## Part III Characteristic classes and $K$-theory // Example Sheet 2

Hand in work to questions marked $*$ to my pigeon hole at CMS by 09:00 on Thursday 15 March if you would like it marked.

1. If $\pi: E \rightarrow X$ is a $d$-dimensional complex vector bundle over a finite CW-complex of dimension $n$, show that if $n<2 d$ then it has a nowhere vanishing section. [Go by induction over cells.]
Similarly, if $\pi_{i}: E_{i} \rightarrow X, i=1,2$, are $d$-dimensional complex vector bundles over a finite CWcomplex of dimension $n$ and $E_{1} \oplus \underline{\mathbb{C}^{1}} \cong E_{2} \oplus \mathbb{C}^{1}$, show that if $n+1<2(d+1)$ then $E_{1} \cong E_{2}$. [Translate from isomorphisms to vector bundles over $X \times[0,1]$.]
2.     * Using Q1 and the clutching description of vector bundles, compute $K^{0}\left(S^{2}\right)$.
3. ${ }^{*}$ Compute $K^{*}\left(S^{1} \times S^{1}\right)$ and $K^{*}\left(\mathbb{R P}^{2}\right)$ as abelian groups, and hence compute $K^{*}(S)$ for every compact closed surface $S$.
4. Compute the graded ring structure on $K^{*}\left(S^{1} \times S^{1}\right)$.
5. ${ }^{*}$ If $\pi: E \rightarrow X$ is a vector bundle over a compact Hausdorff space, show there is a finite cover of $X$ by closed sets $A_{1}, \ldots, A_{n}$ over each of which $E$ is trivial. Hence, elaborating on Example 3.3.7, show that every element of $\tilde{K}^{0}(X)$ is nilpotent.
6. If $Y$ is a finite CW complex only having cells of even dimension, show that

$$
K^{0}(Y) \cong \mathbb{Z}^{\# \text { cells of } Y} \quad \text { and } \quad K^{-1}(Y)=0
$$

Hence show that for any $X$ the external product $-\boxtimes-: K^{0}(X) \otimes K^{0}(Y) \rightarrow K^{0}(X \times Y)$ is an isomorphism. [Proceed by induction on the number of cells of $Y$.]
7. Show that defining $c_{i}(E-F)$ by $c(E-F)=\frac{c(E)}{c(F)}$ gives well-defined (nonlinear!) functions $c_{i}$ : $K^{0}(X) \rightarrow H^{2 i}(X ; \mathbb{Z})$. Using this, compute the ring structure on $K^{0}\left(\mathbb{C P}^{2}\right)$. [You should use the splitting principle to find a formula for $c_{1}(E \otimes F)$ and $c_{2}(E \otimes F)$.]
Hence compute the ring structure of $K^{0}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}\right)$ and of $K^{0}\left(\mathbb{C P}^{2} \# \overline{\mathbb{C P}}^{2}\right)$, and show they are not isomorphic as rings.
8. * If $p: Y \rightarrow X$ is an $n$-fold covering space and $\pi: E \rightarrow Y$ is a vector bundle, show that there is a vector bundle $F \rightarrow X$ with $F_{x}=\bigoplus_{y \in p^{-1}(x)} E_{y}$. Show that this construction induces a homomorphism

$$
p_{!}: K^{0}(Y) \longrightarrow K^{0}(X)
$$

and that this satisfies $p_{!}\left(p^{*}(x) \cdot y\right)=x \cdot p_{!}(y)$.
Give an example for which $p_{!}(1) \neq n \in K^{0}(X)$. Nonetheless, using Q3 show that $p_{!}(1) \in K^{0}(X)$ becomes invertible in $K^{0}(X) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{n}\right]$ and hence show that $p^{*}: K^{0}(X) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{n}\right] \rightarrow K^{0}(Y) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{n}\right]$ is split injective.

## Additional Questions

9. This question leads you through the proof of the Constant Rank Theorem: If $\pi_{i}: E_{i} \rightarrow X, i=1,2$, are vector bundles and $f: E_{1} \rightarrow E_{2}$ is a morphism of vector bundles such that the rank of the linear map $f_{x}:\left(E_{1}\right)_{x} \rightarrow\left(E_{2}\right)_{x}$ is independent of $x \in X$, then

$$
\begin{aligned}
\operatorname{Ker}(f) & :=\left\{v \in E_{1} \mid f(v)=0 \in\left(E_{2}\right)_{\pi_{2}(v)}\right\} \\
\operatorname{Im}(f) & :=\left\{w \in E_{2} \mid w=f(v), v \in E_{1}\right\}
\end{aligned}
$$

are subbundles of $E_{1}$ and $E_{2}$ respectively.
(i) Prove that it is enough to consider the case where both vector bundles are trivial, so the morphism has the form $f: X \times \mathbb{F}^{n} \rightarrow X \times \mathbb{F}^{m}$ with $f(x, v)=(x, \phi(x)(v))$ where $\phi: X \rightarrow$ $M_{n, m}(\mathbb{F})$ is a map taking values of constant rank $r$.
(ii) For a fixed $y \in X$ show that with respect to $\mathbb{F}^{n}=\mathbb{F}^{r} \oplus \mathbb{F}^{n-r}$ and $\mathbb{F}^{m}=\mathbb{F}^{r} \oplus \mathbb{F}^{m-r}$ one may suppose that

$$
\phi(x)=\left[\begin{array}{ll}
A(x) & B(x) \\
C(x) & D(x)
\end{array}\right]
$$

with $A(y)=I_{r}, B(y)=C(y)=D(y)=0$. Hence show that $A(x)$ is invertible for all $x$ in some open neighbourhood $U$ of $y$.
(iii) Deduce that the composition $\left.\operatorname{Ker}(f)\right|_{U} \subset U \times \mathbb{F}^{n} \xrightarrow{\text { proj }} U \times \mathbb{F}^{n-r}$ is a continuous bijection and that the composition $U \times \mathbb{F}^{r} \subset U \times\left.\mathbb{F}^{n} \xrightarrow{f} \operatorname{Im}(f)\right|_{U}$ is a continuous bijection.
(iv) By relating kernels and images of $f$ and its adjoint $f^{*}$, with respect to the standard inner products on $\mathbb{F}^{n}$ and $\mathbb{F}^{m}$, show that the compositions in (iii) are both homeomorphisms.
10. If $A^{a}$ and $B^{b}$ are smooth submanifolds of $M^{m}$ meeting transversely in a manifold $N^{n}=A \cap B$, and for $X \in\{A, B, N\}$ denote by $\nu_{X}$ the normal bundle of $X$ in $M$, show (using the previous question) that $\nu_{N} \cong \nu_{A} \oplus \nu_{B}$.
If $\pi: E^{x+d} \rightarrow X^{x}$ is a map between smooth manifolds which also has the structure of a $d$ dimensional real vector bundle, and $s: X \rightarrow E$ is a smooth section which is transverse to the zero section, show that the normal bundle in $X$ of the $(x-d)$-dimensional manifold $Z=s^{-1}\left(s_{0}(X)\right)$ is isomorphic to $\left.E\right|_{Z}$. If $X$ is a closed compact manifold and everything in sight is $R$-oriented, show that the Poincaré dual of $[Z] \in H_{x-d}(X ; R)$ is $e(E) \in H^{d}(X ; R)$. [Recall that the Poincaré dual to a submanifold is given by the Thom class of its normal bundle, extended by zero]
11. Show that a degree $d$ homogeneous polynomial $p\left(z_{0}, \ldots, z_{n}\right)$ defines a section of the complex vector bundle $\left(\left(\gamma_{\mathbb{C}}^{1, n+1}\right)^{\vee}\right)^{\otimes d} \rightarrow \mathbb{C P}^{n}$. Assuming this section is transverse to the zero section, show that the subset $Z \subset \mathbb{C P}^{n}$ of solutions to $p(z)=0$ is a manifold of dimension $2(n-1)$, has a canonical orientation, and is Poincaré dual to $d \cdot(-x)$. Using Chern classes show that its Euler characteristic is $(-1)^{n+1} d$ times the coefficient of $x^{n-1}$ in $\frac{(1-x)^{n+1}}{1-d \cdot x}$.
It is a fact that $Z$ must be connected: when $n=2$ show that it is a surface of genus $\frac{1}{2}(d-1)(d-2)$.

Comments or corrections to or257@cam.ac.uk

