Part III Characteristic classes and K-theory // Example Sheet 4

Hand in work to questions marked $*$ to my pigeon hole at CMS by 09:00 on Wednesday 26th of April if you would like it marked.

1. On Example Sheet 2 Q1 you showed that if there is an n-dimensional real division algebra then the tangent bundle $T \mathbb{R} \mathbb{P}^{n-1} \rightarrow \mathbb{R} \mathbb{P}^{n-1}$ is trivial, and using Stiefel-Whitney classes you showed that this may only happen if $n=2^{k}$.
By considering $\left[\left(T \mathbb{R} \mathbb{P}^{n-1}\right) \otimes_{\mathbb{R}} \mathbb{C}\right] \in K^{0}\left(\mathbb{R} \mathbb{P}^{n-1}\right)$, show that in fact one must have $n=1,2,4$, or 8 .
2. * Show that $c_{n}\left(\psi^{k}(x)\right)=k^{n} \cdot c h_{n}(x)$. Hence show that the endomorphisms ψ^{k} of $K^{0}(X) \otimes \mathbb{Q}$ may be simultaneously diagonalised, and that the cohomology groups $H^{2 n}(X ; \mathbb{Q})$ may be recovered as eigenspaces of these endomorphisms.
3. Show that the action of the ψ^{k} on $\widetilde{K}^{0}\left(\mathbb{C P}^{3} / \mathbb{C P}^{1}\right)$ may be simultaneously diagonalised over \mathbb{Z}, but that their action on $\widetilde{K}^{0}\left(\mathbb{C P}^{2}\right)$ may not.
4. If $\pi: E \rightarrow X$ is a complex vector bundle of dimension k, show that $\Lambda_{\frac{t}{1-t}}(E-k) \in K^{0}(X)[[t]]$ is a polynomial (in t) of degree at most k.
If there is an immersion $i: \mathbb{R}^{n} \leftrightarrow \mathbb{R}^{n+k}$, by using the expansion $\left(\frac{1}{1+s}\right)^{n+1}=\sum_{j=0}^{\infty}(-1)^{j}\binom{n+j}{j} s^{j}$ show that $2^{\lfloor n / 2\rfloor-j+1}$ divides $\binom{n+j}{j}$ for all $j>k$. Investigate what this means for $n \leq 20$.
5. * Show that the sphere bundle of $\left(\gamma_{\mathbb{C}}^{1, n+1}\right)^{\otimes k} \rightarrow \mathbb{C P}^{n}$ is homeomorphic to the manifold $L_{k}^{2 n+1}=$ $S^{2 n+1} /(\mathbb{Z} / k)$, where \mathbb{Z} / k acts on $S^{2 n+1} \subset \mathbb{C}^{n+1}$ as the k roots of unity.
Hence show that $K^{-1}\left(L_{k}^{2 n+1}\right) \cong \mathbb{Z}$ and that $\tilde{K}^{0}\left(L_{k}^{2 n+1}\right)\left[\frac{1}{k}\right]=0$.
Show that $\tilde{K}^{0}\left(L_{k}^{5}\right)$ is $\mathbb{Z} / k \oplus \mathbb{Z} / k$ if k is odd, and is $\mathbb{Z} /(k / 2) \oplus \mathbb{Z} /(2 k)$ if k is even.
6. Show that the normal bundle of $\mathbb{F P}^{n} \subset \mathbb{F P}^{n+k}$ is $\left(\gamma_{\mathbb{F}}^{1, n+1}\right)^{\oplus k}$, and that there is an open tubular neighbourhood of $\mathbb{F P}^{n}$ whose complement deformation retracts to $\mathbb{F P}^{k-1} \subset \mathbb{F P}^{n+k}$. Hence show that there is a homotopy equivalence $T h\left(\left(\gamma_{\mathbb{F}}^{1, n+1}\right)^{\oplus k} \rightarrow \mathbb{F P}^{n}\right) \simeq \mathbb{F P}_{k}^{n+k}:=\mathbb{F P}^{n+k} / \mathbb{F P}^{k-1}$.
7. * Compute the K-theory of $\mathbb{R} \mathbb{P}_{k}^{n+k}$, including the action of the Adams operations.
8. For $\nu:=\left[\left(\gamma_{\mathbb{R}}^{1, n+1}\right) \otimes \mathbb{C}\right]-1 \in K^{0}\left(\mathbb{R}^{\mathbb{P}^{n}}\right)$ show that

$$
\rho^{\ell}(\nu)=\left\{\begin{array}{ll}
\frac{\ell-1}{2} \nu & \text { if } \ell \text { is odd } \\
\frac{\ell}{2} \nu & \text { if } \ell \text { is even }
\end{array} \in K^{0}\left(\mathbb{R}^{n}\right)\right.
$$

9. If $\pi: E \rightarrow X$ is a d-dimensional real vector bundle, show that the mapping cone of $p: \mathbb{S}(E) \rightarrow X$ is homeomorphic to the Thom space $T h(E)$. If $\pi^{\prime}: E^{\prime} \rightarrow X$ is another such vector bundle and there is a map $f: \mathbb{S}(E) \rightarrow \mathbb{S}\left(E^{\prime}\right)$ which commutes with the projections to X and is a homotopy equivalence, show that there is a map $\phi: T h(E) \rightarrow T h\left(E^{\prime}\right)$ which induces an isomorphism on K-theory. If they are complex vector bundles show furthermore that $\phi^{*}\left(\lambda_{E^{\prime}}\right)=U \cdot \lambda_{E}$ for some unit $U \in K^{0}(X)$, and hence that their cannibalistic classes satisfy $\rho^{k}\left(E^{\prime}\right)=\frac{\psi^{k}(U)}{U} \rho^{k}(E)$ for each k.
10. Using Q8 and Q9 show that if the real vector bundle $\left(\gamma_{\mathbb{R}}^{1, n+1}\right)^{\oplus k} \rightarrow \mathbb{R}^{n}$ is trivial then k is even [use Stiefel-Whitney classes], and $\left(\ell+\frac{\ell-1}{2} \nu\right)^{k / 2}=\ell^{k / 2} \in K^{0}\left(\mathbb{R P}^{n}\right)$ for all odd $\ell \in \mathbb{N}$. Deduce from this that $2^{\lfloor n / 2\rfloor+1}$ divides $\ell^{k / 2}-1$ for all odd ℓ.

Additional Questions

11. (i) If $f: M \rightarrow N$ is a map of closed manifolds equipped with a complex orientation, show that the Gysin map $f_{!}^{K}: K^{0}(M) \rightarrow K^{0}(N)$ satisfies $f_{!}^{K}\left(f^{*}(x) \cdot y\right)=x \cdot f_{!}^{K}(y)$.
(ii) If $\pi: E \rightarrow N$ is a complex vector bundle over a smooth manifold, $s: N \rightarrow E$ is a smooth section transverse to the zero section, and $M:=s^{-1}(0)$, show that the inclusion $i: M \rightarrow N$ has a complex orientation, and that $i_{!}^{K}(1)=e^{K}(E) \in K^{0}(N)$.
(iii) When k is even show that the inclusion $i: \mathbb{R P}^{n} \rightarrow \mathbb{R} \mathbb{P}^{n+k}$ has a complex orientation. Determine the map $i_{!}^{K}: K^{0}\left(\mathbb{R P}^{n}\right) \rightarrow K^{0}\left(\mathbb{R} \mathbb{P}^{n+k}\right)$.
12. If a compact 8 -manifold M is given a complex structure on its tangent bundle $T M$, with Chern classes $c_{i}=c_{i}(T M)$, show that the integers

$$
\left\langle[M], c_{1}^{4}-4 c_{1}^{2} c_{2}+4 c_{2}^{2}\right\rangle \quad\left\langle[M], c_{2}^{2}-2 c_{1} c_{3}\right\rangle
$$

are independent of the choice of complex structure, and that

$$
\begin{array}{rlrl}
\left\langle[M],-c_{1}^{4}+4 c_{1}^{2} c_{2}+c_{1} c_{3}+3 c_{2}^{2}-c_{4}\right\rangle & \equiv 0 & & \bmod 720 \\
\left\langle[M], 2 c_{1}^{4}+c_{1}^{2} c_{2}\right\rangle & \equiv 0 & \bmod 12 \\
\left\langle[M], c_{1} c_{3}-2 c_{4}\right\rangle & \equiv 0 & & \bmod 4
\end{array}
$$

[You should certainly use a computer to do the second part, and don't expect to easily get the full answer.]

Very Additional Question

13. Taking inspiration from Example Sheet 2 Q 10 , calculate $K^{*}\left(G r_{2}\left(\mathbb{C}^{4}\right)\right)$ as a ring. [This is really very involved, especially getting the multiplicative structure. Probably you will need to use something like Sage to do some commutative algebra calculations.]

Comments or corrections to or257@cam.ac.uk

