that I = nZ; certainly nZ ⊆ I by strong closure.

Now let m ∈ I. By the Euclidean algorithm, we can write

m = q · n+ r

with 0 ≤ r < n. Now n,m ∈ I. So by strong closure, m, qn ∈ I. So r = m− q · n ∈ I. As n
is the smallest positive element of I, and r < n, we must have r = 0. So m = q · n ∈ nZ, and
hence I ⊆ nZ.

The key to proving this was that we can perform the Euclidean algorithm on elements of
Z. Thus, for any ring R in which we can “do the Euclidean algorithm”, every ideal must be
of the form aR = {a · r : r ∈ R} for some a ∈ R. We will make this notion precise later.

Definition (Generator of ideal). For an element a ∈ R, we write

(a) := aR := {a · r : r ∈ R}CR,

and call it the ideal generated by a.

In general, for a1, a2, · · · , ak ∈ R, we write

(a1, a2, · · · , ak) = {a1r1 + · · ·+ akrk : r1, · · · , rk ∈ R}.

This is the ideal generated by a1, · · · , ak.

We can also have ideals generated by infinitely many elements of a ring, but we have to
be a little careful since we cannot use infinite sums.

Definition (Generator of ideal). For A ⊆ R a subset, the ideal generated by A is

(A) =

{∑
a∈A

ra · a : ra ∈ R, only finitely-many ra non-zero

}
.

Definition (Principal ideal). An ideal I is a principal ideal if I = (a) for some a ∈ R.

What we have proved for the ring Z is that all its ideals are principal. Not all rings have
this property, these are very special and we will study then in more depth later.
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Example. Consider the subset

{f ∈ R[X] : the constant coefficient of f is 0} ⊂ R[X].

This is an ideal, which can be checked manually (alternatively, it is the kernel of the
homomorphism which sends a polynomial to its value at 0). One can easily show that it is
the ideal (X), and hence principal.

We have said ideals are like normal subgroups: the key property is that we can divide out
by ideals.

Definition (Quotient ring). Let ICR. The quotient ring R/I consists of the set of (additive)
cosets r + I with the zero and one as 0R + I and 1R + I, and operations

(r1 + I) + (r2 + I) = (r1 + r2) + I

(r1 + I) · (r2 + I) = r1r2 + I.

Proposition. The quotient ring is a ring, and the function

R −→ R/I

r 7−→ r + I

is a ring homomorphism.

Proof. We know the group (R/I,+, 0R/I) is well-defined, since I is a (normal) subgroup of
R. So we only have to check that multiplication is well-defined.

Suppose r1 + I = r′1 + I and r2 + I = r′2 + I. Then r′1 − r1 = a1 ∈ I and r′2 − r2 = a2 ∈ I.
So

r′1r
′
2 = (r1 + a1)(r2 + a2) = r1r2 + r1a2 + r2a1 + a1a1.

By the strong closure property, the last three terms are in I. So r′1r
′
2 + I = r1r2 + I.

It is easy to check that 0R + I and 1R + I are indeed the zero and one, and the function
given is a homomorphism.

Example. We have ideals nZC Z, and so quotient rings Z/nZ. The elements of Z/nZ are
of the form m+ nZ, so are

0 + nZ, 1 + nZ, 2 + nZ, · · · , (n− 1) + nZ.

Addition and multiplication is just what we are used to — addition and multiplication modulo
n.

Example. Consider (X)C C[X]. What is the ring C[X]/(X)?

Elements are represented as

a0 + a1X + a2X
2 + · · ·+ anX

n + (X),

but everything except the first term is in (X), so this element is equivalent to a0 + (X). This
representation is unique, so in fact C[X]/(X) ∼= C, via the ring isomorphism a0 + (X)↔ a0.

If we want to carefully prove things like this, we have to convince ourselves that “this
representation is unique”’. We can do that by hand in this case, but in general we want to
be able to do this systematically.
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Proposition (Euclidean algorithm for polynomials). Let F be a field and f, g ∈ F[X]. Then
there are r, q ∈ F[X] such that

f = gq + r,

with deg r < deg g.

This is very much like the usual Euclidean algorithm, except that instead of absolute
value, we use the degree to measure how “big” a polynomial is.

Proof. Let deg(f) = n. So

f =
n∑
i=0

aiX
i,

and an 6= 0. Similarly, if deg(g) = m, then

g =

m∑
i=0

biX
i,

with bm 6= 0. If n < m, we let q = 0 and r = f , and done.
Otherwise, suppose n ≥ m, and proceed by induction on n.
Let

f1 = f − anb−1
m Xn−mg.

This is possible since bm 6= 0, and F is a field so every non-zero element is a unit (i.e.
has a multiplicative inverse). Then by construction, the coefficients of Xn cancel out. So
deg(f1) < n.

If n = m, then deg(f1) < n = m, so we can write

f = (anb
−1
m Xn−m)g + f1,

and deg(f1) < deg(f), so we are done. Otherwise, if n > m, then because deg(f1) < n, we
may by induction find r1, q1 such that

f1 = gq1 + r1,

and deg(r1) < deg g = m. Then

f = anb
−1
m Xn−mg + q1g + r1 = (anb

−1
m Xn−m + q1)g + r1.

Now that we have a Euclidean algorithm for polynomials we can show that every ideal of
F[X] is generated by one polynomial. We will not do this specifically here, but later we will
show that in any ring where the Euclidean algorithm is possible, all ideals are principal.

We now look at some applications of the Euclidean algorithm.

Example. Consider the ring R[X] and the principal ideal (X2 + 1) C R[X]. Let R =
R[X]/(X2 + 1).

Elements of R are polynomials

a0 + a1X + a2X
2 + · · ·+ anX

n︸ ︷︷ ︸
f

+(X2 + 1).

By the Euclidean algorithm, we have

f = q(X2 + 1) + r,
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with deg(r) < 2, i.e. r = b0 + b1X. Thus f + (X2 + 1) = r + (X2 + 1). So every element of
R[X]/(X2 + 1) is representable as a+ bX for some a, b ∈ R.

Is this representation unique? If a + bX + (X2 + 1) = a′ + b′X + (X2 + 1), then the
difference (a− a′) + (b− b′)X ∈ (X2 + 1). So it is (X2 + 1)q for some q. This is possible only
if q = 0, since for non-zero q, we know (X2 + 1)q has degree at least 2. So we must have
(a− a′) + (b− b′)X = 0. So a+ bX = a′ + b′X. So the representation is unique.

What we have shown is that every element in R is uniquely of the form a+ bX, and we
know that X2 + 1 = 0 so X2 = −1. This sounds like the complex numbers, just that we are
writing X instead of i.

To prove this, we define the function

φ : R[x]/(X2 + 1) −→ C
a+ bX + (X2 + 1) 7−→ a+ bi.

This is well-defined and a bijection, and is also clearly additive. To prove it is a ring
isomorphism, we must show it is multiplicative. We check this manually, via

φ((a+ bX + (X2 + 1))(c+ dX + (X2 + 1)))

= φ(ac+ (ad+ bc)X + bdX2 + (X2 + 1))

= φ((ac− bd) + (ad+ bc)X + (X2 + 1))

= (ac− bd) + (ad+ bc)i

= (a+ bi)(c+ di)

= φ(a+ bX + (X2 + 1))φ(c+ dX + (X2 + 1)).

So is is indeed a ring isomorphism.

This is pretty tedious. Fortunately, there are some helpful results we can use, namely the
isomorphism theorems. These are exactly analogous to those for groups.

Theorem (First isomorphism theorem). Let φ : R → S be a ring homomorphism. Then
ker(φ) is an ideal of R, and

R

ker(φ)
∼= im(φ) ≤ S.

Proof. We have already seen that ker(φ) is an ideal. Now define

Φ : R/ ker(φ) −→ im(φ)

r + ker(φ) 7−→ φ(r).

We do not have to check this is well-defined, bijective or additive, since that comes for free
from the (proof of the) first isomorphism theorem of groups. So we just have to check it is
multiplicative. To show Φ is multiplicative, we have

Φ((r + ker(φ))(t+ ker(φ))) = Φ(rt+ ker(φ))

= φ(rt)

= φ(r)φ(t)

= Φ(r + ker(φ))Φ(t+ ker(φ)).

Theorem (Second isomorphism theorem). Let R ≤ S and J C S. Then J ∩RCR, and

R+ J

J
= {r + J : r ∈ R} ≤ S

J

is a subring, and
R

R ∩ J
∼=
R+ J

J
.
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Proof. Define the function

φ : R −→ S/J

r 7−→ r + J.

Since this is the quotient map, it is a ring homomorphism. The kernel is

ker(φ) = {r ∈ R : r + J = 0, ie. r ∈ J} = R ∩ J.

Then the image is

im(φ) = {r + J : r ∈ R} =
R+ J

J
.

Then by the first isomorphism theorem, we know R ∩ J CR, and R+J
J ≤ S, and

R

R ∩ J
∼=
R+ J

J
.

Before we get to the third isomorphism theorem, recall we had the subgroup correspondence
for groups. Analogously, for an ideal I CR, there is a correspondence

{subrings of R/I} ←→ {subrings of R which contain I}

L ≤ R

I
7−→ {x ∈ R : x+ I ∈ L}

S

I
≤ R

I
←− [ I C S ≤ R.

This is exactly the same formula as for groups.
For groups, we also had a correspondence for normal subgroups. Here, we have a

correspondence between ideals

{ideals of R/I} ←→ {ideals of R which contain I}

It is important to note here quotienting in groups and rings have somewhat different flavours.
In (finite) groups, we often take quotients so that we have a simpler group to work with.
On the other hand in rings, we often take quotients to get more interesting rings: For
example, R[X] is quite boring, but R[X]/(X2 + 1) ∼= C is rather interesting. Thus this ideal
correspondence allows us to occasionally get interesting ideals from less interesting ones.

Theorem (Third isomorphism theorem). Let I CR and J CR, and I ⊆ J . Then J/I CR/I
and (

R

I

)/(J
I

)
∼=
R

J
.

Proof. We define the map

φ : R/I −→ R/J

r + I 7−→ r + J.

This is well-defined and surjective by the groups case. Also it is a ring homomorphism since
multiplication in both R/I and R/J is given by multiplication (in R) of coset representatives.
The kernel is

ker(φ) = {r + I : r + J = 0, i.e. r ∈ J} =
J

I
.

So the result follows from the first isomorphism theorem.
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For any ring R there is a unique ring homomorphism Z→ R, given by

ι : Z −→ R

n ≥ 0 7−→ 1R + 1R + · · ·+ 1R︸ ︷︷ ︸
n times

n ≤ 0 7−→ −(1R + 1R + · · ·+ 1R︸ ︷︷ ︸
−n times

)

Any homomorphism Z→ R must be given by this formula, since it must send 1Z to 1R, and
we can show this is indeed a homomorphism by distributivity. So the ring homomorphism is
unique.

We then have an ideal ker(ι)C Z, so must have ker(ι) = nZ for some n.

Definition (Characteristic of ring). Let R be a ring, and ι : Z → R be the unique ring
homomorphism. The characteristic of R is the unique non-negative n such that ker(ι) = nZ.

Example. The rings Z,Q,R,C all have characteristic 0. The ring Z/nZ has characteristic
n. In particular, any natural number can be the characteristic of some ring.

The notion of the characteristic will not be used much in this course. However, fields of
non-zero characteristic often provide interesting examples and counterexamples.

2.3 Integral domains, field of fractions, maximum and prime ideals

Rings can be very different to Z. For example, in Z we know that if a, b 6= 0 then ab 6= 0.
However, in, say, Z/6Z, we have 2 + (6), 3 + (6) 6= 0, but their product is zero. Also, in Z
every ideal is principal, and every integer has an (essentially) unique factorization. We will
try to organise rings according to which of these properties they have.

We start with the most fundamental property that the product of two non-zero elements
are non-zero.

Definition (Integral domain). A non-zero ring R is an integral domain if for all a, b ∈ R, if
a · b = 0R, then a = 0R or b = 0R.

An element that violates this property is known as a zero divisor.

Definition (Zero divisor). An element x ∈ R is a zero divisor if x 6= 0 and there is a y 6= 0
such that xy = 0 ∈ R.

In other words, a ring is an integral domain if it has no zero divisors.

Example. All fields are integral domains, since if a ·b = 0, and b 6= 0, then a = a ·(b ·b−1) = 0.
Similarly, if a 6= 0, then b = 0.

Example. A subring of an integral domain is an integral domain, since a zero divisor in the
smaller ring would also be a zero divisor in the larger ring.

Example. Z,Q,R,C are integral domains, since C is a field, and these are subrings of it.
Also, Z[i] ≤ C is an integral domain.

These are the rings one should consider in number theory, since there we can sensibly
talk about factorization. It turns out that finite integral domains are especially simple.

Lemma. Let R be a finite ring which is an integral domain. Then R is a field.
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Proof. Let a ∈ R be non-zero, and consider the group homomorphism

a · − : (R,+, 0R)→ (R,+, 0R)

b 7→ a · b

We want to show this is injective, for which it suffices to show that the kernel is trivial. If
r ∈ ker(a · −), then a · r = 0. So r = 0 since R is an integral domain. So the kernel is trivial.

Since R is finite, a · − must also be surjective. In particular, there is an element b ∈ R
such that a · b = 1R, so a has an inverse. Since a was arbitrary, R is a field.

So far, we know fields are integral domains, and subsets of integral domains are integral
domains. We have another good source of integral domain as follows:

Lemma. If R is an integral domain, then R[X] is too.

Proof. We need to show the product of two non-zero elements are non-zero. Let f, g ∈ R[X]
be non-zero, say

f = a0 + a1X + · · ·+ anX
n ∈ R[X]

g = b0 + b1X + · · ·+ bmX
m ∈ R[X],

with an, bm 6= 0. Then the coefficient of Xn+m in fg is anbm. This is non-zero since R is an
integral domain, so fg is non-zero. So R[X] is an integral domain.

So, for instance, Z[X] is an integral domain. We can iterate the above.

Notation. Write R[X,Y ] for (R[X])[Y ], the polynomial ring of R in two variables. In
general, write R[X1, · · · , Xn] = (· · · ((R[X1])[X2]) · · · )[Xn].

If R is an integral domain,it follows from the lemma above that R[X1, · · · , Xn] is too.
We now want to mimic the familiar construction of Q from Z. For any integral domain R,

we want to construct a field F that consists of “fractions” of elements in R. Recall that the
subring of any field is an integral domain. This construction will prove the converse: every
integral domain is a subring of a field.

Definition (Field of fractions). Let R be an integral domain. A field of fractions F of R is
a field with the following properties

(i) R ≤ F

(ii) Every element of F may be written as a · b−1 for a, b ∈ R, where b−1 means the
multiplicative inverse to b 6= 0 in F .

For example, Q is a field of fractions of Z.

Theorem. Every integral domain has a field of fractions.

Proof. The construction is exactly how we construct the rationals from the integers — as
equivalence classes of pairs of integers. Let

S = {(a, b) ∈ R×R : b 6= 0}.

We think of (a, b) ∈ S as the fraction a
b . We define an equivalence relation ∼ on S by

(a, b) ∼ (c, d)⇔ ad = bc.
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We need to show this is indeed a equivalence relation. Symmetry and reflexivity are obvious.
To show transitivity, suppose

(a, b) ∼ (c, d), (c, d) ∼ (e, f),

so ad = bc and cf = de. We multiply the first equation by f and the second by b, to obtain

adf = bcf, bcf = bed.

Rearranging, we get
d(af − be) = 0.

Since d is a denominator, d 6= 0. Since R is an integral domain, we must therefore have
af − be = 0, i.e. af = be. So (a, b) ∼ (e, f). (This is where being an integral domain is
important.)

Now let
F = S/∼

be the set of equivalence classes. We write a
b = [(a, b)] ∈ F , and define addition and

multiplication operations by

a

b
+
c

d
=
ad+ bc

bd
a

b
· c
d

=
ac

bd
.

This is well-defined, and makes (F,+, ·, 0
1 ,

1
1) into a ring. There are many things to check,

but they are straightforward, and we will not do them. Finally, we wish to show F is a
field so need to show every non-zero element has an inverse. Let a

b 6= 0F , i.e. a
b 6=

0
1 , or

a · 1 6= b · 0 ∈ R, i.e. a 6= 0. Then b
a ∈ F is defined, and

b

a
· a
b

=
ba

ba
= 1.

So a
b has a multiplicative inverse, and hence F is a field.
We now need to construct a subring of F that is isomorphic to R. To do so, we need to

define an injective homomorphism φ : R→ F . This is given by

φ : R→ F

r 7→ r

1
.

This is a ring homomorphism, as one can check easily. The kernel is the set of all r ∈ R such
that r

1 = 0, so is trivial and φ is injective. By the first isomorphism theorem, R ∼= im(φ) ⊆ F .
Finally, we need to show everything is a quotient of two things in R. We have

a

b
=
a

1
· 1

b
=
a

1
·
(
b

1

)−1

,

as required.

This gives us a very useful tool: since it gives us a field from an integral domain, it allows
us to use field techniques to study integral domains. Moreover, we can also use it to construct
new interesting fields from integral domains.

Lemma. A non-zero ring R is a field if and only if its only ideals are {0} and R.
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Proof. (⇒) Let I CR and R be a field. Suppose x 6= 0 ∈ I. Then as x is a unit, I = R.
(⇐) Suppose x 6= 0 ∈ R. Then (x) is an ideal of R which is not {0} since it contains x.

So (x) = R and so 1R ∈ (x). Thus there is some u ∈ R such that x · u = 1R, so x is a unit.
Since x was arbitrary, R is a field.

This is another reason why fields are special. They have the simplest possible ideal
structure. It motivates the following definition.

Definition (Maximal ideal). An ideal I of a ring R is maximal if I 6= R and for any ideal J
with I ≤ J ≤ R, either J = I or J = R.

The relation with what we have discussed above is quite simple: there is an easy way to
recognize if an ideal is maximal.

Lemma. An ideal I CR is maximal if and only if R/I is a field.

Proof. R/I is a field if and only if {0} and R/I are the only ideals of R/I. By the ideal
correspondence, this is equivalent to saying I and R are the only ideals of R which contains
I, i.e. I is maximal.

This result characterises a property of an ideal I in terms of a property of the quotient
R/I. Here is another one:

Definition (Prime ideal). An ideal I of a ring R is prime if I 6= R and whenever a, b ∈ R
are such that a · b ∈ I, then a ∈ I or b ∈ I.

This is like the converse of the property of being an ideal — being an ideal means if we
have something in the ideal and something outside, the product is always in the ideal. This
does the converse: if the product of two elements is in the ideal, then one of them must be
from the ideal.

Example. A non-zero ideal nZC Z is prime if and only if n is a prime number.
To show this, first suppose n = p is a prime number, and a · b ∈ pZ. So p | a · b. So p | a

or p | b, i.e. a ∈ pZ or b ∈ pZ.
For the other direction, suppose n = pq is a composite number (p, q 6= 1). Then n ∈ nZ

but p 6∈ nZ and q 6∈ nZ, since 0 < p, q < n.

We prove a characterisation similar to the lemma above.

Lemma. An ideal I CR is prime if and only if R/I is an integral domain.

Proof. Let I be prime. Let a+ I, b+ I ∈ R/I, and suppose that (a+ I)(b+ I) = 0R/I . By
definition, (a+ I)(b+ I) = ab+ I. So we must have ab ∈ I. As I is prime, either a ∈ I or
b ∈ I. So a+ I = 0R/I or b+ I = 0R/I , and hence R/I is an integral domain.

Conversely, suppose R/I is an integral domain. Let a, b ∈ R be such that ab ∈ I. Then
(a+ I)(b+ I) = ab+ I = 0R/I ∈ R/I. Since R/I is an integral domain, either a+ I = 0R/I
or b+ I = 0R/i, i.e. a ∈ I or b ∈ I. So I is a prime ideal.

Prime ideals and maximal ideals are the main types of ideals we shall be interested in.
Every field is an integral domain, so we immediately have the following.

Proposition. Every maximal ideal is a prime ideal.

Proof. I CR is maximal implies R/I is a field implies R/I is an integral domain implies I is
prime.
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The converse is not true. For example, {0} ⊆ Z is prime but not maximal. Less stupidly,
(X) ∈ Z[X,Y ] is prime but not maximal (since Z[X,Y ]/(X) ∼= Z[Y ] is an integral domain
but is not a field).

Lemma. Let R be an integral domain. Then its characteristic is either 0 or a prime number.

Proof. Consider the unique map φ : Z→ R, and ker(φ) = nZ. Then n is the characteristic
of R by definition. By the first isomorphism theorem, Z/nZ = im(φ) ≤ R. So Z/nZ is an
integral domain. So nZC Z is a prime. So n = 0 or a prime number.

2.4 Factorization in integral domains

We now move on to tackle the problem of factorization in rings. We suppose throughout the
section that R is an integral domain.

Definition (Unit). An element a ∈ R is a unit if there is an b ∈ R such that ab = 1R.
Equivalently, if (a) = R.

Definition (Division). For elements a, b ∈ R, we say a divides b, written a | b, if there is a
c ∈ R such that b = ac. Equivalently, if (b) ⊆ (a).

Definition (Associates). We say a, b ∈ R are associates if a = bc for some unit c. Equivalently,
if (a) = (b). Equivalently, if a | b and b | a.

In integers, this can only happen if a and b differ by a sign, but in more interesting rings,
more interesting things can happen. When considering division in rings, we often consider
two associates to be “the same”. For example, in Z, we can factorize 6 as

6 = 2 · 3 = (−2) · (−3),

but this does not violate unique factorization, since 2 and −2 are associates (and so are 3
and −3), and we consider these two factorizations to be “the same”.

Definition (Irreducible). We say a ∈ R is irreducible if a 6= 0, a is not a unit, and if a = xy,
then x or y is a unit.

For integers, being irreducible is the same as being a prime number. However, “prime”
means something different in general rings.

Definition (Prime). We say a ∈ R is prime if a is non-zero, not a unit, and whenever a | xy,
either a | x or a | y.

It is important to note all these properties depend on the ring, not the element itself.

Example. 2 ∈ Z is a prime, but 2 ∈ Q is not (since it is a unit).
Similarly, the polynomial 2X ∈ Q[X] is irreducible (since 2 is a unit), but 2X ∈ Z[X] not

irreducible.

We have two things called prime, so they had better be related.

Lemma. A principal ideal (r) is a prime ideal in R if and only if r = 0 or r is prime.

Proof. (⇒) Let (r) be a prime ideal. If r = 0, then done. Otherwise, as prime ideals are
proper, ie. not the whole ring, r is not a unit. Now suppose r | a · b. Then a · b ∈ (r). But (r)
is prime. So a ∈ (r) or b ∈ (r). So r | a or r | b. So r is prime.

(⇐) If r = 0, then (0) = {0}CR, which is prime since R is an integral domain. Otherwise,
let r 6= 0 be prime. Suppose a · b ∈ (r). This means r | a · b. So r | a or r | b. So a ∈ (r) and
b ∈ (r). So (r) is prime.
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Note that in Z, prime numbers are exactly the irreducibles, but prime numbers are also
prime (surprise!). In general, it is not true that irreducibles are the same as primes. However,
one direction is always true.

Lemma. Let r ∈ R be prime. Then it is irreducible.

Proof. Let r ∈ R be prime, and suppose r = ab. Since r | r = ab, and r is prime, we must
have r | a or r | b. wlog, r | a. So a = rc for some c ∈ R. So r = ab = rcb. Since we are in an
integral domain, we must have 1 = cb. So b is a unit.

We now do a long interesting example.

Example. Let
R = Z[

√
−5] = {a+ b

√
−5 : a, b ∈ Z} ≤ C.

By definition, it is a subring of a field. So it is an integral domain. What are the units of the
ring? There is a nice trick we can use, when things are lying inside C. Consider the function

N : R −→ Z≥0

a+ b
√
−5 7−→ a2 + 5b2,

called the norm. It is convenient to think of this as z 7→ zz̄ = |z|2. It satisfies N(z · w) =
N(z)N(w). This is a desirable thing to have for a ring, since it immediately implies all units
have norm 1 — if r · s = 1, then 1 = N(1) = N(rs) = N(r)N(s). So N(r) = N(s) = 1.

So to find the units, we need to solve a2 + 5b2 = 1, for a and b integers. The only solutions
are ±1. So only ±1 ∈ R can potentially be units, and these obviously are units. So these are
all the units.

Next, we claim that 2 ∈ R is irreducible. We again use the norm. Suppose 2 = ab. Then
4 = N(2) = N(a)N(b). Now note that nothing has norm 2: a2 + 5b2 can never be 2 for
integers a, b ∈ Z. So one of a and b must have norm 1, and so must be a unit. Similarly, we
see that 3, 1 +

√
−5, 1−

√
−5 are irreducible (since there is also no element of norm 3).

We have four irreducible elements in this ring. Are they prime? No! Note that

(1 +
√
−5)(1−

√
−5) = 6 = 2 · 3.

We now claim 2 does not divide 1 +
√
−5 or 1−

√
−5. So 2 is not prime.

To see this, suppose 2 | 1 +
√
−5. Then N(2) | N(1 +

√
−5). But N(2) = 4 and

N(1 +
√
−5) = 6, and 4 - 6. Similarly, N(1−

√
−5) = 6 as well. So 2 - 1±

√
−5.

There are several lessons here. First is that primes and irreducibles are not the same thing
in general. The second one is that factorization into irreducibles is not necessarily unique,
since 2 · 3 = 6 = (1 +

√
−5)(1−

√
−5) are two factorizations into irreducibles.

However, there is a situation when unique factorizations holds. This is when we have a
Euclidean algorithm available.

Definition (Euclidean domain). An integral domain R is a Euclidean domain (ED) if there
is a Euclidean function φ : R \ {0} → Z≥0 such that

(i) φ(a · b) ≥ φ(b) for all a, b 6= 0

(ii) If a, b ∈ R, with b 6= 0, then there are q, r ∈ R such that

a = b · q + r,

and either r = 0 or φ(r) < φ(b).
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What are examples? Every time in this course where we said “Euclidean algorithm”, we
have an example.

Example. Z is a Euclidean domain with φ(n) = |n|.

Example. For any field F, F[X] is a Euclidean domain with φ(f) = deg(f).

Example. The Gaussian integers R = Z[i] ≤ C is a Euclidean domain with φ(z) = N(z) =
|z|2. We now check this:

(i) We have φ(zw) = φ(z)φ(w) ≥ φ(z), since φ(w) is a positive integer.

(ii) Given a, b ∈ Z[i], b 6= 0. We consider the complex number

a

b
∈ C.

Consider the complex plane, where the red dots are points in Z[i].

Re

Im

a
b

By looking at the picture, we know that there is some q ∈ Z[i] such that
∣∣a
b − q

∣∣ < 1.
So we can write

a

b
= q + c

with |c| < 1. Then we have

a = b · q + b · c︸︷︷︸
r

.

We know r = a− bq ∈ Z[i], and φ(r) = N(bc) = N(b)N(c) < N(b) = φ(b). So done.

This is not just true for the Gaussian integers. All we really needed was that R ≤ C, and for
any x ∈ C, there is some point in R that is less than distance 1 from x. If we draw some
more pictures, we will see this is not true for Z[

√
−5].

Before we move on to prove unique factorization, we first derive something we’ve previously
mentioned. Recall we showed that every ideal in Z is principal, and we proved this by the
Euclidean algorithm. So we might expect this to be true in an arbitrary Euclidean domain.

Definition (Principal ideal domain). A ring R is a principal ideal domain (PID) if it is an
integral domain, and every ideal is a principal ideal, i.e for all I CR, there is some a such
that I = (a).

Example. Z is a principal ideal domain.
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Proposition. Let R be a Euclidean domain. Then R is a principal ideal domain.

We have already proved this, just that we did it for a particular Euclidean domain Z.
Nonetheless, we shall do it again.

Proof. Let R have a Euclidean function φ : R \ {0} → Z≥0. We let I CR be a non-zero ideal,
and let b ∈ I \ {0} be an element with φ(b) minimal. Then for any a ∈ I, we write

a = bq + r,

with r = 0 or φ(r) < φ(b). However, any such r must be in I since r = a − bq ∈ I. So we
cannot have φ(r) < φ(b). So we must have r = 0. So a = bq. So a ∈ (b). Since this is true for
all a ∈ I, we must have I ⊆ (b). On the other hand, since b ∈ I, we must have (b) ⊆ I. So
we must have I = (b).

This is exactly the same proof as we gave for the integers, except we replaced the absolute
value with φ.

Example. Z is a Euclidean domain, and hence a principal ideal domain. Also, for any field
F, F[X] is a Euclidean domain, hence principal ideal domain.

Also, Z[i] is a Euclidean domain, and hence a principal ideal domain.

Example. What is a non-example of principal ideal domains? In Z[X], the ideal (2, X)CZ[X]
is not a principal ideal. Suppose it were. Then (2, X) = (f). Since 2 ∈ (2, X) = (f), we
know 2 ∈ (f) , ie. 2 = f · g for some g. So f has degree zero, and hence is constant. So
f ∈ {±1,±2}.

If f = ±1, since ±1 are units, then (f) = Z[X]. But (2, X) 6= Z[X] (convince yourself of
this). If f = ±2, then since X ∈ (2, X) = (f), we must have ±2 | X, but this is false. So
(2, X) cannot be a principal ideal.

Example. Let A ∈Mn×n(F) be an n×n matrix over a field F. We consider the following set

I = {f ∈ F[X] : f(A) = 0}.

This is an ideal: if f, g ∈ I then (f + g)(A) = f(A) + g(A) = 0, and if f ∈ I and h ∈ F[X],
then (fg)(A) = f(A)g(A) = 0.

But we know F[X] is a principal ideal domain. So there must be some m ∈ F[X] such
that I = (m) for some m.

Suppose f ∈ F[X] such that f(A) = 0, ie. f ∈ I. Then m | f . So m is a polynomial
which divides all polynomials that kill A, ie. m is a minimal polynomial of A.

We have just proved that all matrices have minimal polynomials, and that the minimal
polynomial divides all other polynomials that kill A. Furthermore, a minimal polynomial
is unique up to multiplication by units (it is usually taken to be monic, to get rid of this
ambiguity: then we call it the minimal polynomial).

For a general ring, we cannot factorize things into irreducibles uniquely. However, in some
rings, this is possible.

Definition (Unique factorization domain). An integral domain R is a unique factorization
domain (UFD) if

(i) Every non-unit may be written as a product of irreducibles;

(ii) If p1p2 · · · pn = q1 · · · qm with pi, qj irreducibles, then n = m, and they can be reordered
such that pi is an associate of qi.
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This is a really nice property, and here we can do things we are familiar with in number
theory. So how do we know if something is a unique factorization domain?

Our goal is to show that all principal ideal domains are unique factorization domains.
To do so, we are going to prove several lemmas that give us some really nice properties of
principal ideal domains.

Recall that every prime is an irreducible, but in Z[
√
−5], for example, there are some

irreducibles that are not prime. However, this cannot happen in principal ideal domains.

Lemma. Let R be a principal ideal domain. If p ∈ R is irreducible, then it is prime.

Proof. Let p ∈ R be irreducible, and suppose p | a · b. Also, suppose p - a. We need to show
p | b.

Consider the ideal (p, a)C R. Since R is a principal ideal domain, there is some d ∈ R
such that (p, a) = (d). So d | p and d | a.

Since d | p, there is some q1 such that p = q1d. As p is irreducible, either q1 or d is a unit.
If q1 is a unit, then d = q−1

1 p, and this divides a. So a = q−1
1 px for some x. This is a

contradiction, since p - a.
Therefore d is a unit. So (p, a) = (d) = R. In particular, 1R ∈ (p, a). So suppose

1R = rp+ sa, for some r, s ∈ R. We now take the whole thing and multiply by b. Then

b = rpb+ sab.

We observe that ab is divisible by p, and so is p. So b is divisible by p. So done.

This is similar to the argument for integers. For integers, we would say if p - a, then p
and a are coprime. Therefore there are some r, s such that 1 = rp+ sa. Then we continue
the proof as above. Hence what we did in the middle is to do something similar to showing p
and a are “coprime”.

Another nice property of principal ideal domains is the following:

Lemma. Let R be a principal ideal domain. Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be a chain of ideals.
Then there is some N ∈ N such that In = In+1 for some n ≥ N .

So in a principal ideal domain, we cannot have an infinite chain of bigger and bigger ideals.
Rings with this property are called Noetherian, and we will study them in more detail later.

Proof. The obvious thing to do when we have an infinite chain of ideals is to take the union
of them. We let

I =
∞⋃
n≥1

In,

which is again an ideal. Since R is a principal ideal domain, I = (a) for some a ∈ R. We
know a ∈ I =

⋃∞
n=0 In. So a ∈ IN for some N . Then we have (a) ⊆ IN ⊆ I = (a). So we

must have IN = I. So In = IN = I for all n ≥ N .

Finally, we have done the setup, and we can prove the proposition promised.

Proposition. Let R be a principal ideal domain. Then R is a unique factorization domain.

Proof. We first need to show any (non-unit) r ∈ R is a product of irreducibles.
Suppose r ∈ R cannot be factored as a product of irreducibles. Then it is certainly

not irreducible. So we can write r = r1s1, with r1, s1 both non-units. Since r cannot be
factored as a product of irreducibles, without loss of generality we may suppose that r1

cannot be factored as a product of irreducibles (if both r1 and s1 can, then r would be a
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product of irreducibles). So we can write r1 = r2s2, with r2, s2 not units. Again, without loss
of generality we may suppose that r2 cannot be factored as a product of irreducibles. We
continue in this way.

By assumption, the process does not end, and then we have the following chain of ideals:

(r) ⊆ (r1) ⊆ (r2) ⊆ · · · ⊆ (rn) ⊆ · · ·

But then we have an ascending chain of ideals. By the previous Lemma, these are all
eventually equal, i.e. there is some n such that (rn) = (rn+1) = (rn+2) = · · · . In particular,
since (rn) = (rn+1), and rn = rn+1sn+1, then sn+1 is a unit. But this is a contradiction, since
sn+1 is not a unit. So r must be a product of irreducibles.

To show uniqueness, we let p1p2 · · · pn = q1q2 · · · qm, with pi, qi irreducible. So in particular
p1 | q1 · · · qm. Since p1 is irreducible, it is prime. So p1 divides some qi. We reorder and
suppose p1 | q1. So q1 = p1 · a for some a. But since q1 is irreducible, a must be a unit. So
p1, q1 are associates. Since R is a principal ideal domain, hence integral domain, we can
cancel p1 to obtain

p2p3 · · · pn = (aq2)q3 · · · qm.

We now rename aq2 as q2, so that we in fact have

p2p3 · · · pn = q2q3 · · · qm.

We can then continue to show that pi and qi are associates for all i. This also shows that
n = m, or else if n = m+ k, saw, then pk+1 · · · pn = 1, which is a contradiction.

We can now use this to define other familiar notions from number theory.

Definition (Greatest common divisor). d is a greatest common divisor (gcd) of a1, a2, · · · , an
if d | ai for all i, and if any other d′ satisfies d′ | ai for all i, then d′ | d.

Definition (Least common multiple). m is a least common multiple (lcm) of a1, a2, · · · , an
if ai | m for all i, and if any other m′ satisfies ai|m′ for all i, then m | m′.

This is a definition that says what it means to be a gcd or lcm. However, it does not
always have to exist.

Lemma. Let R be a unique factorization domain. Then gcd’s and lcm’s exist, and are unique
up to associates.

Proof. We construct the greatest common divisor using prime factorization.
We let p1, p2, · · · , pm be a list of all irreducible factors of ai, such that no two of these

are associates of each other. We now write

ai = ui

m∏
j=1

p
nij
j ,

where nij ∈ N and ui are units. We let

mj = min
i
{nij},

and choose

d =
m∏
j=1

p
mj
j .

As, by definition, mj ≤ nij for all i, we know d | ai for all i.
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Finally, if d′ | ai for all i, then we let

d′ = v
m∏
j=1

p
tj
j .

Then we must have tj ≤ nij for all i, j. So we must have tj ≤ mj for all j. So d′ | d.

Uniqueness is immediate since any two greatest common divisors have to divide each
other.

The argument for least common multiples is similar.

2.5 Factorization in polynomial rings

Recall that for F a field, we know F [X] is a Euclidean domain, hence a principal ideal domain,
hence a unique factorization domain. Therefore we know

(i) If I C F [X], then I = (f) for some f ∈ F [X].

(ii) If f ∈ F [X], then f is irreducible if and only if f is prime.

(iii) Let f be irreducible, and suppose (f) ⊆ J ⊆ F [X]. Then J = (g) for some g. Since
(f) ⊆ (g), we must have f = gh for some h. But f is irreducible. So either g or h is a
unit. If g is a unit, then (g) = F [X]. If h is a unit, then (f) = (g). So (f) is a maximal
ideal. Note that this argument is valid for any PID, not just polynomial rings.

(iv) Let (f) be a prime ideal. Then f is prime. So f is irreducible. So (f) is maximal. But
we also know in complete generality that maximal ideals are prime. So in F [X], prime
ideals are the same as maximal ideals. Again, this is true for all PIDs in general.

(v) Thus f is irreducible if and only if F [X]/(f) is a field.

To use the last item, we can first show that F [X]/(f) is a field, and then use this to deduce
that f is irreducible. But we can also do something more interesting — find an irreducible f ,
and then generate an interesting field F [X]/(f).

So we want to understand (ir)reducibility, i.e. we want to know whether we can factorize
a polynomial f . Firstly, we want to get rid of the trivial case where we just factor out a
scalar, eg. 2X2 + 2 = 2(X2 + 1) ∈ Z[X] is a boring factorization.

Definition (Content). Let R be a UFD and f = a0 +a1X+ · · ·+anX
n ∈ R[X]. The content

c(f) of f is

c(f) = gcd(a0, a1, · · · , an) ∈ R.

Again, since the gcd is only defined up to a unit, so is the content.

Definition (Primitive polynomial). A polynomial is primitive if c(f) is a unit, i.e. the ai are
coprime.

Note that this is the best we can do. We cannot ask for c(f) to be exactly 1, since the
gcd is only well-defined up to a unit.

Lemma (Gauss’ lemma). Let R be a UFD, and f ∈ R[X] be a primitive polynomial. Then
f is reducible in R[X] if and only if f is reducible F [X], where F is the field of fractions of R.

We can’t do this right away. We first need some preparation. Before that, we do some
examples.
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Example. Consider X3 +X + 1 ∈ Z[X]. This has content 1 so is primitive. We show it is
not reducible in Z[X], and hence not reducible in Q[X].

Suppose f is reducible in Q[X]. Then by Gauss’ lemma it is reducible in Z[X], so

X3 +X + 1 = gh,

for some polynomials g, h ∈ Z[X], with g, h not units. But if g and h are not units, then they
cannot be constant, so they have degree at least 1. Since the degrees add up to 3, we may
suppose that g has degree 1 and h has degree 2. So suppose

g = b0 + b1X, h = c0 + c1X + c2X
2.

Multiplying out and equating coefficients, we get

b0c0 = 1

c2b1 = 1

So b0 and b1 must be ±1. So g is either 1 + X, 1 −X,−1 + X or −1 −X, and hence has
±1 as a root. But this is a contradiction, since ±1 is not a root of X3 +X + 1. So f is not
reducible in Q[X]. In particular f has no root in Q, and Q[X]/(X3 +X + 1) is a field.

We see the advantage of using Gauss’ lemma — if we worked in Q instead, we could have
got to the step b0c0 = 1, and then we can do nothing, since b0 and c0 can be many things if
we work over Q.

Now we start working towards proving Gauss’ lemma, with the following preparatory tool.

Lemma. Let R be a UFD. If f, g ∈ R[X] are primitive, then so is fg.

Proof. We let

f = a0 + a1X + · · ·+ anX
n,

g = b0 + b1X + · · ·+ bmX
m,

where an, bm 6= 0, and f, g are primitive. We want to show that the content of fg is a unit.

If fg is not primitive then c(fg) is not a unit. Since R is a UFD, we can find an irreducible
p ∈ R which divides c(fg).

By assumption, c(f) and c(g) are units, so p - c(f) and p - c(g). So suppose p | a0,
p | a1, . . . , p | ak−1 but p - ak. (Note it is possible that k = 0.) Similarly, suppose
p | b0, p | b1, · · · , p | b`−1, p - b`.

We look at the coefficient of Xk+` in fg. It is given by∑
i+j=k+`

aibj = ak+`b0 + · · ·+ ak+1b`−1 + akb` + ak−1b`+1 + · · ·+ a0b`+k.

By assumption, this is divisible by p. So

p |
∑

i+j=k+`

aibj .

However, the terms ak+`b0 + · · ·+ ak+1b`−1, is divisible by p, as p | bj for j < `. Similarly,
ak−1b`+1 + · · ·+ a0b`+k is divisible by p, as p | ai for i < k. So we must have p | akb`. As p is
irreducible, and hence prime, we must have p | ak or p | b`. This is a contradiction. So c(fg)
must be a unit.
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Corollary. Let R be a UFD. Then for f, g ∈ R[X], we have that c(fg) is an associate of
c(f)c(g).

Proof. We can write f = c(f)f1 and g = c(g)g1, with f1 and g1 irreducible. Then

fg = c(f)c(g)f1g1.

Since f1g1 is primitive, c(f)c(g) is a gcd of the coefficients of fg; so is c(fg), by definition.
Thus they are associates.

Finally, we can prove Gauss’ lemma.

Lemma (Gauss’ lemma). Let R be a UFD, and f ∈ R[X] be a primitive polynomial. Then
f is reducible in R[X] if and only if f is reducible F [X], where F is the field of fractions of R.

Proof. We will show that a primitive f ∈ R[X] is reducible in R[X] if and only if f is reducible
in F [X].

One direction is almost immediately obvious. Let f = gh be a product in R[X] with g, h
not units. As f is primitive, so are g and h. So both have degree > 0. So g, h are not units
in F [X]. So f is reducible in F [X].

The other direction is less obvious. We let f = gh in F [X], with g, h not units. So g and
h have degree > 0, since F is a field. So we can clear denominators by finding a, b ∈ R such
that (ag), (bh) ∈ R[X] (eg. let a be the product of denominators of coefficients of g). Then
we get

abf = (ag)(bh),

and this is a factorization in R[X]. Here we have to be careful — (ag) is an element of R[X],
and is not necessarily a product in R[X], since g might not be in R[X]. So we should just
treat it as a single symbol.

We now write

(ag) = c(ag)g1,

(bh) = c(bh)h1,

where g1, h1 are primitive. So we have

ab = c(abf) = c((ag)(bh)) = u · c(ag)c(bh),

where u ∈ R is a unit, by the previous corollary. But also we have

abf = c(ag)c(gh)g1h1 = u−1abg1h1.

So cancelling ab gives
f = u−1g1h1 ∈ R[X].

So f is reducible in R[X].

We will do another proof performed in a similar manner.

Proposition. Let R be a UFD, and F be its field of fractions. Let g ∈ R[X] be primitive.
We let

J = (g)CR[X], I = (g)C F [X].

Then
J = I ∩R[X].

In other words, if f ∈ R[X] is divisible by g in F [X], then it is divisible by it in R[X].
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Proof. We certainly have J ⊆ I ∩R[X]. Now let f ∈ I ∩R[X]. So we can write

f = gh,

with h ∈ F [X]. So we can choose b ∈ R such that bh ∈ R[X]. Then we know

bf = g(bh) ∈ R[X].

We let
(bh) = c(bh)h1,

for h1 ∈ R[X] primitive. Thus
bf = c(bh)gh1.

Since g is primitive, so is gh1. So c(bh) = uc(bf) for u a unit. But bf is a product in R[X], so

c(bf) = c(b)c(f) = bc(f).

This gives
bf = ubc(f)gh1.

Cancelling b gives
f = g · (uc(f)h1).

So g | f in R[X], and hence f ∈ J .

From this we can get ourselves a large class of UFDs.

Theorem. If R is a UFD, then R[X] is a UFD.

In particular, if R is a UFD, then R[X1, · · · , Xn] is also a UFD.

Proof. Let f ∈ R[X]. We can write f = c(f)f1, with f1 primitive. Firstly, as R is a UFD,
we may factor

c(f) = p1p2 · · · pn,

for pi ∈ R irreducible (so also irreducible in R[X]). Now we want to deal with f1.
If f1 is not irreducible, then we can write

f1 = f2f3,

with f2, f3 both not units. Since f1 is primitive, f2, f3 also cannot be constants. So we must
have deg f2,deg f3 > 0. Also, since deg f2 + deg f3 = deg f1, we must have deg f2,deg f3 <
deg f1. If f2, f3 are irreducible, then done. Otherwise, keep on going. We will eventually stop
since the degrees have to keep on decreasing. So we can write

f1 = q1 · · · qm,

with qi irreducible. Then
f = p1p2 · · · pnq1q2 · · · qm

is a product of irreducibles.
For uniqueness, we first deal with the p’s. We note that

c(f) = p1p2 · · · pn

is a unique factorization of the content, up to reordering and associates, as R is a UFD. So
cancelling the content, we only have to show that primitives can be factored uniquely.
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Suppose we have two factorizations

f1 = q1q2 · · · qm = r1r2 · · · r`.

Note that each qi and each ri is a factor of the primitive polynomial f1, so are also primitive.
Now we do (perhaps) an unexpected thing. We let F be the field of fractions of R, and
consider qi, ri ∈ F [X]. Since F is a field, F [X] is a Euclidean domain, hence a principal ideal
domain, hence a unique factorization domain.

By Gauss’ lemma, since the qi and ri are irreducible in R[X], they are also irreducible in
F [X]. As F [X] is a UFD, we find that ` = m, and after reordering, ri and qi are associates,
say

ri = uiqi,

with ui ∈ F [X] a unit. What we want to say is that ri is a unit times qi in R[X]. Firstly,
note that ui ∈ F as it is a unit. Clearing denominators, we can write

airi = biqi ∈ R[X].

Taking contents, since ri, qi are primitives, we know ai and bi are associates, say

bi = viai,

with vi ∈ R a unit. Cancelling ai on both sides, we know ri = viqi as required.

The key idea is to use Gauss’ lemma to say the reducibility in R[X] is the same as
reducibility in F [X], as long as we are primitive. The first part about contents is just to turn
everything into primitives.

Note that the last part of the proof is just our previous proposition. We could have
applied it, but we decide to spell it out in full for clarity.

Example. We know Z[X] is a UFD, and if R is a UFD, then R[X1, · · · , Xn] is also a UFD.

This is a useful thing to know. In particular, it gives us examples of UFDs that are not
PIDs. However, in such rings, we would also like to have an easy to determine whether
something is reducible. Fortunately, we have the following criterion:

Proposition (Eisentein’s criterion). Let R be a UFD, and let

f = a0 + a1X + · · ·+ anX
n ∈ R[X]

be primitive with an 6= 0. Let p ∈ R be an irreducible (hence a prime) such that

(i) p - an;

(ii) p | ai for all 0 ≤ i < n;

(iii) p2 - a0.

Then f is irreducible in R[X], and hence in F [X] (where F is the field of fractions of F ).

It is important that we work in R[X] all the time, until the end where we apply Gauss’
lemma. Otherwise, we cannot possibly apply Eisentein’s criterion since there are no primes
in F .
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Proof. Suppose we have a factorization f = gh with

g = r0 + r1X + · · ·+ rkX
k

h = s0 + s1X + · · ·+ s`X
`,

for rk, s` 6= 0.
We know rks` = an. Since p - an, so p - rk and p - s`. We can also look at bottom

coefficients. We know r0s0 = a0. We know p | a0 and p2 - a0. So p divides exactly one of r0

and s0. Let us suppose that p | r0 and p - s0.
Now let j be such that

p | r0, p | r1, · · · , p | rj−1, p - rj .

We now look at aj . This is, by definition,

aj = r0sj + r1sj−1 + · · ·+ rj−1s1 + rjs0.

We know r0, · · · , rj−1 are all divisible by p. So

p | r0sj + r1sj−1 + · · ·+ rj−1s1.

Also, since p - rj and p - s0, we know p - rjs0, using the fact that p is prime. So p - aj . So we
must have j = n.

We also know that j ≤ k ≤ n. So we must have j = k = n. So deg g = n and deg h = 0,
i.e. h is a constant. But we also know that f is primitive, so h must be a unit. So this was
not a proper factorization.

Example. Consider the polynomial Xn − p ∈ Z[X] for p a prime number. Apply Eisentein’s
criterion with p ∈ Z, and observe all the conditions hold. This is certainly primitive, since
this is monic. So Xn − p is irreducible in Z[X], hence in Q[X]. In particular, Xn − p has no
rational roots, ie. n

√
p is irrational (for n > 1).

Example. Consider the polynomial

f = Xp−1 +Xp−2 + · · ·+X2 +X + 1 ∈ Z[X],

where p is a prime number. If we look at this, we notice Eisentein’s criteria does not apply.
What should we do? We observe that

f =
Xp − 1

X − 1
.

So it might be a good idea to let Y = X − 1. Then we get a new polynomial

f̂ = f̂(Y ) =
(Y + 1)p − 1

Y
= Y p−1 +

(
p

1

)
Y p−2 +

(
p

2

)
Y p−3 + · · ·+

(
p

p− 1

)
.

When we look at it hard enough, we notice Eisentein’s criteria can be applied — we know
p |
(
p
i

)
for 1 ≤ i ≤ p− 1, but p2 -

(
p
p−1

)
= p. So f̂ is irreducible in Z[Y ].

Now if we had a factorization

f(X) = g(X)h(X) ∈ Z[X],

then we get
f̂(Y ) = g(Y + 1)h(Y + 1)

in Z[Y ]. So f is irreducible.
Hence none of the roots of f are rational (but we already know that — they are not even

real!).
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2.6 Gaussian integers

We’ve mentioned the Gaussian integers already.

Definition (Gaussian integers). The Gaussian integers is the subring

Z[i] = {a+ bi : a, b ∈ Z} ≤ C.

We have already seen that the norm N(a + ib) = a2 + b2, which is multiplicative, is a
Euclidean function for Z[i]. So Z[i] is a Euclidean domain, hence a principal ideal domain,
hence a unique factorization domain. In particular, primes and irreducibles are the same in
Z[i]. The units in Z[i] are ±1,±i, as these are the only elements of norm 1.

We have

2 = (1 + i)(1− i),

so 2 is not a prime. However, 3 is a prime, as follows. We have N(3) = 9. So if 3 = uv, with
u, v not units, then 9 = N(u)N(v), and neither N(u) nor N(v) are 1. So N(u) = N(v) = 3.
However, 3 = a2 + b2 has no solutions with a, b ∈ Z, so there is nothing of norm 3. Thus 3 is
irreducible, hence a prime. Also, 5 is not a prime, since

5 = (1 + 2i)(1− 2i).

The argument above shows that 7 is still a prime in Z[i].

How can we understand which prime numbers stay primes in the Gaussian integers?

Proposition. A prime number p ∈ Z is prime in Z[i] if and only if p 6= a2+b2 for a, b ∈ Z\{0}.

Proof. If p = a2 + b2, then p = (a+ ib)(a− ib). So p is not irreducible.

Now suppose p = uv, with u, v not units. Taking norms, we get p2 = N(u)N(v). So if u
and v are not units, then N(u) = N(v) = p. Writing u = a+ib, then this says a2 +b2 = p.

This tells us about some primes in Z[i]; we want to classify all of them. We will need the
following helpful lemma:

Lemma. Let p be a prime number. Let Fp = Z/pZ be the field with p elements. Let
F×p = Fp \ {0} be the group of invertible elements under multiplication. Then F×p ∼= Cp−1.

Proof. Certainly F×p has order p− 1, and is abelian. We know from the classification of finite
abelian groups that if F×p is not cyclic, then it must contain a subgroup Cm × Cm for m > 1.

We consider the polynomial Xm − 1 ∈ Fp[x], which is a UFD. At best, this factors into
m linear factors. So Xm − 1 has at most m distinct roots. But if Cm × Cm ≤ F×p , then we
can find m2 elements of order diving m. So there are m2 elements of Fp which are roots of
Xm − 1. This is a contradiction.

This is a funny proof, since we have not explicitly found any element of order p− 1.

Proposition. The primes in Z[i] are, up to associates,

(i) prime numbers p ∈ Z ≤ Z[i] such that p ≡ 3 (mod 4),

(ii) Gaussian integers z ∈ Z[i] with N(z) = zz̄ = p for some prime number p such that
p = 2 or p ≡ 1 (mod 4).
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Proof. We first show these are primes. If p ≡ 3 (mod 4), then p 6= a2 + b2, since a square
number mod 4 is always 0 or 1. So these are primes in Z[i].

On the other hand, if N(z) = p, and z = uv, then N(u)N(v) = p. So N(u) is 1 or N(v)
is 1. So u or v is a unit. Note that we did not use the condition that p 6≡ 3 (mod 4). This is
not needed, since N(z) is always a sum of squares, and hence N(z) cannot be a prime that is
3 mod 4.

Now let z ∈ Z[i] be irreducible, hence prime. Then z̄ is also irreducible. So N(z) = zz̄ is
a factorization of N(z) into irreducibles. Let p ∈ Z be a prime number dividing N(z), which
exists since N(z) 6= 1.

Now if p ≡ 3 (mod 4), then p itself is prime in Z[i] by the first part of the proof. So
p | N(z) = zz̄. So p | z or p | z̄. Note that if p | z̄, then p | z by taking complex conjugates.
So we get p | z. Since both p and z are both irreducible, they must be equal up to associates.

Otherwise, we get p = 2 or p ≡ 1 (mod 4). If p ≡ 1 (mod 4), then p− 1 = 4k for some
k ∈ Z. As F×p ∼= Cp−1 = C4k, there is a unique element of order 2 (this is true for any cyclic
group of even order), which must be [−1] ∈ Fp. Now let a ∈ F×p be an element of order 4.
Then a2 has order 2, so [a2] = [−1].

This is a complicated way of saying we can find an a such that p | a2 + 1. Thus
p | (a+ i)(a− i). In the case where p = 2, we know by checking directly that 2 = (1 + i)(1− i).

In either case, we deduce that p is not prime (hence irreducible), since it clearly does not
divide a± i (or 1± i). So we can write p = z1z2, for z1, z2 ∈ Z[i] not units. Now we get

p2 = N(p) = N(z1)N(z2).

As the zi are not units, we knowN(z1) = N(z2) = p. By definition, this means p = z1z̄1 = z2z̄2.
But also p = z1z2. So we must have z̄1 = z2.

Finally, we have p = z1z̄1 | N(z) = zz̄. All these z, zi are irreducible. So z must be an
associate of z1 (or maybe z̄1). So in particular N(z) = p.

Corollary. An integer n ∈ Z≥0 may be written as x2 + y2 (as the sum of two squares) if
and only if “when we write n = pn1

1 pn2
2 · · · p

nk
k as a product as distinct primes, then pi ≡ 3

(mod 4) implies ni is even”.

We have proved this in the case when n is a prime.

Proof. If n = x2 + y2, then we have

n = (x+ iy)(x− iy) = N(x+ iy).

Let z = x + iy. So we can write z = α1 · · ·αq as a product of irreducibles in Z[i]. By the
proposition, each αi have either αi = p (a genuine prime number with p ≡ 3 (mod 4)), or
N(αi) = p is a prime number which is either 2 or ≡ 1 (mod 4). We now take the norm to
obtain

N = x2 + y2 = N(z) = N(α1)N(α2) · · ·N(αq).

Now each N(αi) is either p2 with p ≡ 3 (mod 4), or is just p for p = 2 or p ≡ 1 (mod 4). So
if pm is the largest power of p divides n, we find that n must be even if p ≡ 3 (mod 4).

Conversely, let n = pn1
1 pn2

2 · · · p
nk
k be a product of distinct primes. Now for each pi, either

pi ≡ 3 (mod 4), and ni is even, in which case

pnii = (p2
i )
ni/2 = N(p

ni/2
i );

or pi = 2 or pi ≡ 1 (mod 4), in which case, the above proof shows that pi = N(αi) for some
αi, so pnii = N(αnii ).
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Since the norm is multiplicative, we can write n as the norm of some z ∈ Z[i]. So

n = N(z) = N(x+ iy) = x2 + y2,

as required.

Example. Consider 65 = 5× 13. Since 5, 13 ≡ 1 (mod 4), it is a sum of squares. Moreover,
the proof tells us how to find 65 as the sum of squares. We have to factor 5 and 13 in Z[i].
We have

5 = (2 + i)(2− i)
13 = (2 + 3i)(2− 3i).

So we know

65 = N(2 + i)N(2 + 3i) = N((2 + i)(2 + 3i)) = N(1 + 8i) = 12 + 82.

But there is a choice here. We had to pick which factor is α and which is ᾱ. So we can also
write

65 = N((2 + i)(2− 3i)) = N(7− 4i) = 72 + 42.

So not only are we able to write them as sum of squares, but this also gives us many ways of
writing 65 as a sum of squares.

2.7 Algebraic integers

Definition (Algebraic integer). An α ∈ C is called an algebraic integer if it is a root of a
monic polynomial in Z[X], ie. there is a monic f ∈ Z[X] such that f(α) = 0.

We can immediately check that this is a sensible definition — not all complex numbers are
algebraic integers, since there are only countably many polynomials with integer coefficients,
hence only countably many algebraic integers, but there are uncountably many complex
numbers.

Notation. For an algebraic integer α, we write Z[α] ≤ C for the smallest subring containing
α.

We can also construct Z[α] by taking it as the image of the map φ : Z[X]→ C given by
g 7→ g(α). So we can also write

Z[α] ∼= Z[X]/I, I = kerφ.

Note that I is non-zero by definition of an algebraic integer.

Proposition. Let α ∈ C be an algebraic integer. Then the ideal

I = ker(φ : Z[X]→ C, f 7→ f(α))

is principal, and is equal to (fα) for some irreducible monic fα.

This is a non-trivial theorem, since Z[X] is not a principal ideal domain so there is no
immediate guarantee that I is generated by one polynomial.

Definition (Minimal polynomial). Let α ∈ C be an algebraic integer. Then the minimal
polynomial of α is the irreducible monic polynomial fα such that I = ker(φ) = (fα).
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Proof. By definition, there is a monic f ∈ Z[X] such that f(a) = 0. So f ∈ I. So I 6= 0. Now
let fα ∈ I be such a polynomial of minimal degree. We may suppose that fα is primitive. We
want to show that I = (fα), and that fα is irreducible.

Let h ∈ I. In Q[X] we have the Euclidean algorithm, so we can write

h = fαq + r,

with r = 0 or deg r < deg fα. This was done over Q[X], not Z[X]. We now clear denominators:
multiplying by some non-zero a ∈ Z we get

ah = fα(aq) + (ar),

where now (aq), (ar) ∈ Z[X]. We now evaluate these polynomials at α. Then we have

ah(α) = fα(α)aq(α) + ar(α).

We know fα(α) = h(α) = 0, since fα and h are both in I. So ar(α) = 0. So (ar) ∈ I. As
fα ∈ I has minimal degree, we cannot have deg(r) = deg(ar) < deg(fa). So we must have
r = 0.

Hence we know
ah = fα · (aq)

is a factorization in Z[X]. This is almost right, but we want to factor h, not ah. Again,
taking contents of everything, we get

ac(h) = c(ah) = c(fα(aq)) = c(aq),

as fα is primitive. In particular, a | c(aq). This, by definition of content, means that (aq)
can be written as aq̄, where q̄ ∈ Z[X]. Cancelling a, we get q = q̄ ∈ Z[X]. So we know

h = fαq ∈ (fα).

So we know I = (fα).
To show that fα is irreducible, note that

Z[X]

(fα)
∼=

Z[X]

kerφ
∼= im(φ) = Z[α] ≤ C.

Since C is an integral domain, so is im(φ). So we know Z[X]/(fα) is an integral domain. So
(fα) is prime. So fα is prime, hence it is irreducible.

Example.

(i) We know α = i is an algebraic integer with fα = X2 + 1.

(ii) Also, α =
√

2 is an algebraic integer with fα = X2 − 2.

(iii) More interestingly, α = 1
2(1 +

√
−3) is an algebraic integer with fα = X2 −X − 1.

(iv) The monic polynomial X5 −X + d ∈ Z[X] with d ∈ Z≥0 has precisely one real root α,
which is an algebraic integer. It is a theorem, which will be proved in II Galois Theory,
that this α cannot be constructed from integers via the operations +,−,×,÷, n

√
· . It

is also a theorem in that course that degree 5 polynomials are the smallest degree for
which this can happen.

Lemma. Let α ∈ Q be an algebraic integer. Then α ∈ Z.
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Proof. Let fα ∈ Z[X] be the minimal polynomial, which is irreducible. In Q[X], the
polynomial X − α must divide fα. However, by Gauss’ lemma, we know f ∈ Q[X] is
irreducible. So we must have fα = X − α ∈ Z[X]. So α is an integer.

It turns out the collection of all algebraic integers form a subring of C. This is not at all
obvious — given f, g ∈ Z[X] monic such that f(α) = g(α) = 0, there is no easy way to find a
new monic h such that h(α+ β) = 0. We will prove this later on in the course.

2.8 Hilbert’s basis theorem

We now revisit the idea of Noetherian rings, something we have briefly mentioned when
proving that PIDs are UFDs.

Definition (Noetherian ring). A ring is Noetherian if for any chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · · ,

then there is some N such that IN = IN+1 = IN+2 = · · · .
This condition is known as the ascending chain condition (ACC).

In this language, we have shown that PIDs are Noetherian. The following is the correct
general context for this.

Definition (Finitely generated ideal). An ideal I is finitely generated if it can be written as
I = (r1, · · · , rn) for some r1, · · · , rn ∈ R.

Proposition. A ring is Noetherian if and only if every ideal is finitely generated.

Proof. Suppose every ideal of R is finitely generated. Given the chain I1 ⊆ I2 ⊆ · · · , consider
the ideal

I = I1 ∪ I2 ∪ I3 ∪ · · · .

This is an ideal, as you will check yourself in Example Sheet 2. We know I is finitely generated,
say I = (r1, · · · , rn), with ri ∈ Iki . Let

K = max
i=1,··· ,n

{ki}.

Then r1, · · · , rn ∈ IK . So IK = I. So IK = IK+1 = IK+2 = · · · .
To prove the other direction, suppose there is an ideal I CR that is not finitely generated.

We pick r1 ∈ I. Since I is not finitely generated, we know (r1) 6= I. So we can find some
r2 ∈ I \ (r1). Again (r1, r2) 6= I. So we can find r3 ∈ I \ (r1, r2). We continue on, and then
can find an infinite strictly ascending chain

(r1) ⊆ (r1, r2) ⊆ (r1, r2, r3) ⊆ · · · .

So R is not Noetherian.

Theorem (Hilbert basis theorem). Let R be a Noetherian ring. Then so is R[X].

Proof. Let J CR[X] be an ideal.
Let f1 ∈ J be a polynomial of minimal degree. If J 6= (f1) then let f2 ∈ J \ (f1) be a

polynomial of minimal degree. If J 6= (f1, f2) let f3 ∈ J \ (f1, f2) be a polynomial of minimal
degree. Continuing in this way, if J = (f1, . . . , fi) then we are done, so suppose not.

Let ai ∈ R be the non-zero coefficient of the largest power of X in fi, and consider the
ideals (a1) ⊆ (a1, a2) ⊆ · · · ⊆ (a1, a2, . . . , ai) ⊆ · · · of R. As R is Noetherian these stabilise,
so (a1, a2, . . .) = (a1, a2, . . . , am) for some m.
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Now am+1 ∈ (a1, a2, . . . , am), so

am+1 =
m∑
i=1

ai · bi.

Thus the polynomial

g =

m∑
i=1

bifiX
deg fm+1−deg fi

has the same degree and top coefficient as fm+1. (Note that deg fm+1 ≥ deg fi for i ≤ m.)
Thus fm+1 − g has degree strictly smaller than fm+1. But g ∈ (f1, . . . , fm) and fm+1 6∈
(f1, . . . , fm), so

fm+1 − g 6∈ (f1, . . . , fm),

which contradicts the fact that we chose fm+1 to have minimal degree among polynomials in
J but not in (f1, . . . , fm).

Hence the process we started with must terminate at some point, so J is finitely-generated.

Corollary. Z[X1, X2, . . . , Xn] is Noetherian, and for F a field F [X1, X2, . . . , Xn] is Noethe-
rian.

Proposition. Let R be a Noetherian ring and I be an ideal of R. Then R/I is Noetherian.

Proof. Let J CR/I be an ideal. We want to show that J is finitely generated. By the ideal
correspondence, it corresponds to some ideal J ′CR containing I. This is an ideal of R, and is
hence finitely generated since R is Noetherian. So J ′ = (r1, · · · , rn) for some r1, · · · , rn ∈ R.
Then J may be generated by r1 + I, · · · , rn + I.

A finitely-generated ring is a quotient of some Z[X1, X2, . . . , Xn], giving:

Corollary. Any finitely-generated ring is Noetherian.
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3 Modules

Finally, we are going to look at modules. Recall that to define a vector space, we first pick
some base field F. We then defined a vector space to be an abelian group V with an action
of F on V (ie. scalar multiplication) that is compatible with the multiplicative and additive
structure of F.

In the definition, we did not at all mention division in F. So in fact we can make the same
definition, but allow F to be a ring instead of a field. We call these modules. Unfortunately,
most results we prove about vector spaces do use the fact that F is a field. So many linear
algebra results do not apply to modules, and modules have much richer structures.

3.1 Definitions and examples

Definition (Module). Let R be a commutative ring. We say a quadruple (M,+, 0M , · ) is
an R-module if

(i) (M,+, 0M ) is an abelian group

(ii) The operation · : R×M →M satisfies

(a) (r1 + r2) ·m = (r1 ·m) + (r2 ·m);

(b) r · (m1 +m2) = (r ·m1) + (r ·m2);

(c) r1 · (r2 ·m) = (r1 · r2) ·m; and

(d) 1R ·M = m.

Note that there are two different additions going on — addition in the ring and addition
in the module, and similarly two notions of multiplication. However, it is easy to distinguish
them since they operate on different things. If needed, we can make them explicit by writing,
say, +R and +M .

We can think of modules as rings acting on abelian groups, just as groups can act on sets.
Hence we might say “R acts on M” to mean M is an R-module.

Example. Let F be a field. An F-module is precisely the same as a vector space over F (the
axioms are the same).

Example. For any ring R, we have the R-module Rn = R×R× · · · ×R via

r · (r1, · · · , rn) = (rr1, · · · , rrn),

using the ring multiplication. This is the same as the definition of the vector space Fn for
fields F.

Example. Let I CR be an ideal. Then it is a R-module via

r ·M a = r ·R a, r1 +M r2 = r1 +R r2.

Also, R/I is an R-module via

r ·M (a+ I) = (r ·R a) + I,

Example. A Z-module is precisely the same as an abelian group. For A an abelian group,
we have

Z×A −→ A

(n, a) 7−→ a+ · · ·+ a︸ ︷︷ ︸
n times

,
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where we adopt the notation

a+ · · ·+ a︸ ︷︷ ︸
−n times

= (−a) + · · ·+ (−a)︸ ︷︷ ︸
n times

,

and adding something to itself 0 times is just 0.
This definition is forced upon us, since by the axioms of a module, we must have (1, a) 7→ a.

Then we must send, say, (2, a) = (1 + 1, a) 7→ a+ a.

Example. Let F be a field, V a vector space over F, and α : V → V be a linear map. Then
V is an F[X]-module via

F [X]× V → V

(f, v) 7→ f(α)(v).

This is a module. Picking a different α’s will give a different F[X]-module structures.

Example. Let φ : R → S be a homomorphism of rings. Then any S-module M may be
considered as an R-module via

R×M −→M

(r,m) 7−→ φ(r) ·M m.

Definition (Submodule). Let M be an R-module. A subset N ⊆M is an R-submodule if it
is a subgroup of (M,+, 0M ), and if n ∈ N and r ∈ R, then rn ∈ N . We write N ≤M .

Example. R itself is an R-module. A subset of R is a submodule if and only if it is an ideal.

Example. A subset of an F-module V , where F is a field, is a F-submodule if and only if it
is a vector subspace of V .

Definition (Quotient module). Let N ≤M be an R-submodule. The quotient module M/N
is the set of N -cosets in (M,+, 0M ), with the R action given by

r · (m+N) = (r ·m) +N.

This is well-defined and is indeed a module.
Note that modules are different from rings and groups. In groups, we had subgroups, and

we had a special kind of subgroups called normal subgroups. We are only allowed to quotient
by normal subgroups. In rings, we have subrings and ideals—which are not a special kind of
subrings— and we only quotient by ideals. In modules we only have submodules, and we can
quotient by arbitrary submodules.

Definition (R-module homomorphism and isomorphism). A function f : M → N between
R-modules is a R-module homomorphism if it is a homomorphism of abelian groups, and
satisfies

f(r ·m) = r · f(m)

for all r ∈ R and m ∈M .
An isomorphism is a bijective homomorphism, and two R-modules are isomorphic if there

is an isomorphism between them.

Note that on the left, the multiplication is the action in M , while on the right, it is the
action in N .
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Example. If F is a field and V,W are F-modules (i.e. vector spaces over F), then an F-module
homomorphism is precisely an F-linear map.

Theorem (First isomorphism theorem). Let f : M → N be an R-module homomorphism.
Then

ker f = {m ∈M : f(m) = 0}

is an R-submodule of M . Similarly,

im f = {f(m) : m ∈M}

is an R-submodule of N . Furthermore there is an R-module isomorphism

M

ker f
∼= im f.

We will not prove this again. The proof is exactly the same.

Theorem (Second isomorphism theorem). Let A,B ≤M . Then

A+B = {m ∈M : m = a+ b for some a ∈ A, b ∈ B}

is a submodule of M and A ∩ B is a submodule of M . Furthermore there is an R-module
isomorphism

A+B

A
∼=

B

A ∩B
.

Theorem (Third isomorphism theorem). Let N ≤ L ≤M . Furthermore there is an R-module
isomorphism

M

L
∼=
(
M

N

)/( L
N

)
.

As usual, we have a correspondence

{submodules of M/N} ←→ {submodules of M which contain N}.

It is an exercise to see what these mean in the cases where R is a field, and modules are
vector spaces.

We now have a new concept that was not present in rings and groups.

Definition (Annihilator). Let M be a R-module, and m ∈M . The annihilator of m is

Ann(m) = {r ∈ R : r ·m = 0}.

For any set S ⊆M , we define

Ann(S) = {r ∈ R : r ·m = 0 for all m ∈ S} =
⋂
m∈S

Ann(m).

In particular, for the module M itself, we have

Ann(M) = {r ∈ R : r ·m = 0 for all m ∈M} =
⋂
m∈M

Ann(m).

Note that the annihilator is a subset of R. Moreover it is an ideal — if r ·m = 0 and
s ·m = 0, then (r + s) ·m = r ·m+ s ·m = 0. So r + s ∈ Ann(m). Moreover, if r ·m = 0,
then also (sr) ·m = s · (r ·m) = 0. So sr ∈ Ann(m).
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Definition (Submodule generated by an element). Let M be an R-module, and m ∈ M .
The submodule generated by m is

Rm = {r ·m ∈M : r ∈ R}.

Consider the R-module homomorphism

φ : R −→M

r 7−→ rm.

This is clearly a homomorphism. We have Ann(m) = ker(φ) and Rm = im(φ), so by the first
isomorphism theorem

Rm ∼= R/Ann(m).

As we mentioned, rings acting on modules is analogous to groups acting on sets: we think of
this as the analogue of the orbit stabilizer theorem.

In general, we can generate a submodule with several elements.

Definition (Finitely-generated module). An R-module M is finitely-generated if there is a
finite list of elements m1, · · · ,mk such that

M = Rm1 +Rm2 + · · ·+Rmk = {r1m1 + r2m2 + · · ·+ rkmk : ri ∈ R}.

This is analogous to the notion of a vector space being finite-dimensional. However, in the
generality of modules it behaves somewhat differently. While this definition is rather concrete,
it is often not the most helpful characterization of finitely-generated modules. Instead, we
use the following lemma:

Lemma. An R-module M is finitely-generated if and only if there is a surjective R-module
homomorphism f : Rk �M for some finite k.

Proof. If M = Rm1 +Rm2 + · · ·+Rmk then we define f : Rk →M by

(r1, · · · , rk) 7→ r1m1 + · · ·+ rkmk.

It is clear that this is an R-module homomorphism. It is by definition surjective, so we are
done.

Conversely, given a surjection f : Rk �M , we let

mi = f(0, 0, · · · , 0, 1, 0, · · · , 0),

where the 1 appears in the ith position. We now claim that

M = Rm1 +Rm2 + · · ·+Rmk.

So let m ∈M . As f is surjective, we know

m = f(r1, r2, · · · , rk)

for some ri. We then have

f(r1, r2, · · · , rk) = f((r1, 0, · · · , 0) + (0, r2, 0, · · · , 0) + · · ·+ (0, 0, · · · , 0, rk))
= f(r1, 0, · · · , 0) + f(0, r2, 0, · · · , 0) + f(0, 0, · · · , 0, rk)
= r1f(1, 0, · · · , 0) + r2f(0, 1, 0, · · · , 0) + rkf(0, 0, · · · , 0, 1)

= r1m1 + r2m2 + · · ·+ rkmk.

So the mi generate M .

56



This view is a convenient way of thinking about finitely-generated modules. For example,
we can immediately prove the following corollary:

Corollary. Let M be finitely-generated and N ≤M . Then M/N is also finitely-generated.

Proof. Since m is finitely-generated, we have some surjection f : Rk � M . Moreover, we
have the surjective quotient map q : M �M/N . Then we get the following composition

Rk M M/N,
f q

which is a surjection, since it is a composition of surjections. So M/N is finitely-generated.

Example. A submodule of a finitely-generated module need not be finitely-generated.
We let R = C[X1, X2, · · · ]. We consider the R-module M = R, which is finitely-generated

(by the single element 1). A submodule of the ring is the same as an ideal. Moreover, an
ideal is finitely-generated as an ideal if and only if it is finitely-generated as a module. We
pick the submodule

I = (X1, X2, · · · ),

which we have already seen to be not finitely-generated.

Example. For a complex number α, the ring Z[α] (ie. the smallest subring of C containing
α) is a finitely-generated as a Z-module if and only if α is an algebraic integer.

This is in the last Example Sheet. It allows us to prove that algebraic integers are
closed under addition and multiplication, since it is easier to argue about whether Z[α] is
finitely-generated.

3.2 Direct sums and free modules

Definition (Direct sum of modules). Let M1,M2, · · · ,Mk be R-modules. The direct sum is
the R-module

M1 ⊕M2 ⊕ · · · ⊕Mk,

which is the set M1 ×M2 × · · · ×Mk, with addition given by

(m1, · · · ,mk) + (m′1, · · · ,m′k) = (m1 +m′1, · · · ,mk +m′k),

and the R action is given by

r · (m1, · · · ,mk) = (rm1, · · · , rmk).

We’ve been using one example of the direct sum already, namely

Rn = R⊕R⊕ · · · ⊕R︸ ︷︷ ︸
n times

.

Definition (Linear independence). Let m1, · · · ,mk ∈ M . Then {m1, · · · ,mk} is linearly
independent if

k∑
i=1

rimi = 0

implies r1 = r2 = · · · = rk = 0.

Most modules will not have a basis in the sense we are used to. The next best thing
would be the following:
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Definition (Freely generate). A subset S ⊆M generates M freely if

(i) S generates M

(ii) Any set function ψ : S → N to an R-module N extends to an R-module map θ : M → N .

Note that if θ1, θ2 are two such extensions, we can consider θ1− θ2 : S →M . Then θ1− θ2

sends everything in S to 0. So S ⊆ ker(θ1 − θ2) ≤M . So the submodule generated by S lies
in ker(θ1− θ2) too. But this is by definition M . So M ≤ ker(θ1− θ2) ≤M , ie. equality holds.
So θ1 − θ2 = 0. So θ1 = θ2. So any such extension is unique.

Thus, what this definition tells us is that giving a map from M to N is exactly the same
thing as giving a function from S to N .

Definition (Free module and basis). An R-module is free if it is freely generated by some
subset S ⊆M , and S is called a basis.

We will soon prove that if R is a field, then every module is free. However, if R is not a
field, then there are non-free modules.

Example. The Z-module Z/2 is not free. Suppose Z/2 were generated by some S ⊆ Z/2.
Then this can only possibly be S = {1}. Then this implies there is a homomorphism
θ : Z/2→ Z sending 1 to 1. But it does not send 0 = 1 + 1 to 1 + 1, since homomorphisms
send 0 to 0. So Z/2 is not free.

Proposition. For a subset S = {m1, · · · ,mk} ⊆M , the following are equivalent:

(i) S generates M freely.

(ii) S generates M and the set S is independent.

(iii) Every element of M is uniquely expressible as

r1m1 + r2m2 + · · ·+ rkmk

for some ri ∈ R.

Proof. The fact that (ii) and (iii) are equivalent is something we would expect from what we
know from linear algebra, and in fact the proof is the same. So we only show that (i) and (ii)
are equivalent.

Let S generate M freely. If S is not independent, then we can write

r1m1 + · · ·+ rkmk = 0,

with ri ∈ M and, say, r1 non-zero. We define the set function ψ : S → R by sending
m1 7→ 1R and mi 7→ 0 for all i 6= 1. As S generates M freely, this extends to an R-module
homomorphism θ : M → R.

By definition of a homomorphism, we can compute

0 = θ(0)

= θ(r1m1 + r2m2 + · · ·+ rkmk)

= r1θ(m1) + r2θ(m2) + · · ·+ rkθ(mk)

= r1.

This is a contradiction. So S must be independent.
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To prove the other direction, suppose every element can be uniquely written as r1m1 +
· · ·+ rkmk. Given any set function ψ : S → N , we define θ : M → N by

θ(r1m1 + · · ·+ rkmk) = r1ψ(m1) + · · ·+ rkψ(mk).

This is well-defined by uniqueness, and is clearly a homomorphism. So it follows that S
generates M

Example. The set {2, 3} ∈ Z generates Z. However, they do not generate Z freely, since

3 · 2 + (−2) · 3 = 0.

Recall from linear algebra that if a set S spans a vector space V , and it is not independent,
then we can just pick some useless elements and throw them away in order to get a basis.
However, this is no longer the case in modules: neither 2 nor 3 generate the Z-module Z.

Definition (Relations). If M is a finitely-generated R-module, we have shown that there is
a surjective R-module ϕ : Rk →M . We call ker(φ) the relation module for those generators.

Definition (Finitely presented module). A finitely-generated module is finitely-presented if
we have a surjective homomorphism φ : Rk →M and kerφ is finitely-generated.

Being finitely-presented means I can tell you everything about the module with finitely
much paper. More precisely, if {m1, · · · ,mk} generate M and {n1, n2, · · · , nk} generate
ker(φ), then each

ni = (ri1, · · · , rik) ∈ Rk

corresponds to the relation

ri1m1 + ri2m2 + · · ·+ rikmk = 0

in M . So M is the module generated by writing down R-linear combinations of m1, · · · ,mk,
and say two elements are the same if they differ by these relations. Since there are only
finitely many generators and finitely many such relations, we can specify the module with
finitely much information.

Proposition (Invariance of dimension/rank). Let R be a non-zero ring. If Rn ∼= Rm as an
R-module, then n = m.

Proof. We know this is true if R is a field, so we reduce to that case.
We start with a general construction. If I CR be an ideal, and M be an R-module, we

define
IM = {am ∈M : a ∈ I,m ∈M} ≤M.

So we can form the quotient module M/IM , which is an R-module again.
Now if b ∈ I, then its action on M/IM is

b(m+ IM) = bm+ IM = 0 + IM.

So we can make M/IM into an R/I module by

(r + I) · (m+ IM) = r ·m+ IM.

Now let us go back to the case at hand., and suppose that Rn ∼= Rm. Choose I C R a
maximal ideal.1 By the above construction we obtain an isomorphism (R/I)n ∼= (R/I)m of
R/I-modules. But as I is maximal, R/I is a field, so n = m by invariance of dimension for
vector spaces.

1There is one. An ideal of R is proper if and only if it does not contain 1R, so an increasing union of proper
ideals is proper; it then follows from Zorn’s lemma that there is a maximal proper ideal. In fact the existence
of maximal ideals is equivalent to the axiom of choice, and so to Zorn’s lemma.
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3.3 Matrices over Euclidean domains

Until further notice, we will assume R is a Euclidean domain, and we write φ : R \ {0} → Z≥0

for its Euclidean function. We know that in such a Euclidean domain, the greatest common
divisor gcd(a, b) exists for all a, b ∈ R, and there are x, y ∈ R such that ax+ by = gcd(a, b).

Definition (Elementary row operations). Elementary row operations on an m× n matrix A
with entries in R are operations of the form

(ER1) Add c ∈ R times the ith row to the jth row. This may be done by multiplying by the
following matrix on the left:

1
. . .

1 c
. . .

1
. . .

1


,

where c appears in the ith column of the jth row.

(ER2) Swap the ith and jth rows. This can be done by left multiplication by the permutation
matrix 

1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1



.

The off-diagonal entries are in positions (i, j) and (j, i).

(ER3) We multiply the ith row by a unit c ∈ R. We do this via the following matrix:

1
. . .

1
c

1
. . .

1


Notice all these matrices are invertible. We also have elementary column operations (EC1)–
(EC3) defined in a similar fashion, corresponding to right multiplication by these matrices.
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Definition (Equivalent matrices). Two matrices are equivalent if we can get from one to
the other via a sequence of such elementary row and column operations.

Note that if A and B are equivalent, then we can write

B = QAT−1

for some invertible matrices Q and T−1.
Our aim is to find, for each matrix, a matrix equivalent to it that is a simple as possible.

Recall from IB Linear Algebra that if R is a field then we can put any matrix into the form(
Ir 0
0 0

)
via elementary row and column operations. This is no longer true when working with rings.
For example, over Z, we cannot put the matrix(

2 0
0 0

)
into that form, since no operation can turn the 2 into a 1. What we get is the following result:

Theorem (Smith normal form). An m× n matrix over a Euclidean domain R is equivalent
to a diagonal matrix 

d1

d2

. . .

dr
0

. . .

0


,

with the di all non-zero and
d1 | d2 | d3 | · · · | dr.

Note that the divisibility criterion is similar to the classification of finitely-generated
abelian groups. In fact, we will derive that as a consequence of the Smith normal form.

Definition (Invariant factors). The dk obtained in the Smith normal form are called the
invariant factors of A.

Proof. Throughout the process, we will keep calling our matrix A, even though it keeps
changing in each step, so that we don’t have to invent hundreds of names for these matrices.

If A = 0, then done! So suppose A 6= 0. So some entry is not zero, say, Aij 6= 0. Swapping
the ith and first row, then jth and first column, we arrange that A11 6= 0. We now try to
reduce A11 as much as possible. We have the following two possible moves:

(i) If there is an A1j not divisible by A11, then we can use the Euclidean algorithm to write

A1j = qA11 + r.

By assumption, r 6= 0. So φ(r) < φ(A11) (where φ is the Euclidean function).

So we do a column operation to subtract q copies of the first column from the jth
column. Then in position (1, j), we now have r. We swap the first and jth column such
that r is in position (1, 1), and we have strictly reduced the value of φ at the first entry.
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(ii) If there is an Ai1 not divisible by A11, we do the same thing, and this again reduces
φ(A11).

We keep performing these until no move is possible. Since the value of φ(A11) strictly decreases
every move, we must finish after finitely many applications. Then we know that we must
have A11 dividing all A1j and Ai1. Now we can just subtract appropriate multiples of the
first column from others so that A1j = 0 for j 6= 1. We do the same thing with rows so that
the first row is cleared. Then we have a matrix of the form

A =


d 0 · · · 0
0
... C
0

 .

We would like to say “do the same thing with C”, but then this would get us a regular
diagonal matrix, not necessarily in Smith normal form. So we need some preparation.

(iii) Suppose there is an entry of C not divisible by d, say Aij with i, j > 1.

A =



d 0 · · · 0 · · · 0
0
...
0 Aij
...
0


We suppose

Aij = qd+ r,

with r 6= 0 and φ(r) < φ(d). We add column 1 to column j, and subtract q times row
1 from row i. Now we get r in the (i, j)th entry, and we want to send it back to the
(1, 1) position. We swap row i with row 1, swap column j with row 1, so that r is in the
(1, 1)th entry, and φ(r) < φ(d).

Now we have messed up the first row and column. So we go back and do (i) and (ii)
again until the first row and columns are cleared. Then we get

A =


d′ 0 · · · 0
0
0 C ′

0

 ,

where
φ(d′) ≤ φ(r) < φ(d).

As this strictly decreases the value of φ(A11), we can only repeat this finitely many times.
When we stop, we will end up with a matrix

A =


d 0 · · · 0
0
... C
0

 ,
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and d divides every entry of C. Now we apply the entire process to C. When we do this
process, notice all allowed operations don’t change the fact that d divides every entry of C.

So applying this recursively, we obtain a diagonal matrix with the claimed divisibility
property.

Note that if we didn’t have to care about the divisibility property, we can just do (i) and
(ii), and we can get a diagonal matrix. The trick to get to the Smith normal form is (iii).

Recall that the di are called the invariant factors. So it would be nice if we can prove
that the di are indeed invariant. It is not clear from the algorithm that we will always end
up with the same di. Indeed, we can multiply a whole row by −1 and get different invariant
factors. However, it turns out that these are unique up to multiplication by units.

To study the uniqueness of the invariant factors of a matrix A, we relate them to other
invariants, which involves minors.

Definition (Minor). A k × k minor of a matrix A is the determinant of a k × k sub-matrix
of A (ie. a matrix formed by removing all but k rows and all but k columns).

Any given matrix has many minors, since we get to decide which rows and columns we
can throw away. The idea is to consider the ideal generated by all the minors of matrix.

Definition (Fitting ideal). For a matrix A, the kth Fitting ideal Fitk(A) C R is the ideal
generated by the set of all k × k minors of A.

A key property is that equivalent matrices have the same Fitting ideal, even if they might
have very different minors.

Lemma. Let A and B be equivalent matrices. Then for all k we have

Fitk(A) = Fitk(B).

Proof. It suffices to show that changing A by a row or by a column operation does not
change the Fitting ideal. Since taking the transpose does not change the determinant, ie.
Fitk(A) = Fitk(A

T ), it suffices to consider just row operations.
The most difficult one is taking linear combinations. Let B be the result of adding c times

the ith row to the jth row, and fix C a k × k minor of A. Suppose that the corresponding
minor of B is C ′. We then want to show that detC ′ ∈ Fitk(A).

If the jth row is outside of C, then the minor detC is unchanged. If both the ith and jth
rows are in C, then C ′ is obtained from C by a row operation, which does not change the
determinant.

Suppose the jth row is in C and the ith row is not. Suppose the ith row is f1, · · · , fk.
Then C is changed to C ′, differing only in the jth row, which is:

(Cj1 + cf1, Cj2 + cf2, · · · , Cjk + cfk).

We compute detC ′ by expanding along this row, giving

detC ′ = detC + cdetD,

where D is the matrix obtained by replacing the jth row of C with (f1, · · · , fk). Now detC
is definitely a minor of A, and detD is still a minor of A, just another one. Since ideals are
closed under addition and multiplications, it follows that det(C ′) ∈ Fitk(A).

The other operations are much simpler. They just follow by standard properties of the
effect of swapping rows or multiplying rows on determinants.

So after any row operation, the resultant submatrix C ′ satisfies det(C ′) ∈ Fitk(A). Since
this is true for all minors, we must have Fitk(B) ⊆ Fitk(A). But row operations are invertible.
So we must have Fitk(A) ⊆ Fitk(B) as well. So they must be equal.
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Corollary. If A has Smith normal form

B =



d1

d2

. . .

dr
0

. . .

0


,

then
Fitk(A) = (d1d2 · · · dk).

In particular dk is unique up to associates.

Proof. We have Fitk(B) = (d1d2 · · · dk) as the only possible contributing minors are from the
diagonal submatrices, and the minor from the top left square submatrix divides all other
diagonal ones. By the previous Lemma this is also Fitk(A). The final claim follows since we
can find dk by dividing a generator of Fitk(A) by a generator of Fitk−1(A).

Example. Consider the matrix
(

2 −1
1 2

)
over Z. We can perform the moves(

2 −1
1 2

) EC1
 
(

1 −1
3 2

) EC1
 
(

1 0
3 5

) ER1
 
(

1 0
0 5

)
to put in into Smith normal form.

But if
(
d1 0
0 d2

)
is its Smith normal form then we also know that

(d1) = (2,−2, 1, 2) = (1)

so d1 = ±1, and
(d1d2) = (det

(
2 −1
1 2

)
) = (5)

so d1d2 = ±5, and hence up to units d1 = 1 and d2 = 5.

We are now going to use Smith normal forms to do things. We will need some preparation,
in the form of the following lemma:

Lemma. Let R be a principal ideal domain. Then any submodule of Rm is generated by at
most m elements.

Proof. Let N ≤ Rm be a submodule. Consider the ideal

I = {r ∈ R : (r, r2, · · · , rm) ∈ N for some r2, · · · , rm ∈ R}.

It is clear this is an ideal. Since R is a principal ideal domain, we must have I = (a) for some
a ∈ R. We now choose an element

n = (a, a2, · · · , am) ∈ N.

Now for any (r1, r2, · · · , rm) ∈ N we know that r1 ∈ I, so a | r1. Thus we can write r1 = ra.
Then we can form

(r1, r2, · · · , rm)− r(a, a2, · · · , am) = (0, r2 − ra2, · · · , rm − ram) ∈ N.

This lies in N ′ = N ∩ ({0} × Rm−1) ≤ Rm−1. Thus everything in N can be written as a
multiple of n plus something in N ′. But by induction, since N ′ ≤ Rm−1, we know N ′ is
generated by at most m − 1 elements. So there are n2, · · · , nm ∈ N ′ generating N ′. So
n, n2, · · · , nm generate N .
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Theorem. Let R be a Euclidean domain, and let N ≤ Rm be a submodule. Then there
exists a basis v1, · · · , vm of Rm such that N is generated by d1v1, d2v2, · · · , drvr for some
0 ≤ r ≤ m and some di ∈ R such that d1 | d2 | · · · | dr.

Proof. By the previous lemma, N is generated by some elements x1, · · · , xn with n ≤ m.
Each xi is an element of Rm. So we can think of it as a column vector of length m, and we
can form a m× n matrix

A =

 ↑ ↑ ↑
x1 x2 · · · xn
↓ ↓ ↓

 .

We can put this in Smith normal form. Since there are no more columns than there are rows,
this is of the form 

d1

d2

. . .

dr
0

. . .

0
0
...
0


Recall that we got to the Smith normal form by row and column operations. Performing
row operations is just changing the basis of Rm, while each column operation changes the
generators of N .

So what this tells us is that there is a new basis v1, · · · , vm of Rm such that N is generated
by d1v1, · · · , drvr. By definition of Smith normal form, the divisibility condition holds.

Corollary. Let R be a Euclidean domain. A submodule of Rm is free of rank at most m. In
other words, the submodule of a free module is free, and of a smaller (or equal) rank.

Proof. Continuing with the notation from the argument above, we claim that the set
d1v1, . . . , drvr freely generate N . This is because a linear dependence between them would
give a linear dependence between the v1, . . . , vm.

Note that this is not true for all rings. For example, (2, X) C Z[X] is a submodule of
Z[X], but because it is not a principal ideal it cannot be isomorphic to Z[X].

Theorem (Classification of finitely-generated modules over a Euclidean domain). Let R be
a Euclidean domain, and M be a finitely-generated R-module. Then

M ∼=
R

(d1)
⊕ R

(d1)
⊕ · · · ⊕ R

(dr)
⊕R⊕R⊕ · · · ⊕R

for some di 6= 0, and d1 | d2 | · · · | dr.

Proof. Since M is finitely-generated, there is a surjection φ : Rm → M . So by the first
isomorphism theorem we have

M ∼=
Rm

kerφ
.
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Since kerφ is a submodule of Rm, by the previous theorem, there is a basis v1, · · · , vm of Rm

such that kerφ is generated by d1v1, · · · , dr, vr for 0 ≤ r ≤ m and d1 | d2 | · · · | dr. So

M ∼=
Rm

((d1, 0, · · · , 0), (0, d2, 0, · · · , 0), · · · , (0, · · · , 0, dr, 0, · · · , 0))
.

This is
R

(d1)
⊕ R

(d2)
⊕ · · · ⊕ R

(dr)
⊕R⊕ · · · ⊕R,

with m− r copies of R.

This is particularly useful in the case where R = Z, where R-modules are abelian groups.

Example. Let A be the abelian group generated by a, b, c with relations

2a+ 3b+ c = 0,

a+ 2b = 0,

5a+ 6b+ 7c = 0.

In other words, we have

A =
Z3

((2, 3, 1), (1, 2, 0), (5, 6, 7))
.

We would like to get a better description of A. (As things stand it is not even obvious if this
module is the zero module or not.)

To work out a good description, we consider the matrix

X =

2 1 5
3 2 6
1 0 7

 .

To figure out its Smith normal form, we find the fitting ideals. We have

Fit1(X) = (1, other stuff) = (1).

So d1 = 1.

We have to work out the second fitting ideal. In principle, we have to check all the minors,
but we immediately notice ∣∣∣∣2 1

3 2

∣∣∣∣ = 1.

So Fit2(X) = (1, other stuff) = (1), and so d2 = 1. Finally, we find

Fit3(X) =

∣∣∣∣∣∣
2 1 5
3 2 6
1 0 7

∣∣∣∣∣∣
 = (3),

so d3 = 3. Thus

A ∼=
Z

(1)
⊕ Z

(1)
⊕ Z

(3)
∼=

Z
(3)
∼= C3.

We re-state the previous theorem in the specific case where R is Z, since this is particularly
useful.

66



Corollary (Classification of finitely-generated abelian groups). Any finitely-generated abelian
group is isomorphic to

Cd1 × · · · × Cdr × C∞ × · · · × C∞,

where C∞ ∼= Z is the infinite cyclic group, with d1 | d2 | · · · | dr.

Proof. Let R = Z, and apply the classification of finitely-generated R-modules.

Note that if the group is finite, then there cannot be any C∞ factors. So it is just a
product of finite cyclic groups.

Corollary. If A is a finite abelian group, then

A ∼= Cd1 × · · ·Cdr ,

with d1 | d2 | · · · | dr.

This is the result we stated near the beginning of the course.
Recall that we were also to decompose a finite abelian group into products of the form

Cpk , where p is a prime, and we said it was just the Chinese remainder theorem. This is
again in general true, but we, again, need the Chinese remainder theorem.

Lemma (Chinese remainder theorem). Let R be a Euclidean domain, and a, b ∈ R be such
that gcd(a, b) = 1. Then

R

(ab)
∼=

R

(a)
⊕ R

(b)

as R-modules.

The proof is just that of the Chinese remainder theorem written in ring language.

Proof. Consider the R-module homomorphism

φ :
R

(a)
⊕ R

(b)
−→ R

(ab)

(r1 + (a), r2 + (b)) 7−→ br1 + ar2 + (ab).

To show this is well-defined, suppose

(r1 + (a), r2 + (b)) = (r′1 + (a), r′2 + (b)).

Then

r1 = r′1 + xa

r2 = r′2 + yb.

So
br1 + ar2 + (ab) = br′1 + xab+ ar′2 + yab+ (ab) = br′1 + ar′2 + (ab).

So this is indeed well-defined. It is clear that this is a module map.
We now have to show it is surjective and injective. So far, we have not used the hypothesis,

that gcd(a, b) = 1. As gcd(a, b) = 1, by the Euclidean algorithm we can write

1 = ax+ by

for some x, y ∈ R. So we have

φ(y + (a), x+ (b)) = by + ax+ (ab) = 1 + (ab).
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So 1 ∈ imφ. Since this is an R-module map, we get

φ(r(y + (a), x+ (b))) = r · (1 + (ab)) = r + (ab).

The key fact is that R/(ab) as an R-module is generated by 1. Thus φ is surjective.
Finally, we have to show it is injective, i.e. that the kernel is trivial. Suppose

φ(r1 + (a), r2 + (b)) = 0 + (ab).

Then
br1 + ar2 ∈ (ab).

So we can write
br1 + ar2 = abx

for some x ∈ R. Since a | ar2 and a | abx, we know a | br1. Since a and b are coprime, unique
factorization implies a | r1. Similarly, we know b | r2.

(r1 + (a), r2 + (b)) = (0 + (a), 0 + (b)).

So the kernel is trivial.

Theorem (Primary decomposition theorem). Let R be a Euclidean domain, and M be a
finitely-generated R-module. Then

M ∼= N1 ⊕N2 ⊕ · · · ⊕Nt,

where each Ni is either R or is R/(pn) for some prime p ∈ R and some n ≥ 1.

Proof. We already know that

M ∼=
R

(d1)
⊕ · · · ⊕ R

(dr)
⊕R⊕ · · · ⊕R,

so it suffices to show that each R/(d1) can be written in that form. We let

d = pn1
1 pn2

2 · · · p
nk
k

with pi distinct primes. So each pnii is coprime to each other. So by the previous Lemma
iterated a few times, we have

R

(d1)
∼=

R

(pn1
1 )
⊕ · · · ⊕ R

(pnkk )
.

3.4 Modules over F[X] and normal forms for matrices

For a field F, the polynomial ring F[X] is a Euclidean domain, so the results of the last few
sections apply to it. If V is a vector space on F, and α : V → V is a linear map, then we can
make V into an F[X]-module via

F[X]× V −→ V

(f, v) 7−→ (f(α))(v).

Let us write Vα for this F[X]-module.
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Lemma. If V is a finite-dimensional vector space, then Vα is a finitely-generated F[X]-module.

Proof. If v1, · · · , vn generate V as an F-module, i.e. span V as a vector space over F, then
they also generate Vα as an F[X]-module since F ≤ F[X].

Example. Suppose Vα ∼= F[X]/(Xr) as F[X]-modules. Then in particular they are isomorphic
as F-modules (since being a map of F-modules has fewer requirements than being a map of
F[X]-modules).

Under this bijection, the elements 1, X,X2, · · · , Xr−1 ∈ F[X]/(Xr) form a vector space
basis for Vα. Viewing F[X]/(Xr) as an F-vector space, the action of X has the matrix

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

We also know that in Vα, the action of X is by definition the linear map α. So with respect
to this basis α is given by the same matrix.

Example. Suppose

Vα ∼=
F[X]

((X − λ)r)

for some λ ∈ F. Consider the new linear map

β = α− λ · id : V −→ V.

Then Vβ ∼= F[Y ]/(Y r), for Y = X − λ. So there is a basis for V so that β is represented by
0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

In this basis α is represented by 
λ 0 · · · 0 0
1 λ · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λ


So it is a Jordan block (except the Jordan blocks are the other way round, with zeroes below
the diagonal).

Example. Suppose Vα ∼= F[X]/(f) for some polynomial f , for

f = a0 + a1X + · · ·+ ar−1X
r−1 +Xr.
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This has a basis 1, X,X2, · · · , Xr−1 as well, in which α is represented by the matrix

c(f) =


0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

...
0 0 · · · 1 −ar−1

 .

We call this the companion matrix for the monic polynomial f .

These are different things that can possibly happen. Since we have already classified all
finitely-generated F[X] modules, this allows us to put matrices in a rather nice form.

Theorem (Rational canonical form). Let α : V → V be a linear endomorphism of a
finite-dimensional vector space over F, and Vα be the associated F[X]-module. Then

Vα ∼=
F[X]

(f1)
⊕ F[X]

(f2)
⊕ · · · ⊕ F[X]

(fs)
,

with f1 | f2 | · · · | fs. Thus there is a basis for V in which the matrix for α is the block
diagonal 

c(f1) 0 · · · 0
0 c(f2) · · · 0
...

...
. . .

...
0 0 · · · c(fs)


Proof. We know that Vα is a finitely-generated F[X]-module. By the structure theorem for
these, we know

Vα ∼=
F[X]

(f1)
⊕ F[X]

(f2)
⊕ · · · ⊕ F[X]

(fs)
⊕ 0.

(There can be no copies of F[X], since Vα = V is finite-dimensional over F but F[X] is not.)
The divisibility criterion also follows from the structure theorem. Then the form of the matrix
is immediate.

This is really a canonical form. The Jordan normal form is not canonical, since we can
move the blocks around. The structure theorem determines the factors fi up to units, and
once we require it is monic, there is no choice left.

In terms of matrices, this says that if α is represented by a matrix A ∈Mn,n(F ) in some
basis, then A is conjugate to a matrix of the form above.

From the rational canonical form, we can immediately read off the minimal polynomial as
fs. This is since if we view Vα as the decomposition above, we find that fs(α) kills everything

in F[X]
(fs)

. It also kills the other factors since fi | fs for all i. So fs(α) = 0. We also know that

no smaller polynomial kills V , since it does not kill F[X]
(fs)

.

Similarly, we find that the characteristic polynomial of α is f1f2 · · · fs.
Recall we had a different way of decomposing a module over a Euclidean domain, namely

the primary decomposition: this will give us the Jordan normal form. Before we can use that,
we need to know what the primes are. This is why we need to work over C.

Lemma. The prime elements of C[X] are the X − λ for λ ∈ C (up to multiplication by
units).
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Proof. Let f ∈ C[X]. If f is constant, then it is either a unit or 0. Otherwise, by the
fundamental theorem of algebra, it has a root λ. So it is divisible by X − λ. So if f is
irreducible, it must have degree 1. And clearly everything of degree 1 is prime.

Applying the primary decomposition theorem to C[X]-modules gives us the Jordan normal
form.

Theorem (Jordan normal form). Let α : V → V be an endomorphism of a vector space V
over C, and Vα be the associated C[X] module. Then

Vα ∼=
C[X]

((X − λ1)a1)
⊕ C[X]

((X − λ2)a2)
⊕ · · · ⊕ C[X]

((X − λt)at)
,

where λi ∈ C do not have to be distinct. Thus there is a basis of V in which α has matrix
Ja1(λ1) 0

Ja2(λ2)
. . .

0 Jat(λt)

 ,

where

Jm(λ) =


λ 0 · · · 0
1 λ · · · 0
...

. . .
. . .

...
0 · · · 1 λ


is an m×m matrix.

Proof. Apply the prime decomposition theorem to Vα. Then all primes are of the form X −λ.
We then use our second example at the beginning of the chapter to get the form of the
matrix.

The blocks Jm(λ) are called the Jordan λ-blocks. It turns out that the Jordan blocks are
unique up to reordering, but it does not immediately follow from what we have said so far,
and we will not prove it. It is done in the IB Linear Algebra course.

We can also read off the minimal and characteristic polynomials of α. The minimal
polynomial is ∏

λ

(X − λ)aλ ,

where aλ is the size of the largest λ-block. The characteristic polynomial of α is∏
λ

(X − λ)bλ ,

where bλ is the sum of the sizes of the λ-blocks. Alternatively, it is

t∏
i=1

(X − λi)ai .

From the Jordan normal form, we can also read off the size of the λ-space of α, as the number
of λ-blocks.
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