Part III Algebraic Topology // Example Sheet 2

1. Construct a natural map $H^{n}(X) \rightarrow \operatorname{Hom}\left(H_{n}(X), \mathbb{Z}\right)$, and similarly for relative (co)homology, and prove that these maps commute with the ∂-maps in the long exact sequence for a pair. Show that your map is a surjection, but that it is not always an isomorphism.
2.* If $f: X \rightarrow X$ is a homeomorphism, let T_{f} be the quotient space of $X \times[0,1]$ by $(x, 0) \sim(f(x), 1)$. By choosing an appropriate open cover, construct a long exact sequence

$$
\cdots \longrightarrow H_{n+1}\left(T_{f}\right) \longrightarrow H_{n}(X) \xrightarrow{1-f_{*}} H_{n}(X) \longrightarrow H_{n}\left(T_{f}\right) \longrightarrow \cdots .
$$

Calculate $H_{*}\left(T_{f}\right)$ when (a) $f: S^{n} \rightarrow S^{n}$ is the antipodal map, (b) $f: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ is induced by the matrix $\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right)$.
3. Say a map $f: X \rightarrow Y$ between cell complexes is cellular if $f\left(X^{n}\right) \subset Y^{n}$ for every n. Show how to associate to such an f a chain map $f_{\#}^{\text {cell }}: C_{\bullet}^{\text {cell }}(X) \rightarrow C_{\bullet}^{\text {cell }}(Y)$ and show that the induced map $f_{*}^{\text {cell }}: H_{*}^{\text {cell }}(X) \rightarrow H_{*}^{\text {cell }}(Y)$ agrees with $f_{*}: H_{*}(X) \rightarrow H_{*}(Y)$ under a suitable identification of the homology groups.
4.* If $f: S^{n} \rightarrow X$ is a map, let $X \cup_{f} D^{n+1}$ be the space obtained by gluing D^{n+1} to X along the map f.
(i) If $f \simeq f^{\prime}: S^{n} \rightarrow X$, show that $X \cup_{f} D^{n+1} \simeq X \cup_{f^{\prime}} D^{n+1}$.
(ii) Let $Y=S^{n} \cup_{f} D^{n+1}$ be constructed using a map $f: S^{n} \rightarrow S^{n}$ of degree $m>1$. Show that the natural quotient map $Y \rightarrow Y / S^{n} \cong S^{n+1}$ is trivial on homology $H_{*>0}$, but is non-trivial on cohomology $H^{*>0}$. What happens if we instead consider the inclusion $S^{n} \hookrightarrow Y$?
5.
(i) Let X be a cell complex and $A \subset X$ be a subcomplex. Prove that the pair (X, A) is good.
(ii) Let X be a cell complex and $K \subset X$ a compact subspace. Prove that K intersects only finitely many open cells in X. Hence show that any element of $H_{i}(X)$ lies in the image of $H_{i}\left(X^{m}\right) \rightarrow H_{i}(X)$ for some $m \gg 0$.
6. If X and Y are finite cell complexes with cells $\left\{e_{\alpha}\right\}_{\alpha \in I}$ and $\left\{f_{\beta}\right\}_{\beta \in J}$, construct a cell structure on $X \times Y$ with cells $\left\{e_{\alpha} \times f_{\beta}\right\}_{(\alpha, \beta) \in I \times J \text {. Hence show that there is an isomorphism of chain }}$ complexes $C_{\bullet}^{\text {cell }}(X \times Y) \cong C_{\bullet}^{\text {cell }}(X) \otimes C_{\bullet}^{\text {cell }}(Y)$, where the latter has differential $d\left(e_{\alpha} \otimes f_{\beta}\right)=$ $d\left(e_{\alpha}\right) \otimes f_{\beta}+(-1)^{\operatorname{dim}\left(e_{\alpha}\right)} e_{\alpha} \otimes d\left(f_{\beta}\right)$. [Hint: to understand this sign, it may help to think about the cellular chain complex of $D^{p} \times D^{q}$.]

Use this to calculate $H_{*}\left(\mathbb{R P}^{2} \times \mathbb{R P}^{2}\right)$.
7. Show that for $m, n \in \mathbb{N}$ and any space X there are short exact sequences of chain complexes

$$
\begin{gathered}
0 \longrightarrow C^{\bullet}(X) \longrightarrow C^{\bullet}(X) \longrightarrow C^{\bullet}(X ; \mathbb{Z} / m) \longrightarrow 0 \\
0 \longrightarrow C^{\bullet}(X ; \mathbb{Z} / n) \longrightarrow C^{\bullet}(X ; \mathbb{Z} / n \cdot m) \longrightarrow C^{\bullet}(X ; \mathbb{Z} / m) \longrightarrow 0
\end{gathered}
$$

and hence describe "Bockstein operations"

$$
\tilde{\beta}: H^{i}(X ; \mathbb{Z} / m) \longrightarrow H^{i+1}(X) \quad \text { and } \quad \beta: H^{i}(X ; \mathbb{Z} / m) \longrightarrow H^{i+1}(X ; \mathbb{Z} / n)
$$

How are these two operations related? Compute the effect of β and $\tilde{\beta}$ for $m=2, n=2^{r}$, and $X=\mathbb{R} \mathbb{P}^{k}$.

Show that $\beta(x \smile y)=\beta(x) \smile y+(-1)^{|x|} x \smile \beta(y)$.
8. A map $\pi: E \rightarrow B$ is called a covering map if there is an open cover $\left\{U_{\alpha}\right\}$ of B such that $\pi^{-1}\left(U_{\alpha}\right)$ is a disjoint union $\coprod V_{\alpha, \beta}$ with each $\left.\pi\right|_{V_{\alpha, \beta}}: V_{\alpha, \beta} \rightarrow U_{\alpha}$ a homeomorphism.
(i) If $\pi: E \rightarrow B$ is a covering map with finite fibres of cardinality N, show how to construct a map $\pi^{!}: H_{*}(B) \rightarrow H_{*}(E)$ such that $\pi_{*} \circ \pi^{!}$is multiplication by N.
(ii) In the same situation, if B is a finite cell complex show that $\chi(E)=N \cdot \chi(B)$.
(iii) Show there is a covering map $\Sigma_{g} \rightarrow \Sigma_{h}$ if and only if $g=k h-k+1$ for some $k \in \mathbb{N}$.
9. Show that there is a relative cup product

$$
\smile: H^{i}(X, A) \times H^{j}(X, B) \longrightarrow H^{i+j}(X, A \cup B)
$$

[Hint: it may be helpful to consider a cochain complex $C_{A+B}^{*}(X)$ of cochains vanishing on simplices lying wholly in A or B, and use the Small Simplices Theorem.] Using this, show that if X has a cover by n contractible (i.e. homotopy equivalent to a point) open sets, then the cup-length

$$
\max \left\{k \mid \exists a_{1}, \ldots, a_{k} \in H^{*>0}(X), a_{1} \smile \ldots \smile a_{k} \neq 0\right\}
$$

is strictly smaller than n. What does this say about the ring $H^{*}(\Sigma X)$, where Σ is the suspension operation?
10.
(i) Let $e:[0,1]^{k} \rightarrow S^{n}$ be a map which is a homeomorphism onto its image $D \subset S^{n}$. By considering the open sets

$$
A=S^{n} \backslash e\left([0,1]^{k-1} \times[0,1 / 2]\right) \quad B=S^{n} \backslash e\left([0,1]^{k-1} \times[1 / 2,1]\right)
$$

in S^{n}, show by induction on k that $\widetilde{H}_{i}\left(S^{n} \backslash D\right)=0$.
(ii) If $e: S^{k} \rightarrow S^{n}$ is a map which is a homeomorphism onto its image $S \subset S^{n}$, compute $\widetilde{H}_{i}\left(S^{n} \backslash S\right)$. Think about the consequence of this in the case $(n, k)=(2,1)$.

Comments or corrections to or257@cam.ac.uk

