Lent Term 2023

Part III Characteristic classes and K-theory // Example Sheet 1

Hand in work to questions marked * to my pigeon hole at CMS by 09:00 on Wednesday 8th February if you would like it marked.

- 1. (i) If $\pi : E \to X$ and $\pi' : E' \to X$ are vector bundles, show that there is an isomorphism $Hom(E, E') \cong E^{\vee} \otimes E'$ of vector bundles over X.
 - (ii) If $\pi : E \to X$ is a real vector bundle, show that the underlying real vector bundle of the complex vector bundle $E \otimes_{\mathbb{R}} \mathbb{C}$ is isomorphic to $E \oplus E$.
 - (iii) Show that a complex vector bundle $\pi : E \to X$ is the complexification of a real vector bundle if and only if there is an isomorphism $\phi : E \to \overline{E}$ of complex vector bundles such that $\overline{\phi} \circ \phi = Id_E$.
 - (iv) If $\pi : E \to X$ is a real vector bundle, show that it is the realification of a complex vector bundle if and only if there is a bundle map $J : E \to E$ satisfying $J^2 = -\text{Id}$.
 - (v) If a vector bundle $\pi : E \to X$ has an inner product and $E_0 \subset E$ is a subbundle, show that $E_0^{\perp} \subset E$ is also a subbundle.
 - (vi) If $\pi: E \to X$ is a vector bundle and $E_0 \subset E$ is a subbundle, construct a vector bundle E/E_0 whose fibre over $x \in X$ is $E_x/(E_0 \cap E_x)$. If E is given an inner product show that $E/E_0 \cong E_0^{\perp}$.
- 2. If $\pi: E \to X$ is a \mathbb{Z} -oriented real vector bundle, and -E denotes E with the opposite orientation, show that the Euler class satisfies e(-E) = -e(E). If dim E is odd show that 2e(E) = 0.
- 3. * Show that a real line bundle $\pi : L \to X$ is trivial if and only if $w_1(L) = 0 \in H^1(X; \mathbb{F}_2)$. Hence show that a real vector bundle $\pi : E \to X$ is orientable if and only if $w_1(E) = 0 \in H^1(X; \mathbb{F}_2)$. [Hint: Associate a determinant line bundle det $E \to X$, which is trivial if and only if E is orientable.]
- 4. * If $\pi : E \to X$ is a complex vector bundle and $\pi_{\mathbb{R}} : E_{\mathbb{R}} \to X$ denotes its underlying real vector bundle, show that

$$w(E_{\mathbb{R}}) = c(E) \in H^*(X; \mathbb{F}_2)$$

and that

$$p_k(E_{\mathbb{R}}) = c_k(E)^2 - 2c_{k-1}(E)c_{k+1}(E) + \dots \pm 2c_1(E)c_{2k-1}(E) \mp 2c_{2k}(E) \in H^{4k}(X;R).$$

- 5. Let $\pi: E \to X$ be a real vector bundle.
 - (i) Show that $p_i(E) = w_{2i}(E)^2 \in H^{4i}(X; \mathbb{F}_2)$.
 - (ii) If $\pi: E \to X$ is oriented and of dimension 2k, show that $p_k(E) = e(E)^2 \in H^{4k}(X;\mathbb{Z})$.
- 6. If $\pi : E \to X$ is a real vector bundle, show that $2c_{2i+1}(E \otimes_{\mathbb{R}} \mathbb{C}) = 0 \in H^{4i+2}(X;\mathbb{Z})$ for any $i \ge 0$. Hence show that if $\pi' : E' \to X$ is another real vector bundle then

$$2\left(p_k(E\oplus E') - \sum_{a+b=k} p_a(E) \cdot p_b(E')\right) = 0 \in H^{4k}(X;R).$$

7. * Recall from Algebraic Topology that $H^*(\mathbb{RP}^{2n};\mathbb{Z}) = \mathbb{Z}[t]/(2t,t^{n+1})$, with $t \in H^2(\mathbb{RP}^{2n};\mathbb{Z})$. For the tautological bundle $\gamma_{\mathbb{R}}^{1,n+1} \to \mathbb{RP}^{2n}$, prove that

$$c_1(\gamma_{\mathbb{R}}^{1,n+1}\otimes_{\mathbb{R}}\mathbb{C}) = t \in H^2(\mathbb{RP}^{2n};\mathbb{Z}) = \mathbb{Z}/2\{t\}.$$

[*Hint: Use Q4 and reduction modulo 2.*] Use this to show that the identity in the previous question does not hold without the "2".

- 8. If a collection of characteristic classes $\{\pi : E \to X\} \mapsto c'_i(E) \in H^{2i}(X; R)$ of complex vector bundles satisfy the properties of Theorem 2.3.2 in the notes, show that they are equal to the Chern classes up to a scalar factor.
- 9. Show that there is no map $f : \mathbb{RP}^n \to \mathbb{R}^{n+1} \setminus \{0\}$ such that $f(\ell) \in \ell^{\perp}$ for each line $\ell \in \mathbb{RP}^n$.

Additional Questions

10. This question leads you through the proof of the Constant Rank Theorem: If $\pi_i : E_i \to X$, i = 1, 2, are vector bundles and $f : E_1 \to E_2$ is a morphism of vector bundles such that the rank of the linear map $f_x : (E_1)_x \to (E_2)_x$ is independent of $x \in X$, then

$$Ker(f) := \{ v \in E_1 \mid f(v) = 0 \in (E_2)_{\pi_2(v)} \}$$

$$Im(f) := \{ w \in E_2 \mid w = f(v), v \in E_1 \}$$

are subbundles of E_1 and E_2 respectively.

- (i) Prove that it is enough to consider the case where both vector bundles are trivial, so the morphism has the form $f: X \times \mathbb{F}^n \to X \times \mathbb{F}^m$ with $f(x,v) = (x,\phi(x)(v))$ where $\phi: X \to M_{n,m}(\mathbb{F})$ is a map taking values of constant rank r.
- (ii) For a fixed $y \in X$ show that with respect to $\mathbb{F}^n = \mathbb{F}^r \oplus \mathbb{F}^{n-r}$ and $\mathbb{F}^m = \mathbb{F}^r \oplus \mathbb{F}^{m-r}$ one may suppose that

$$\phi(x) = \begin{bmatrix} A(x) & B(x) \\ C(x) & D(x) \end{bmatrix}$$

with $A(y) = I_r$, B(y) = C(y) = D(y) = 0. Hence show that A(x) is invertible for all x in some open neighbourhood U of y.

- (iii) Deduce that the composition $Ker(f)|_U \subset U \times \mathbb{F}^n \xrightarrow{proj} U \times \mathbb{F}^{n-r}$ is a continuous bijection and that the composition $U \times \mathbb{F}^r \subset U \times \mathbb{F}^n \xrightarrow{f} Im(f)|_U$ is a continuous bijection.
- (iv) By relating kernels and images of f and its adjoint f^* , with respect to the standard inner products on \mathbb{F}^n and \mathbb{F}^m , show that the compositions in (iii) are both homeomorphisms.
- 11. If A^a and B^b are smooth submanifolds of M^m meeting transversely in a manifold $N^n = A \cap B$, and ν_X denotes the normal bundle of X in M for $X \in \{A, B, N\}$, show (using Q10) that $\nu_N \cong \nu_A \oplus \nu_B$. If $\pi : E^{x+d} \to X^x$ is a map between smooth manifolds which also has the structure of a ddimensional real vector bundle, and $s : X \to E$ is a smooth section which is transverse to the zero section, show that the normal bundle in X of the (x - d)-dimensional manifold $Z = s^{-1}(0)$ is isomorphic to $E|_Z$. If X is a closed compact manifold and everything in sight is R-oriented, show that the Poincaré dual of $[Z] \in H_{x-d}(X; R)$ is $e(E) \in H^d(X; R)$. [Recall that the Poincaré dual to a submanifold is given by the Thom class of its normal bundle, extended by zero.]
- 12. Show that a degree d homogeneous polynomial $p(z_0, \ldots, z_n)$ defines a section of the complex vector bundle $((\gamma_{\mathbb{C}}^{1,n+1})^{\vee})^{\otimes d} \to \mathbb{CP}^n$. Assuming this section is transverse to the zero section, show that the subset $Z \subset \mathbb{CP}^n$ of solutions to p(z) = 0 is a manifold of dimension 2(n-1), has a canonical orientation, and is Poincaré dual to $d \cdot (-x)$. Using Chern classes show that its Euler characteristic is $(-1)^{n+1}d$ times the coefficient of x^{n-1} in $\frac{(1-x)^{n+1}}{1-d\cdot x}$.

It is a fact that Z must be connected: when n = 2 show that Z is a surface of genus $\frac{1}{2}(d-1)(d-2)$.

Comments or corrections to or257@cam.ac.uk