Michaelmas Term 2025 O. Randal-Williams

Part III Algebraic Topology // Example Sheet 2

1. Construct a natural map $H^n(X) \to \operatorname{Hom}_{\mathbb{Z}}(H_n(X), \mathbb{Z})$, and similarly for relative (co)homology, and prove that these maps commute with the ∂ -maps in the long exact sequence for a pair. Show that your map is a surjection, but that it is not always an isomorphism.

- **2.*** A 2 × 2 integer matrix A induces a continuous map $f_A : \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$ by $[\binom{x}{y}] \mapsto [A\binom{x}{y}]$. Show that the induced map on $H_1(-;\mathbb{Z})$ is given by the matrix A. Show that the induced map on $H_2(-;\mathbb{Z})$ is given by multiplication by $\det(A)$. [Hint: for the latter it will be convenient to consider the local homology at the point $[\binom{0}{0}] \in \mathbb{R}^2/\mathbb{Z}^2$.]
- **3.** If $f: X \to X$ is a homeomorphism, let T_f be the quotient space of $X \times [0,1]$ by $(x,0) \sim (f(x),1)$. By considering the open cover of T_f given by the complement of $X \times \{\frac{1}{3}\}$ and the complement of $X \times \{\frac{2}{3}\}$, construct a long exact sequence of the form

$$\cdots \longrightarrow H_{n+1}(T_f) \longrightarrow H_n(X) \stackrel{1-f_*}{\longrightarrow} H_n(X) \longrightarrow H_n(T_f) \longrightarrow \cdots$$

Calculate $H_*(T_f)$ when (a) $f: S^n \to S^n$ is the antipodal map, (b) $f: \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$ is induced by the matrix $\begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$.

- **4.** Say a map $f: X \to Y$ between cell complexes is *cellular* if $f(X^n) \subset Y^n$ for every n. Show how to associate to such an f a chain map $f^{cell}_{\bullet}: C^{cell}_{\bullet}(X) \to C^{cell}_{\bullet}(Y)$ and show that the induced map $f^{cell}_*: H^{cell}_*(X) \to H^{cell}_*(Y)$ agrees with $f_*: H_*(X) \to H_*(Y)$ under a suitable identification of the homology groups.
- **5.*** If $f: S^n \to X$ is a map, let $X \cup_f D^{n+1}$ be the space obtained by gluing D^{n+1} to X along the map f.
 - (i) If $f \simeq f' : S^n \to X$, show that $X \cup_f D^{n+1} \simeq X \cup_{f'} D^{n+1}$.
 - (ii) Let $Y = S^n \cup_f D^{n+1}$ be constructed using a map $f : S^n \to S^n$ of degree m > 1. Show that the natural quotient map $Y \to Y/S^n \cong S^{n+1}$ is trivial on homology $H_{*>0}$, but is non-trivial on cohomology $H^{*>0}$. What happens if we instead consider the inclusion $S^n \hookrightarrow Y$?

6.

- (i) Let X be a cell complex and $A \subset X$ be a subcomplex. Prove that the pair (X, A) is good.
- (ii) Let X be a cell complex and $K \subset X$ a compact subspace. Prove that K intersects only finitely many open cells in X. Hence show that any element of $H_i(X)$ lies in the image of $H_i(X^m) \to H_i(X)$ for some $m \gg 0$.
- 7. If X and Y are finite cell complexes with cells $\{e_{\alpha}\}_{\alpha\in I}$ and $\{f_{\beta}\}_{\beta\in J}$, construct a cell structure on $X\times Y$ with cells $\{e_{\alpha}\times f_{\beta}\}_{(\alpha,\beta)\in I\times J}$. Hence show that there is an isomorphism of chain complexes $C^{cell}_{\bullet}(X\times Y)\cong C^{cell}_{\bullet}(X)\otimes C^{cell}_{\bullet}(Y)$, where the latter has differential $d(e_{\alpha}\otimes f_{\beta})=d(e_{\alpha})\otimes f_{\beta}+(-1)^{dim(e_{\alpha})}e_{\alpha}\otimes d(f_{\beta})$. [Hint: to understand this sign, it may help to think about the cellular chain complex of $D^p\times D^q$.]

Use this to calculate $H_*(\mathbb{RP}^2 \times \mathbb{RP}^2)$.

8. Show that for $m, n \in \mathbb{N}$ and any space X there are short exact sequences of chain complexes

$$0 \longrightarrow C^{\bullet}(X) \longrightarrow C^{\bullet}(X) \longrightarrow C^{\bullet}(X; \mathbb{Z}/m) \longrightarrow 0$$

$$0 \longrightarrow C^{\bullet}(X; \mathbb{Z}/n) \longrightarrow C^{\bullet}(X; \mathbb{Z}/n \cdot m) \longrightarrow C^{\bullet}(X; \mathbb{Z}/m) \longrightarrow 0$$

and hence describe "Bockstein operations"

$$\tilde{\beta}: H^i(X; \mathbb{Z}/m) \longrightarrow H^{i+1}(X)$$
 and $\beta: H^i(X; \mathbb{Z}/m) \longrightarrow H^{i+1}(X; \mathbb{Z}/n)$.

How are these two operations related? Compute the effect of β and $\tilde{\beta}$ for $m=2, n=2^r$, and $X=\mathbb{RP}^k$.

When n = m show that $\beta(x \smile y) = \beta(x) \smile y + (-1)^{|x|} x \smile \beta(y)$.

- **9.** A map $\pi: E \to B$ is called a *covering map* if there is an open cover $\{U_{\alpha}\}$ of B such that $\pi^{-1}(U_{\alpha})$ is a disjoint union $\coprod V_{\alpha,\beta}$ with each $\pi|_{V_{\alpha,\beta}}: V_{\alpha,\beta} \to U_{\alpha}$ a homeomorphism.
 - (i) If $\pi: E \to B$ is a covering map with finite fibres of cardinality N, show how to construct a map $\pi^!: H_*(B) \to H_*(E)$ such that $\pi_* \circ \pi^!$ is multiplication by N.
 - (ii) In the same situation, if B is a finite cell complex show that $\chi(E) = N \cdot \chi(B)$.
- (iii) Show there is a covering map $\Sigma_g \to \Sigma_h$ if and only if g = kh k + 1 for some $k \in \mathbb{N}$.
- **10.** For $A, B \subset X$ open sets, explain how to construct a relative cup product

$$\smile: H^i(X,A) \times H^j(X,B) \longrightarrow H^{i+j}(X,A \cup B)$$

[Hint: it may be helpful to consider the cochain complex $C_{A+B}^*(X)$ of cochains vanishing on simplices lying wholly in A or B, and use the Small Simplices Theorem.] Using this, show that if X has a cover by n contractible open sets, then the cup-length

$$\max \{k \mid \exists a_1, \dots, a_k \in H^{*>0}(X), \ a_1 \smile \dots \smile a_k \neq 0\}$$

is strictly smaller than n. What does this say about the ring $H^*(\Sigma X)$, where Σ is the suspension operation?

- **11.** [Optional: this is more tricky than it looks.]
 - (i) Let $e:[0,1]^k\to S^n$ be a map which is a homeomorphism onto its image $D\subset S^n$. By considering the open sets

$$A = S^n \setminus e([0,1]^{k-1} \times [0,1/2]) \qquad B = S^n \setminus e([0,1]^{k-1} \times [1/2,1])$$

in S^n , show by induction on k that $\widetilde{H}_i(S^n \setminus D) = 0$.

(ii) If $e: S^k \to S^n$ is a map which is a homeomorphism onto its image $S \subset S^n$, compute $\widetilde{H}_i(S^n \setminus S)$. Think about what this means in the case (n,k) = (2,1).

Comments or corrections to or257@cam.ac.uk