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1.* (Homotopy equivalences are weak homotopy equivalences) Show that if ϕ : X → Y
is a homotopy equivalence, and x0 ∈ X, then ϕ∗ : πn(X, x0)→ πn(Y, ϕ(x0)) is a bijection
for all n ≥ 0.

2. Give an example of a weak homotopy equivalence f : X → Y for which there does
not exist a weak homotopy equivalence g : Y → X.

3. Let (X,A) be a pair of spaces having the homotopy extension property.

(i) If A is contractible, show that the quotient map q : X → X/A is a homotopy
equivalence.

(ii) If (Y,A) is another pair which has the homotopy extension property, and f : X → Y
satisfies f |A = IdA and is a homotopy equivalence, show that it is also a homotopy
equivalence relative to A.

4. Recall that the mapping cylinder Mf of a map f : X → Y is (X × [0, 1]t Y )/(x, 1) ∈
X× [0, 1] ∼ f(x) ∈ Y . Show that the pair (Mf , X) has the homotopy extension property.

5. If f : X → Y is a continuous map from a compact space to a CW complex, then show
that there is a finite sub-CW complex Y ′ ⊂ Y such that f lands in Y ′. [Hint: You might
first show that f lands in some skeleton Y n.]

6. (Homology and cohomology of infinite CW complexes) Show that if Y0 ⊂ Y1 ⊂ · · · ⊂ Y
is a collection of nested sub-CW complexes which exhaust Y , then Hn(Y ;A) is the direct
limit of

Hn(Y0;A)→ Hn(Y1;A)→ Hn(Y2;A)→ · · · .
[This is easiest using cellular homology, or else the previous question.] Give an example
showing it is not true that Hn(Y ;A) is the inverse limit of

Hn(Y0;A)← Hn(Y1;A)← Hn(Y2;A)← · · · .

7. (Cellular Approximation Theorem) Prove that if f : X → Y is a map between CW
complexes, then it is homotopic to a map f ′ which is cellular i.e. satisfies f ′(Xn) ⊂ Y n

for all n. [Hint: Consider the connectivity of (Y, Y n).]

8. For a based space (X, x0), let π1(X, x0)
ab := π1(X, x0)/π1(X, x0)

′ be the abelianisation
of the fundamental group. Show that the Hurewicz map h : π1(X, x0)→ H1(X;Z) factors
as

h : π1(X, x0)→ π1(X, x0)
ab h

ab

→ H1(X;Z),
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and that if X is path connected then hab is an isomorphism. [Hint: Prove it first for
X = ∨IS1, then study how π1(X, x0)

ab and H1(X;Z) change when cells are attached to
X.]

9.* Show that if p : (X̃, x̃0)→ (X, x0) is a covering map then p∗ : πn(X̃, x̃0)→ πn(X, x0)
is an isomorphism for all n ≥ 2. Describe the Z[π1(X, x0)]-module structure on πn(X, x0)
in these terms. There is a resulting homomorphism

h̃ : πn(X, x0)
∼←− πn(X̃, x̃0)

h−→ Hn(X̃;Z).

(i) For X = S1 ∨ Sn, with basepoint x0 the wedge point, calculate πn(X, x0) as a
π1(X, x0)-module.

(ii) For X = RP2, with any basepoint x0, calculate π2(X, x0) as a π1(X, x0)-module.

(iii) Let f : S2
α ∨ S2

β → S2
α ∨ S2

β be the map which is the identity on S2
α and which

on S2
β is the sum of the identity map and a homeomorphism S2

β → S2
α. Let X

be the mapping torus of f , i.e. the quotient space of (S2
α ∨ S2

β) × [0, 1] under the
identifications (x, 0) ∼ (f(x), 1). The mapping torus of the restriction f |S2

α
forms a

subspace A = S1 × S2
α ⊂ X.

By considering the universal covers of A and X, show that the maps π2(A) →
π2(X) → π2(X,A) form a short exact sequence 0 → Z → Z ⊕ Z → Z → 0, and
compute the action of π1(A) on these three groups. In particular, show the action
of π1(A) is trivial on π2(A) and π2(X,A) but is nontrivial on π2(X).
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