Part III Characteristic classes and K-theory // Example Sheet 1

Hand in work to questions marked $*$ to my pigeon hole at CMS by 09:00 on Wednesday 8th February if you would like it marked.

1. (i) If $\pi: E \rightarrow X$ and $\pi^{\prime}: E^{\prime} \rightarrow X$ are vector bundles, show that there is an isomorphism $\operatorname{Hom}\left(E, E^{\prime}\right) \cong E^{\vee} \otimes E^{\prime}$ of vector bundles over X.
(ii) If $\pi: E \rightarrow X$ is a real vector bundle, show that the underlying real vector bundle of the complex vector bundle $E \otimes_{\mathbb{R}} \mathbb{C}$ is isomorphic to $E \oplus E$.
(iii) Show that a complex vector bundle $\pi: E \rightarrow X$ is the complexification of a real vector bundle if and only if there is an isomorphism $\phi: E \rightarrow \bar{E}$ of complex vector bundles such that $\bar{\phi} \circ \phi=I d_{E}$.
(iv) If $\pi: E \rightarrow X$ is a real vector bundle, show that it is the realification of a complex vector bundle if and only if there is a bundle map $J: E \rightarrow E$ satisfying $J^{2}=-\mathrm{Id}$.
(v) If a vector bundle $\pi: E \rightarrow X$ has an inner product and $E_{0} \subset E$ is a subbundle, show that $E_{0}^{\perp} \subset E$ is also a subbundle.
(vi) If $\pi: E \rightarrow X$ is a vector bundle and $E_{0} \subset E$ is a subbundle, construct a vector bundle E / E_{0} whose fibre over $x \in X$ is $E_{x} /\left(E_{0} \cap E_{x}\right)$. If E is given an inner product show that $E / E_{0} \cong E_{0}^{\perp}$.
2. If $\pi: E \rightarrow X$ is a \mathbb{Z}-oriented real vector bundle, and $-E$ denotes E with the opposite orientation, show that the Euler class satisfies $e(-E)=-e(E)$. If $\operatorname{dim} E$ is odd show that $2 e(E)=0$.
3. * Show that a real line bundle $\pi: L \rightarrow X$ is trivial if and only if $w_{1}(L)=0 \in H^{1}\left(X ; \mathbb{F}_{2}\right)$. Hence show that a real vector bundle $\pi: E \rightarrow X$ is orientable if and only if $w_{1}(E)=0 \in H^{1}\left(X ; \mathbb{F}_{2}\right)$. [Hint: Associate a determinant line bundle $\operatorname{det} E \rightarrow X$, which is trivial if and only if E is orientable.]
4. ${ }^{*}$ If $\pi: E \rightarrow X$ is a complex vector bundle and $\pi_{\mathbb{R}}: E_{\mathbb{R}} \rightarrow X$ denotes its underlying real vector bundle, show that

$$
w\left(E_{\mathbb{R}}\right)=c(E) \in H^{*}\left(X ; \mathbb{F}_{2}\right)
$$

and that

$$
p_{k}\left(E_{\mathbb{R}}\right)=c_{k}(E)^{2}-2 c_{k-1}(E) c_{k+1}(E)+\cdots \pm 2 c_{1}(E) c_{2 k-1}(E) \mp 2 c_{2 k}(E) \in H^{4 k}(X ; R) .
$$

5. Let $\pi: E \rightarrow X$ be a real vector bundle.
(i) Show that $p_{i}(E)=w_{2 i}(E)^{2} \in H^{4 i}\left(X ; \mathbb{F}_{2}\right)$.
(ii) If $\pi: E \rightarrow X$ is oriented and of dimension $2 k$, show that $p_{k}(E)=e(E)^{2} \in H^{4 k}(X ; \mathbb{Z})$.
6. If $\pi: E \rightarrow X$ is a real vector bundle, show that $2 c_{2 i+1}\left(E \otimes_{\mathbb{R}} \mathbb{C}\right)=0 \in H^{4 i+2}(X ; \mathbb{Z})$ for any $i \geq 0$. Hence show that if $\pi^{\prime}: E^{\prime} \rightarrow X$ is another real vector bundle then

$$
2\left(p_{k}\left(E \oplus E^{\prime}\right)-\sum_{a+b=k} p_{a}(E) \cdot p_{b}\left(E^{\prime}\right)\right)=0 \in H^{4 k}(X ; R)
$$

7. * Recall from Algebraic Topology that $H^{*}\left(\mathbb{R} \mathbb{P}^{2 n} ; \mathbb{Z}\right)=\mathbb{Z}[t] /\left(2 t, t^{n+1}\right)$, with $t \in H^{2}\left(\mathbb{R} \mathbb{P}^{2 n} ; \mathbb{Z}\right)$.

For the tautological bundle $\gamma_{\mathbb{R}}^{1, n+1} \rightarrow \mathbb{R P}^{2 n}$, prove that

$$
c_{1}\left(\gamma_{\mathbb{R}}^{1, n+1} \otimes_{\mathbb{R}} \mathbb{C}\right)=t \in H^{2}\left(\mathbb{R} \mathbb{P}^{2 n} ; \mathbb{Z}\right)=\mathbb{Z} / 2\{t\}
$$

[Hint: Use Q4 and reduction modulo 2.] Use this to show that the identity in the previous question does not hold without the "2".
8. If a collection of characteristic classes $\{\pi: E \rightarrow X\} \mapsto c_{i}^{\prime}(E) \in H^{2 i}(X ; R)$ of complex vector bundles satisfy the properties of Theorem 2.3.2 in the notes, show that they are equal to the Chern classes up to a scalar factor.
9. Show that there is no map $f: \mathbb{R} \mathbb{P}^{n} \rightarrow \mathbb{R}^{n+1} \backslash\{0\}$ such that $f(\ell) \in \ell^{\perp}$ for each line $\ell \in \mathbb{R}^{n}$.

Additional Questions

10. This question leads you through the proof of the Constant Rank Theorem: If $\pi_{i}: E_{i} \rightarrow X, i=1,2$, are vector bundles and $f: E_{1} \rightarrow E_{2}$ is a morphism of vector bundles such that the rank of the linear map $f_{x}:\left(E_{1}\right)_{x} \rightarrow\left(E_{2}\right)_{x}$ is independent of $x \in X$, then

$$
\begin{aligned}
\operatorname{Ker}(f) & :=\left\{v \in E_{1} \mid f(v)=0 \in\left(E_{2}\right)_{\pi_{2}(v)}\right\} \\
\operatorname{Im}(f) & :=\left\{w \in E_{2} \mid w=f(v), v \in E_{1}\right\}
\end{aligned}
$$

are subbundles of E_{1} and E_{2} respectively.
(i) Prove that it is enough to consider the case where both vector bundles are trivial, so the morphism has the form $f: X \times \mathbb{F}^{n} \rightarrow X \times \mathbb{F}^{m}$ with $f(x, v)=(x, \phi(x)(v))$ where $\phi: X \rightarrow$ $M_{n, m}(\mathbb{F})$ is a map taking values of constant rank r.
(ii) For a fixed $y \in X$ show that with respect to $\mathbb{F}^{n}=\mathbb{F}^{r} \oplus \mathbb{F}^{n-r}$ and $\mathbb{F}^{m}=\mathbb{F}^{r} \oplus \mathbb{F}^{m-r}$ one may suppose that

$$
\phi(x)=\left[\begin{array}{ll}
A(x) & B(x) \\
C(x) & D(x)
\end{array}\right]
$$

with $A(y)=I_{r}, B(y)=C(y)=D(y)=0$. Hence show that $A(x)$ is invertible for all x in some open neighbourhood U of y.
(iii) Deduce that the composition $\left.\operatorname{Ker}(f)\right|_{U} \subset U \times \mathbb{F}^{n} \xrightarrow{p r o j} U \times \mathbb{F}^{n-r}$ is a continuous bijection and that the composition $U \times \mathbb{F}^{r} \subset U \times\left.\mathbb{F}^{n} \xrightarrow{f} \operatorname{Im}(f)\right|_{U}$ is a continuous bijection.
(iv) By relating kernels and images of f and its adjoint f^{*}, with respect to the standard inner products on \mathbb{F}^{n} and \mathbb{F}^{m}, show that the compositions in (iii) are both homeomorphisms.
11. If A^{a} and B^{b} are smooth submanifolds of M^{m} meeting transversely in a manifold $N^{n}=A \cap B$, and ν_{X} denotes the normal bundle of X in M for $X \in\{A, B, N\}$, show (using Q10) that $\nu_{N} \cong \nu_{A} \oplus \nu_{B}$. If $\pi: E^{x+d} \rightarrow X^{x}$ is a map between smooth manifolds which also has the structure of a d dimensional real vector bundle, and $s: X \rightarrow E$ is a smooth section which is transverse to the zero section, show that the normal bundle in X of the $(x-d)$-dimensional manifold $Z=s^{-1}(0)$ is isomorphic to $\left.E\right|_{Z}$. If X is a closed compact manifold and everything in sight is R-oriented, show that the Poincaré dual of $[Z] \in H_{x-d}(X ; R)$ is $e(E) \in H^{d}(X ; R)$. [Recall that the Poincaré dual to a submanifold is given by the Thom class of its normal bundle, extended by zero.]
12. Show that a degree d homogeneous polynomial $p\left(z_{0}, \ldots, z_{n}\right)$ defines a section of the complex vector bundle $\left(\left(\gamma_{\mathbb{C}}^{1, n+1}\right)^{\vee}\right)^{\otimes d} \rightarrow \mathbb{C P}^{n}$. Assuming this section is transverse to the zero section, show that the subset $Z \subset \mathbb{C P}^{n}$ of solutions to $p(z)=0$ is a manifold of dimension $2(n-1)$, has a canonical orientation, and is Poincaré dual to $d \cdot(-x)$. Using Chern classes show that its Euler characteristic is $(-1)^{n+1} d$ times the coefficient of x^{n-1} in $\frac{(1-x)^{n+1}}{1-d x}$.
It is a fact that Z must be connected: when $n=2$ show that Z is a surface of genus $\frac{1}{2}(d-1)(d-2)$.

Comments or corrections to or257@cam.ac.uk

