Homotopy Theory, Examples 2

Oscar Randal-Williams

Lent 2021

1.* Let (X, A) be a CW pair and $p : E \to B$ be a Serre fibration. Show that a commutative square

$$\begin{array}{c} A \xrightarrow{f} E \\ \downarrow & G \swarrow^{\mathscr{A}} \downarrow^{p} \\ \chi \xrightarrow{F} B \end{array}$$

admits a dashed map G making both triangles commute, if either

- (i) $A \to X$ is a weak homotopy equivalence, or
- (ii) $p: E \to B$ is a weak homotopy equivalence

2. Let $h: S^3 \to S^2$ be the Hopf bundle.

- (i) Show that $S^2 \cup_h D^4 \simeq \mathbb{CP}^2$. Hence compute the cup product structure of $X(n) := S^2 \cup_{n \cdot h} D^4$ for $n \in \mathbb{Z}$, and show that X(n) is not homotopy equivalent to a compact smooth manifold unless $n = \pm 1$.
- (ii) If $c: T^3 = S^1 \times S^1 \times S^1 \to S^3$ is the map which collapses the complement of a ball to a point, prove that $h \circ c: T^3 \to S^2$ induces the trivial map on homology and homotopy, but is not homotopic to a constant map.

3. Let (X, x_0) be a (n - 1)-connected CW complex. Show that there is a map $f : X \to K(\pi_n(X, x_0), n)$ which is an isomorphism on $\pi_n(-)$, and deduce that its homotopy fibre is *n*-connected.

4.* For an odd prime number p, by considering the (free) action of $\mathbb{Z}/p \subset S^1$ on $S^{2n-1} \subset \mathbb{C}^n$, construct an Eilenberg-MacLane space of type $(\mathbb{Z}/p, 1)$ and hence compute $H^*(K(\mathbb{Z}/p, 1); \mathbb{F}_p)$ as a ring. [Hint: Use Poincaré duality for the manifolds $S^{2n-1}/\mathbb{Z}/p$ to deduce cup products.]

Hence show that $\mathbb{Z}/p \times \mathbb{Z}/p$ cannot act freely on S^n for any $n \geq 2$. [Hint: If it did, with quotient the n-manifold M, try to build a $K(\mathbb{Z}/p \times \mathbb{Z}/p, 1)$ by attaching cells to M, and consider its cohomology.]¹

5. If G is a compact Lie group and $H \leq G$ is a closed subgroup, the quotient map $p: G \to G/H$ can be shown to be a fibre bundle with fibre H. [Assume this, or prove it if you have a passion for Lie groups.] Let O(n) be the group of $n \times n$ orthogonal matrices.

¹It is a conjecture of G. Carlsson that if $(\mathbb{Z}/p)^r$ acts freely on $S^{n_1} \times \cdots \times S^{n_k}$ then $r \leq k$. Some special cases are known, but in this generality it remains open.

- (i) By identifying $O(n)/O(n-1) \cong S^{n-1}$, show that the inclusion $O(n-1) \to O(n)$ is (n-2)-connected.
- (ii) Show that $V_k(\mathbb{R}^n) := \{(v_1, v_2 \dots, v_k) \in (\mathbb{R}^n)^k \mid v_i \text{ orthonormal}\}$ is homeomorphic to O(n)/O(n-k), and hence deduce that it is (n-k-1)-connected.
- (iii) Show that $O(n)/(O(k) \times O(n-k))$ is in bijection with the set of k-planes in \mathbb{R}^n , denoted $\operatorname{Gr}_k(\mathbb{R}^n)$ (the "Grassmannian"), and hence show that $\pi_i(\operatorname{Gr}_k(\mathbb{R}^n)) \cong \pi_{i-1}(O(k))$ for $i \leq n-k-1$.

6. (Homology Whitehead theorem) Show that a map $f : X \to Y$ between simplyconnected CW complexes which induces an isomorphism on homology is a homotopy equivalence. [Hint: Study the homology of the homotopy fibre of f, using the Serre spectral sequence.]

7. Show that a closed simply-connected 3-manifold M is homotopy equivalent to S^3 . [Use the previous question.]

By considering the group $G = \langle a, b | (ab)^2 a^{-3}, b^5 a^{-3} \rangle$, construct a space having the homology of a point but not being weakly homotopy equivalent to a point. [You can assume G is a nontrivial group if you like, or prove it is nontrivial by producing a homomorphism onto A_5 .]

8. Show that the Moore–Postnikov tower of a map is unique up to homotopy equivalence.

9. If $\cdots \to Z_2 \to Z_1 \to Z_0 \to X$ is the Whitehead tower of a space X based at $x_0 \in X$, show that Z_0 is weakly homotopy equivalent to the path component $X_0 \subset X$ containing x_0 , and that Z_1 is weakly homotopy equivalent to the universal cover of X_0 . [You may assume that X_0 is nice enough to have a universal cover.]

10. Tensoring the short exact sequence $0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \to \mathbb{Z}/n \to 0$ with $C_*(X)$ gives a short exact sequence of chain complexes $0 \to C_*(X) \xrightarrow{n} C_*(X) \to C_*(X) \otimes \mathbb{Z}/n \to 0$ and so a long exact sequence on homology. The connecting homomorphism

$$\tilde{\beta}: H_k(X; \mathbb{Z}/n) \longrightarrow H_{k-1}(X; \mathbb{Z})$$

is called the integral Bockstein homomorphism.

Show that this gives a (singly-graded!) exact couple and hence that for each prime p there is a (singly-graded!) spectral sequence $\{E_s^r(p), d^r\}$ with $E_s^1(p) = H_s(X; \mathbb{Z}/p)$ and $d^r: E_s^r(p) \to E_{s-1}^r(p)$. Assuming that $H_s(X; \mathbb{Z})$ is a finitely-generated abelian group for each s, show that $E_s^r(p)$ is independent of r for all $r \gg 0$, and that this stable value is $(H_s(X; \mathbb{Z})/\text{torsion}) \otimes \mathbb{Z}/p$.

Construct examples showing that d^r can be nontrivial for arbitrarily large r.

2