Lent Term 2023

O. Randal-Williams

Part III Characteristic classes and K-theory // Example Sheet 3

Hand in work to questions marked * to my pigeon hole at CMS by 09:00 on Tuesday 14th March if you would like it marked.

- 1. If $\pi : E \to X$ is a vector bundle over a compact Hausdorff space, show there is a finite cover of X by *closed* sets A_1, \ldots, A_n over each of which E is trivial. Hence, elaborating on Example 3.3.7, show that every element of $\tilde{K}^0(X)$ is nilpotent.
- 2. If X is a compact Hausdorff space, show that

 $K^{-1}(X) \cong \{ \text{maps } X \to GL_{\infty}(\mathbb{C}) \} / \text{homotopy}$ $K^{0}(X) \cong \{ \text{maps } X \to \mathbb{Z} \times Gr_{\infty}(\mathbb{C}^{\infty}) \} / \text{homotopy}$

where $GL_{\infty}(\mathbb{F})$ is given by an appropriate union of the $GL_n(\mathbb{C})$'s and $Gr_{\infty}(\mathbb{C}^{\infty})$ is given by an appropriate union of the $Gr_n(\mathbb{C}^{\infty})$'s. [There is a point-set topological subtlety that you should at least identify, and ideally resolve.]

3. If Y is a finite CW complex only having cells of even dimension, show that

$$K^0(Y) \cong \mathbb{Z}^{\text{#cells of } Y}$$
 and $K^{-1}(Y) = 0.$

Hence show that for any X the external product $-\boxtimes -: K^0(X) \otimes K^0(Y) \to K^0(X \times Y)$ is an isomorphism. [Proceed by induction on the number of cells of Y.]

4. * Show that defining $c_i(E - F)$ by $c(E - F) = \frac{c(E)}{c(F)}$ gives well-defined (nonlinear!) functions $c_i: K^0(X) \to H^{2i}(X; \mathbb{Z})$. Using this, compute the ring structure on $K^0(\mathbb{CP}^2)$. [You should use the splitting principle to find a formula for $c_1(E \otimes F)$ and $c_2(E \otimes F)$.]

Hence compute the ring structure of $K^0(\mathbb{CP}^2 \# \mathbb{CP}^2)$ and of $K^0(\mathbb{CP}^2 \# \overline{\mathbb{CP}}^2)$, and show they are not isomorphic as rings.

5. * If $p: Y \to X$ is an *n*-fold covering space and $\pi: E \to Y$ is a vector bundle, show that there is a vector bundle $F \to X$ with $F_x = \bigoplus_{y \in p^{-1}(x)} E_y$. Show that this construction induces a homomorphism

$$p_!: K^0(Y) \longrightarrow K^0(X)$$

and that this satisfies $p_!(p^*(x) \cdot y) = x \cdot p_!(y)$.

Give an example for which $p_!(1) \neq n \in K^0(X)$. Nonetheless, using Q1 show that $p_!(1) \in K^0(X)$ becomes invertible in $K^0(X) \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{n}]$ and hence show that $p^* : K^0(X) \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{n}] \to K^0(Y) \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{n}]$ is split injective.

- 6. Show that two *n*-dimensional complex vector bundles over \mathbb{CP}^n having the same Chern classes are isomorphic.
- 7. (i) * By considering $p_1(TS^4) \in H^4(S^4; \mathbb{Z})$, show that the vector bundle $TS^4 \to S^4$ does not admit a complex structure.
 - (ii) * By considering $ch_n(TS^{2n}) \in H^{2n}(S^{2n}; \mathbb{Q})$, show that the vector bundle $TS^{2n} \to S^{2n}$ does not admit a complex structure for $n \ge 4$.

[Recall that if $\pi : E \to B$ is an n-dimensional complex vector bundle, then it is \mathbb{Z} -oriented and $c_n(E) = e(E) \in H^{2n}(B;\mathbb{Z}).$]

- 8. Write $Q = \gamma_{\mathbb{H}}^{1,n+1} \to \mathbb{HP}^n$ for the tautological quaternionic line bundle, and let $z = e(Q) \in H^4(\mathbb{HP}^n;\mathbb{Z})$. Show that $H^*(\mathbb{HP}^n;\mathbb{Z}) = \mathbb{Z}[z]/(z^{n+1})$. By analysing a suitable map $f : \mathbb{CP}^{2n+1} \to \mathbb{HP}^n$ show that $ch(Q) = 2\cosh(\sqrt{-z})$, and hence show that $K^0(\mathbb{HP}^n) = \mathbb{Z}[Q]/((Q-2)^{n+1})$.
- 9. The isomorphism $ch: K^0(X) \otimes \mathbb{Q} \xrightarrow{\sim} H^{2*}(X; \mathbb{Q})$ means that the vector space $H^{2*}(X; \mathbb{Q})$ contains two canonical integral lattices: $H^{2*}(X; \mathbb{Z})/\text{torsion}$ and $ch(K^0(X))$. Give an example to show that these need not be equal.

Additional Questions

10. Complex conjugation $E \mapsto \overline{E}$ induces an involution on each $K^i(X)$. Show that $K^i(X) \otimes \mathbb{Z}[\frac{1}{2}]$ decomposes into ± 1 eigenspaces for this involution, and that the +1 eigenspace of $K^0(X) \otimes \mathbb{Z}[\frac{1}{2}]$ agrees with

{Grothendieck group of *real* vector bundles on X} $\otimes \mathbb{Z}[\frac{1}{2}]$.

Use these eigenspaces to define a new 4-periodic theory $T^*(-)$, and establish a 12-term exact cycle relating $T^*(X)$, $T^*(A)$, and $\tilde{T}^*(X/A)$ when A is a closed subspace of a compact Hausdorff space X.

11. Revisit Q4 using the Chern character.

Comments or corrections to or257@cam.ac.uk