Homotopy Theory, Examples 3

Oscar Randal-Williams

Lent 2021
1.* The unit quaternions $S^{3} \subset \mathbb{H}$ act freely on the unit sphere $S^{7} \subset \mathbb{H} \times \mathbb{H}$ with quotient $\mathbb{H} \mathbb{P}^{1} \cong S^{4}$, giving a fibre bundle $\nu: S^{7} \rightarrow S^{4}$ with fibre S^{3}. Let $p: E \rightarrow S^{2} \times S^{2}$ be the pullback of this fibre bundle along a map $S^{2} \times S^{2} \rightarrow S^{4}$ of degree 1, and let $\pi: E \xrightarrow{p} S^{2} \times S^{2} \xrightarrow{\pi_{子}} S^{2}$, a fibre bundle with fibre $S^{3} \times S^{2}$.

Compute the homology Serre spectral sequences for the fibrations ν, p, and π.
2. Say that a space X has rational Euler characteristic defined if $\bigoplus_{n \geq 0} H_{n}(X ; \mathbb{Q})$ is a finite-dimensional vector space, in which case set $\chi_{\mathbb{Q}}(X):=\sum_{n=0}^{\infty}(-1)^{n} \operatorname{dim}_{\mathbb{Q}} H_{n}(X ; \mathbb{Q})$.

Let $p: E \rightarrow B$ be a Serre fibration over a path-connected base with fibre $F:=p^{-1}\left(b_{0}\right)$, where $\pi_{1}\left(B, b_{0}\right)$ acts trivially on $H_{*}(F ; \mathbb{Q})$. Show that if F and B have rational Euler characteristic defined then so does E, and that

$$
\chi_{\mathbb{Q}}(E)=\chi_{\mathbb{Q}}(B) \cdot \chi_{\mathbb{Q}}(F) .
$$

3.* Let $f: K(\mathbb{Z}, 2) \rightarrow K(\mathbb{Z}, 2)$ be a map representing $2 \cdot \iota \in H^{2}(K(\mathbb{Z}, 2) ; \mathbb{Z})$, where ι is the canonical cohomology class of $K(\mathbb{Z}, 2)$. Show that the homotopy fibre of f is $K(\mathbb{Z} / 2,1) \simeq \mathbb{R} \mathbb{P}^{\infty}$, then compute the Serre spectral sequence in both homology and cohomology for the map f (converted into a fibration).
4. By considering the fibrations $S U(n) \rightarrow S^{2 n-1}$ with fibre $S U(n-1)$, and their cohomology Serre spectral sequence, prove inductively that for $n \geq 2$

$$
H^{*}(S U(n) ; \mathbb{Z}) \cong \mathbb{Z}\left\langle x_{3}, x_{5}, \ldots, x_{2 n-1}\right\rangle /\left(x_{i}^{2}, x_{i} x_{j}+x_{j} x_{i}\right)
$$

as rings, where x_{i} has degree i.
5. Compute $H^{*}(K(\mathbb{Z}, k) ; \mathbb{Q})$ for all k. [Hint: As usual use $P_{*} K(\mathbb{Z}, k) \rightarrow K(\mathbb{Z}, k)$ and the equivalence $\Omega K(\mathbb{Z}, k) \simeq K(\mathbb{Z}, k-1)$.]

Hence show that
(i) $\pi_{i}\left(S^{2 n+1}\right)$ is finite for $i \neq 2 n+1$,
(ii) $\pi_{i}\left(S^{2 n}\right)$ is finite for $i \neq 2 n, 4 n-1$, and $\pi_{4 n-1}\left(S^{2 n}\right)$ has rank 1 .
[Hint: Compute the rational (co)homology of the homotopy fibre of a map $S^{k} \rightarrow K(\mathbb{Z}, k)$ representing a generator of $H^{k}\left(S^{k} ; \mathbb{Z}\right)$.]
6. Let $p: E \rightarrow B$ be a Serre fibration, $e_{0} \in E, b_{0}:=p\left(e_{0}\right), F:=p^{-1}\left(b_{0}\right)$. Show that

$$
\begin{aligned}
P_{e_{0}} E & \longrightarrow P_{b_{0}} B \\
\gamma & \longmapsto p \circ \gamma
\end{aligned}
$$

is a Serre fibration, and hence deduce that the homotopy fibre of the inclusion $i: F \rightarrow E$ over the point $e_{0} \in E$ is weakly homotopy equivalent to $\Omega_{b_{0}} B$.

Using this, compute the integral (co)homology of the homotopy fibre X of a map $S^{3} \rightarrow K(\mathbb{Z}, 3)$ representing a generator of $H^{3}\left(S^{3} ; \mathbb{Z}\right)$, and show that for every prime p the group $\pi_{2 p}\left(S^{3}\right) \cong \pi_{2 p}\left(S^{2}\right)$ contains a \mathbb{Z} / p-summand, and that this is the smallest degree containing p-torsion.
7.* Let $R \subset \mathbb{Q}$ be a ring. If X is a 1-connected space such that $H_{*}(X ; R) \cong H_{*}\left(S^{n} ; R\right)$, show that there is a map $f: S^{n} \rightarrow X$ inducing an isomorphism on $H_{*}(-; R)$, and hence that $\pi_{i}(X) \otimes R \cong \pi_{i}\left(S^{n}\right) \otimes R$ for all i. [Hint: a) Show that such rings have $\operatorname{Tor}(-, R)=0$;
b) Consider the class of abelian groups A such that $A \otimes R=0$.]
8. (Edge homomorphisms) For a Serre fibration $p: E \rightarrow B$ with connected fibre F over b_{0}, and simply connected base, consider the maps of fibrations

and show using the naturality of the Serre spectral sequence that the compositions

$$
\begin{aligned}
H_{q}(F)=H_{0}\left(B ; H_{q}(F)\right) & =E_{0, q}^{2} \longrightarrow E_{0, q}^{\infty}=F^{0} H_{q}(E) \longrightarrow H_{q}(E) \\
H_{p}(E) & =F^{p} H_{p}(E) \longrightarrow E_{p, 0}^{\infty} \longrightarrow E_{p, 0}^{2}=H_{p}(B)
\end{aligned}
$$

agree with the maps induced by i and p respectively.
9. For a Serre fibration $p: E \rightarrow B$ with fibre F, show that if $H^{*}(E ; R) \rightarrow H^{*}(F ; R)$ is surjective then $\pi_{1}\left(B, b_{0}\right)$ acts trivially on $H^{*}(F ; R)$. Hence prove the Leray-Hirsch Theorem: under this condition, and the assumption that $H^{*}(F ; R)$ is a free R-module, there is an isomorphism

$$
H^{*}(E ; R) \cong H^{*}(B ; R) \otimes_{R} H^{*}(F ; R)
$$

If V is a complex vector space, let $\mathbb{P}(V):=(V \backslash 0) / \mathbb{C}^{\times}$be its projectivisation. (If V has dimension n, choosing a basis for it gives a homeomorphism $\mathbb{P}(V) \cong \mathbb{C} \mathbb{P}^{n-1}$.) If $p: E \rightarrow B$ is a complex vector bundle, let $\mathbb{P}(E) \rightarrow B$ be the fibre bundle with fibre $\mathbb{C P}^{n-1}$ obtained by applying the construction $\mathbb{P}(-)$ to each fibre of p.

Show that there is a canonical 1-dimensional vector bundle $L \rightarrow \mathbb{P}(E)$, and by considering its Euler class $e(L)$ show that $\pi: \mathbb{P}(E) \rightarrow B$ satisfies the assumptions of the Leray-Hirsch theorem for $R=\mathbb{Z}$. Hence show that there is a ring isomorphism

$$
H^{*}(\mathbb{P}(E) ; \mathbb{Z}) \cong H^{*}(B ; \mathbb{Z})[e(L)] /(p(e(L)))
$$

for some monic polynomial $p(x) \in H^{*}(B ; \mathbb{Z})[x]$.

