Lent Term 2018 O. Randal-Williams

Part III Characteristic classes and K-theory / Example Sheet 2

Hand in work to questions marked * to my pigeon hole at CMS by 09:00 on Thursday 15 March if you would like it marked.

- 1. If $\pi: E \to X$ is a d-dimensional complex vector bundle over a finite CW-complex of dimension n, show that if n < 2d then it has a nowhere vanishing section. [Go by induction over cells.]
 - Similarly, if $\pi_i: E_i \to X$, i=1,2, are d-dimensional complex vector bundles over a finite CW-complex of dimension n and $E_1 \oplus \underline{\mathbb{C}^1} \cong E_2 \oplus \underline{\mathbb{C}^1}$, show that if n+1 < 2(d+1) then $E_1 \cong E_2$. [Translate from isomorphisms to vector bundles over $X \times [0,1]$.]
- 2. * Using Q1 and the clutching description of vector bundles, compute $K^0(S^2)$.
- 3. * Compute $K^*(S^1 \times S^1)$ and $K^*(\mathbb{RP}^2)$ as abelian groups, and hence compute $K^*(S)$ for every compact closed surface S.
- 4. Compute the graded ring structure on $K^*(S^1 \times S^1)$.
- 5. * If $\pi: E \to X$ is a vector bundle over a compact Hausdorff space, show there is a finite cover of X by closed sets A_1, \ldots, A_n over each of which E is trivial. Hence, elaborating on Example 3.3.7, show that every element of $\tilde{K}^0(X)$ is nilpotent.
- 6. If Y is a finite CW complex only having cells of even dimension, show that

$$K^0(Y) \cong \mathbb{Z}^{\# \text{cells of } Y}$$
 and $K^{-1}(Y) = 0$.

Hence show that for any X the external product $-\boxtimes -: K^0(X) \otimes K^0(Y) \to K^0(X \times Y)$ is an isomorphism. [Proceed by induction on the number of cells of Y.]

- 7. Show that defining $c_i(E F)$ by $c(E F) = \frac{c(E)}{c(F)}$ gives well-defined (nonlinear!) functions $c_i : K^0(X) \to H^{2i}(X; \mathbb{Z})$. Using this, compute the ring structure on $K^0(\mathbb{CP}^2)$. [You should use the splitting principle to find a formula for $c_1(E \otimes F)$ and $c_2(E \otimes F)$.]
 - Hence compute the ring structure of $K^0(\mathbb{CP}^2\#\mathbb{CP}^2)$ and of $K^0(\mathbb{CP}^2\#\overline{\mathbb{CP}}^2)$, and show they are not isomorphic as rings.
- 8. * If $p: Y \to X$ is an *n*-fold covering space and $\pi: E \to Y$ is a vector bundle, show that there is a vector bundle $F \to X$ with $F_x = \bigoplus_{y \in p^{-1}(x)} E_y$. Show that this construction induces a homomorphism

$$p_!: K^0(Y) \longrightarrow K^0(X)$$

and that this satisfies $p_!(p^*(x) \cdot y) = x \cdot p_!(y)$.

Give an example for which $p_!(1) \neq n \in K^0(X)$. Nonetheless, using Q3 show that $p_!(1) \in K^0(X)$ becomes invertible in $K^0(X) \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{n}]$ and hence show that $p^* : K^0(X) \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{n}] \to K^0(Y) \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{n}]$ is split injective.

Additional Questions

9. This question leads you through the proof of the Constant Rank Theorem: If $\pi_i : E_i \to X$, i = 1, 2, are vector bundles and $f : E_1 \to E_2$ is a morphism of vector bundles such that the rank of the linear map $f_x : (E_1)_x \to (E_2)_x$ is independent of $x \in X$, then

$$Ker(f) := \{ v \in E_1 \mid f(v) = 0 \in (E_2)_{\pi_2(v)} \}$$

 $Im(f) := \{ w \in E_2 \mid w = f(v), v \in E_1 \}$

are subbundles of E_1 and E_2 respectively.

- (i) Prove that it is enough to consider the case where both vector bundles are trivial, so the morphism has the form $f: X \times \mathbb{F}^n \to X \times \mathbb{F}^m$ with $f(x,v) = (x,\phi(x)(v))$ where $\phi: X \to M_{n,m}(\mathbb{F})$ is a map taking values of constant rank r.
- (ii) For a fixed $y \in X$ show that with respect to $\mathbb{F}^n = \mathbb{F}^r \oplus \mathbb{F}^{n-r}$ and $\mathbb{F}^m = \mathbb{F}^r \oplus \mathbb{F}^{m-r}$ one may suppose that

$$\phi(x) = \begin{bmatrix} A(x) & B(x) \\ C(x) & D(x) \end{bmatrix}$$

with $A(y) = I_r$, B(y) = C(y) = D(y) = 0. Hence show that A(x) is invertible for all x in some open neighbourhood U of y.

- (iii) Deduce that the composition $Ker(f)|_U \subset U \times \mathbb{F}^n \stackrel{proj}{\to} U \times \mathbb{F}^{n-r}$ is a continuous bijection and that the composition $U \times \mathbb{F}^r \subset U \times \mathbb{F}^n \stackrel{f}{\to} Im(f)|_U$ is a continuous bijection.
- (iv) By relating kernels and images of f and its adjoint f^* , with respect to the standard inner products on \mathbb{F}^n and \mathbb{F}^m , show that the compositions in (iii) are both homeomorphisms.
- 10. If A^a and B^b are smooth submanifolds of M^m meeting transversely in a manifold $N^n = A \cap B$, and for $X \in \{A, B, N\}$ denote by ν_X the normal bundle of X in M, show (using the previous question) that $\nu_N \cong \nu_A \oplus \nu_B$.

If $\pi: E^{x+d} \to X^x$ is a map between smooth manifolds which also has the structure of a d-dimensional real vector bundle, and $s: X \to E$ is a smooth section which is transverse to the zero section, show that the normal bundle in X of the (x-d)-dimensional manifold $Z=s^{-1}(s_0(X))$ is isomorphic to $E|_Z$. If X is a closed compact manifold and everything in sight is R-oriented, show that the Poincaré dual of $[Z] \in H_{x-d}(X;R)$ is $e(E) \in H^d(X;R)$. [Recall that the Poincaré dual to a submanifold is given by the Thom class of its normal bundle, extended by zero]

11. Show that a degree d homogeneous polynomial $p(z_0,\ldots,z_n)$ defines a section of the complex vector bundle $((\gamma_{\mathbb{C}}^{1,n+1})^{\vee})^{\otimes d} \to \mathbb{CP}^n$. Assuming this section is transverse to the zero section, show that the subset $Z \subset \mathbb{CP}^n$ of solutions to p(z) = 0 is a manifold of dimension 2(n-1), has a canonical orientation, and is Poincaré dual to $d \cdot (-x)$. Using Chern classes show that its Euler characteristic is $(-1)^{n+1}d$ times the coefficient of x^{n-1} in $\frac{(1-x)^{n+1}}{1-d\cdot x}$.

It is a fact that Z must be connected: when n=2 show that it is a surface of genus $\frac{1}{2}(d-1)(d-2)$.

Comments or corrections to or257@cam.ac.uk