## Part III Characteristic classes and $K$-theory // Example Sheet 3

Hand in work to questions marked $*$ to my pigeon hole at CMS by 09:00 on Thursday 26 April if you would like it marked.

1. (i) * By considering $p_{1}\left(T S^{4}\right) \in H^{4}\left(S^{4} ; \mathbb{Z}\right)$, show that the vector bundle $T S^{4} \rightarrow S^{4}$ does not admit a complex structure.
(ii) * By considering $\operatorname{ch}_{n}\left(T S^{2 n}\right) \in H^{2 n}\left(S^{2 n} ; \mathbb{Q}\right)$, show that the vector bundle $T S^{2 n} \rightarrow S^{2 n}$ does not admit a complex structure for $n \geq 4$.
[Recall that if $\pi: E \rightarrow B$ is an n-dimensional complex vector bundle, then it is $\mathbb{Z}$-oriented and $\left.c_{n}(E)=e(E) \in H^{2 n}(B ; \mathbb{Z}).\right]$
2. Write $Q=\gamma_{\mathbb{H}}^{1, n+1} \rightarrow \mathbb{H}^{n}$ for the tautological quaternionic line bundle, and let $z=e(Q) \in$ $H^{4}\left(\mathbb{H}^{P} ; \mathbb{Z}\right)$. Show that $H^{*}\left(\mathbb{H}_{\mathbb{P}^{n}} ; \mathbb{Z}\right)=\mathbb{Z}[z] /\left(z^{n+1}\right)$. By analysing a suitable map $f: \mathbb{C P}^{2 n+1} \rightarrow \mathbb{H P}^{n}$ show that $\operatorname{ch}(Q)=2 \cosh (\sqrt{-z})$, and hence show that $K^{0}\left(\mathbb{H} \mathbb{P}^{n}\right)=\mathbb{Z}[Q] /\left((Q-2)^{n+1}\right)$.
3. On Q11 of Sheet 1 you showed that if there is an $n$-dimensional real division algebra then the tangent bundle $T \mathbb{R} \mathbb{P}^{n-1} \rightarrow \mathbb{R} \mathbb{P}^{n-1}$ is trivial, and using Stiefel-Whitney classes you showed that this may only happen if $n=2^{k}$.
By considering $\left[\left(T \mathbb{R} \mathbb{P}^{n-1}\right) \otimes_{\mathbb{R}} \mathbb{C}\right] \in K^{0}\left(\mathbb{R}^{P^{n-1}}\right)$, show that in fact one must have $n=1,2,4$, or 8 .
4.     * Show that $\operatorname{ch}_{n}\left(\psi^{k}(x)\right)=k^{n} \cdot c h_{n}(x)$. Hence show that the endomorphisms $\psi^{k}$ of $K^{0}(X) \otimes \mathbb{Q}$ may be simultaneously diagonalised, and that the cohomology groups $H^{2 n}(X ; \mathbb{Q})$ may be recovered as eigenspaces of these endomorphisms.
5. Show that the action of the $\psi^{k}$ on $\widetilde{K}^{0}\left(\mathbb{C P}^{3} / \mathbb{C P}^{1}\right)$ may be simultaneously diagonalised over $\mathbb{Z}$, but that the action on $\widetilde{K}^{0}\left(\mathbb{C P}^{2}\right)$ may not.
6. If $\pi: E \rightarrow X$ is a complex vector bundle of dimension $k$, show that $\Lambda_{\frac{t}{1-t}}(E-k) \in K^{0}(X)[[t]]$ is a polynomial (in $t$ ) of degree at most $k$.
If there is an immersion $i: \mathbb{R P}^{n} \rightarrow \mathbb{R}^{n+k}$, by using the expansion $\left(\frac{1}{1+s}\right)^{n+1}=\sum_{j=0}^{\infty}(-1)^{j}\binom{n+j}{j} s^{j}$ show that $2^{\lfloor n / 2\rfloor-j+1}$ divides $\binom{n+j}{j}$ for all $j>k$. Investigate what this means for $n \leq 20$.
7. Show that the sphere bundle of $\left(\gamma_{\mathbb{C}}^{1, n+1}\right)^{\otimes k} \rightarrow \mathbb{C P}^{n}$ is homeomorphic to the manifold $L_{k}^{2 n+1}=$ $S^{2 n+1} /(\mathbb{Z} / k)$, where $\mathbb{Z} / k$ acts on $S^{2 n+1} \subset \mathbb{C}^{n+1}$ as the $k$ roots of unity.
Hence show that $K^{-1}\left(L_{k}^{2 n+1}\right) \cong \mathbb{Z}$ and that $\tilde{K}^{0}\left(L_{k}^{2 n+1}\right)\left[\frac{1}{k}\right]=0$.
Show that $\tilde{K}^{0}\left(L_{k}^{5}\right)$ is $\mathbb{Z} / k \oplus \mathbb{Z} / k$ if $k$ is odd, and is $\mathbb{Z} /(k / 2) \oplus \mathbb{Z} /(2 k)$ if $k$ is even.
8. Show that the normal bundle of $\mathbb{F P}^{n} \subset \mathbb{F P}^{n+k}$ is $\left(\gamma_{\mathbb{F}}^{1, n+1}\right)^{\oplus k}$, and that there is an open tubular neighbourhood of $\mathbb{F P}^{n}$ whose complement deformation retracts to $\mathbb{F P}^{k-1} \subset \mathbb{F} \mathbb{P}^{n+k}$. Hence show that there is a homotopy equivalence $T h\left(\left(\gamma_{\mathbb{F}}^{1, n+1}\right)^{\oplus k} \rightarrow \mathbb{F P}^{n}\right) \simeq \mathbb{F} \mathbb{P}_{k}^{n+k}:=\mathbb{F P}^{n+k} / \mathbb{F P}^{k-1}$.
9.     * Compute the $K$-theory of $\mathbb{R} \mathbb{P}_{k}^{n+k}$, including the action of the Adams operations.
10. For $L=\left(\gamma_{\mathbb{R}}^{1, n+1}\right) \otimes \mathbb{C} \rightarrow \mathbb{R} \mathbb{P}^{n}$ show that

$$
\rho^{\ell}(L)=\left\{\begin{array}{ll}
\ell+\frac{\ell-1}{2} x & \text { if } \ell \text { is odd } \\
\ell+\frac{\ell}{2} x & \text { if } \ell \text { is even }
\end{array} \in K^{0}\left(\mathbb{R} \mathbb{P}^{n}\right)\right.
$$

## Additional Questions

11. If $\pi: E \rightarrow X$ is a $d$-dimensional real vector bundle, show that the mapping cone of $p: \mathbb{S}(E) \rightarrow X$ is homeomorphic to the Thom space $T h(E)$. If $\pi^{\prime}: E^{\prime} \rightarrow X$ is another such vector bundle and there is a map $f: \mathbb{S}(E) \rightarrow \mathbb{S}\left(E^{\prime}\right)$ which commutes with the projections to $X$ and is a homotopy equivalence, show that there is a map $\phi: T h(E) \rightarrow T h\left(E^{\prime}\right)$ which induces an isomorphism on $K$-theory. If they are complex vector bundles show furthermore that $\phi^{*}\left(\lambda_{E^{\prime}}\right)=U \cdot \lambda_{E}$ for some unit $U \in K^{0}(X)$, and hence that their cannibalistic classes satisfy $\rho^{k}\left(E^{\prime}\right)=\frac{\psi^{k}(U)}{U} \rho^{k}(E)$.
12. Using Q10 and Q11 show that if the real vector bundle $\left(\gamma_{\mathbb{R}}^{1, n+1}\right)^{\oplus k} \rightarrow \mathbb{R} \mathbb{P}^{n}$ is trivial then $k$ is even [use Stiefel-Whitney classes], and $\left(\ell+\frac{\ell-1}{2} x\right)^{k / 2}=\ell^{k / 2}$ for all odd $\ell \in \mathbb{N}$. Deduce from this that $2^{\lfloor n / 2\rfloor+1}$ divides $\ell^{k / 2}-1$ for all odd $\ell$.
13. If a compact 8 -manifold $M$ is given a complex structure on its tangent bundle $T M$, with Chern classes $c_{i}=c_{i}(T M)$, show that the integers

$$
\left\langle[M], c_{1}^{4}-4 c_{1}^{2} c_{2}+4 c_{2}^{2}\right\rangle \quad\left\langle[M], c_{2}^{2}-2 c_{1} c_{3}\right\rangle
$$

are independent of the choice of complex structure, and that

$$
\begin{aligned}
\left\langle[M],-c_{1}^{4}+4 c_{1}^{2} c_{2}+c_{1} c_{3}+3 c_{2}^{2}-c_{4}\right\rangle & \equiv 0 & & \bmod 720 \\
\left\langle[M], 2 c_{1}^{4}+c_{1}^{2} c_{2}\right\rangle & \equiv 0 & & \bmod 12 \\
\left\langle[M], c_{1} c_{3}-2 c_{4}\right\rangle & \equiv 0 & & \bmod 4
\end{aligned}
$$

[You should certainly use a computer to do the second part, and don't expect to easily get the full answer.]

Comments or corrections to or257@cam.ac.uk

