Homotopy Theory, Examples 4

Oscar Randal-Williams

Lent 2015

All cohomology is with \mathbb{F}_{2} coefficients unless otherwise specified.

1. We have $H^{*}\left(K(\mathbb{Z} / 2,1)^{n}\right)=\mathbb{F}_{2}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ where x_{i} is the cohomology class represented by projection to the i th factor. Let σ_{i} be the i th elementary symmetric polynomial in the x_{i} (i.e. $\left.1+\sum_{i=1}^{n} \sigma_{i}=\prod_{i=1}^{n}\left(1+x_{i}\right)\right)$. Show that $S q^{i}\left(\sigma_{n}\right)=\sigma_{i} \cdot \sigma_{n}$, and deduce that $S q^{i} \iota_{n} \neq 0 \in H^{n+i}(K(\mathbb{Z} / 2, n))$ for all $0 \leq i \leq n$.
2. Using the fact that Steenrod operations commute with transgression, show that $H^{n+1}(K(\mathbb{Z} / 2, n))$ is one-dimensional with generator $S q^{1} \iota_{n}$. Show that $S q^{1}$ agrees with the Bockstein associated to $0 \rightarrow \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 4 \rightarrow \mathbb{Z} / 2 \rightarrow 0$ on every cohomology group of every space.
3. Using the fact that Steenrod operations commute with transgression, show that $H^{*}(K(\mathbb{Z} / 2,2))$ is a polynomial algebra on generators $\iota_{2}, S q^{1} \iota_{2}, S q^{2} S q^{1} \iota_{2}, S q^{4} S q^{2} S q^{1} \iota_{2}, \ldots$. Hence show that the map $K(\mathbb{Z} / 2,1) \times K(\mathbb{Z} / 2,1) \rightarrow K(\mathbb{Z} / 2,2)$ representing $\iota_{1} \otimes \iota_{1}$ is injective on cohomology.
4. If X is a space for which there is an isomorphism $H^{*}(X) \cong H^{*}\left(\mathbb{R} \mathbb{P}^{5} / \mathbb{R P}^{2}\right)$ respecting Steenrod operations, show that there is a map $f: X \rightarrow \mathbb{R P}^{5} / \mathbb{R} \mathbb{P}^{2}$ inducing the isomorphism. [Hint: How close is $\mathbb{R P}^{5} / \mathbb{R}^{2} \mathbb{P}^{2}$ to $K(\mathbb{Z} / 2,3)$?]
5. Compute $H^{*}(K(\mathbb{Z} / 2,4))$ for $* \leq 6$ (or further if you can). Hence show that $\pi_{5}\left(S^{2}\right)=$ $\pi_{5}\left(S^{3}\right)=\mathbb{Z} / 2$.
6. The operation $S q=S q^{0}+S q^{1}+S q^{2}+\cdots$ may be formally inverted (as it starts with $\left.S q^{0}=\mathrm{Id}\right)$, with inverse $S q^{-1}=S q_{0}^{-1}+S q_{1}^{-1}+\cdots$. For $x \in H^{1}\left(\mathbb{R} \mathbb{P}^{\infty}\right)$ the standard generator, show that $S q^{-1}(x)=x+x^{2}+x^{4}+x^{8}+x^{16}+\cdots$.

If M is an n-dimensional manifold with total Wu class $v=1+v_{1}+v_{2}+\cdots$, show that $\langle S q(x) \cdot y,[M]\rangle=\left\langle x \cdot S q^{-1}(y) \cdot v,[M]\right\rangle$ for all $x, y \in H^{*}(M)$. Hence show that the Poincaré duality isomorphisms $\phi^{k}: H^{k}(M) \cong H_{n-k}(M) \cong H^{n-k}(M)^{*}$ satisfy

$$
\phi^{k+i}\left(S q^{i}(x)\right)(-)=\phi^{k}(x)\left(\sum_{a+b=n-k} S q_{a}^{-1}(-) \cdot v_{b}\right) .
$$

7. Suppose a connected n-dimensional manifold M embeds smoothly into S^{n+1}, decomposing it into two regions A and B with common boundary M (and inclusions $i_{A}: M \hookrightarrow A$ and $\left.i_{B}: M \hookrightarrow B\right)$.
(i) Show that $S q^{i}: H^{n-i}(M) \rightarrow H^{n}(M)=\mathbb{F}_{2}$ is zero for all $i>0$.
(ii) Show that $i_{A}^{*} \oplus i_{B}^{*}: \tilde{H}^{*}(A) \oplus \tilde{H}^{*}(B) \rightarrow \tilde{H}^{*}(M-\{*\})$ is an isomorphism.
(iii) Show that the map

$$
H^{*}(A) \xrightarrow{i_{A}^{*}} H^{*}(M) \xrightarrow{-\cap[M]} H_{n-*}(M) \xrightarrow{\left(i_{B}\right)_{*}} H_{n-*}(B)
$$

gives an isomorphism $\tilde{H}^{*}(A) \cong \tilde{H}_{n-*}(B)$.
(iv) Deduce that \mathbb{R}^{n} does not embed in \mathbb{R}^{n+1} for $n>1$.
8. If $E \rightarrow B$ is a real n-dimensional vector bundle, with Thom space $\operatorname{Th}(E)$ and \mathbb{F}_{2}-Thom class $u \in H^{n}(\operatorname{Th}(E))$, define $w_{i}(E) \in H^{i}(B)$ to be the unique cohomology class which corresponds to $S q^{i}(u) \in H^{n+i}(\operatorname{Th}(E))$ under the Thom isomorphism.
(i) Show that $w_{i}(E)=0$ for $i>n$.
(ii) Writing $w(E)=1+w_{1}(E)+w_{2}(E)+\cdots$ (which is a finite sum by (i)), show that $w(E \oplus F)=w(E) \cdot w(F)$, [Hint: sum of vector bundles is given by pulling back $E \times F \rightarrow B \times B$ along the diagonal; relate and $\operatorname{Th}(E \times F)$ to $\operatorname{Th}(E)$ and $\operatorname{Th}(F)]$
(iii) If $L \rightarrow \mathbb{R}^{n}$ is the canonical 1-dimensional vector bundle, show that $w(L)=1+x$ for $x \in H^{1}\left(\mathbb{R}^{n}\right)$ the standard generator. [Hint: show that $\operatorname{Th}(L) \simeq \mathbb{R} \mathbb{P}^{n+1}$]
(iv) Show that the tangent bundle $T \mathbb{R} \mathbb{P}^{n}$ of \mathbb{R}^{n} satisfies $T \mathbb{R} \mathbb{P}^{n} \oplus \epsilon^{1} \cong L^{\oplus n+1}$, where ϵ^{k} is the trivial k-dimensional bundle [Hint: produce an isomorphism $T S^{n} \oplus \epsilon^{1} \cong \epsilon^{n+1}$ with an involution covering the antipodal map], so $w\left(T \mathbb{R} \mathbb{P}^{n}\right)=(1+x)^{n+1}$. Similarly, show that $w\left(T \mathbb{C P}^{n}\right)=(1+y)^{n+1}$ for $y \in H^{2}\left(\mathbb{C P}^{n}\right)$ the standard generator.
(v) If an n-dimensional manifold M is the boundary of a compact ($n+1$)-dimensional manifold W, show that the $w_{i}(T M)$ are in the image of the restriction map $H^{*}(W) \rightarrow$ $H^{*}(M)$. Deduce that if $\sum_{i=1}^{k} n_{i}=n$ then $\left\langle w_{n_{1}}(T M) w_{n_{2}}(T M) \cdots w_{n_{k}}(T M),[M]\right\rangle=$ 0 . Hence show that $\mathbb{R}^{2 k}$ is not the boundary of any compact $(2 k+1)$-manifold.
(vi) Show that the standard embedding $\mathbb{R}^{n} \hookrightarrow \mathbb{C P}^{n}$ is not homotopic to an embedding (or even an immersion) into $\mathbb{C P}^{n-1}$, although it is homotopic to a map into $\mathbb{C P}^{n-1}$.

