O. Randal-Williams
Part IIT Algebraic Topology / The small simplices theorem

Let U = {U, }aer be a collection of subsets of X whose interiors cover X, and C¥(X) C Co(X)
be the sub-chain complex generated by those singular simplices o : A™ — X whose image lies
entirely within some U,. The goal of this note is to prove the following theorem.

Theorem 1. The map HY(X) := H,(C¥ (X)) — H.(X) is an isomorphism.

1. Barycentric subdivision.

Definition 2. If + = {xg,...,2,} is a collection of points in R which span an n-simplex, we
write b, = n%rl 3" a; for the barycentre of the simplex x. In particular, we write b, € A" C R**!
for the barycentre of the standard n-simplex.

Let us write ¢, : A™ — A" for the identity map considered as a singular n-simplex, so as an
element of C,,(A"). If o : A — A" is a singular i-simplex, let

Cone" (o) : AL — A"

)

t1,...,t
(toat1,-~~,ti+1)%tO'bn—i'(l—to)‘U((l’l_,t;H)),

where we have used that A™ is convex to linearly interpolate between b,,o(t1,...,ti+1) € A™.
This construction extended linearly gives a homomorphism Cone" : C;(A™) — Cyy1(A™), which
satisfies

n

o — Cone?"|(do) i >0

(@) = {O’—E(O‘)-bn i=0.

Therefore, if we let co : Co(A™) — Co(A™) be the chain map given by co(c) = €(o) - b, on a
0-simplex o, and by ¢;(c) = 0 on simplices of higher dimension, then

d(Cone;

dCone®" + Cone®"d = idg, (an) — Ce-
Remark 3. This in particular shows that H;(A™) = 0 for ¢ > 0.

Definition 4. If p : Co(X) — Co(X) is a collection of chain maps, one for each space X, we say
they are natural if for each map f : X — Y of spaces we have f, o pX = p¥ o f,,. We make the
analogous definition for a collection of chain homotopies F;X : Co(X) — Coy1(X).

Definition 5. Define homomorphisms p;X : C,,(X) — C,,(X) inductively by:
(i) Let py = idg,(x) for all spaces X.
(ii) If pX ; has been defined for all spaces X, let

pf 1 Cp(X) — Cr(X)

o+ 0#(Cone§f1 (Pﬁfl (din))).

Lemma 6. pf : Co(X) — Co(X) is a natural chain map.



Proof. If f: X — Y then

TP (0)) = fyog(Coner s (pp” 1 (den))) = (f © o) (Coner” (o (den)))

which is pY (f o 0) = pY (f«(0)), so this is natural.
Let us suppose for an induction that dpX ; = pX ,d for all spaces X, which is certainly satisfied
when n — 1 = 0. Then for n > 1 calculate

dpyy (0) = a4 (d(Conep”y (py” 1(dbn))))
= o(pp" (din) — Conepy(dpp” (din)))
= o(pp" (din) — Conepy(pp" (ddin)))
= o (pp1(din)) = pr_y (do)

as required, where at the end we have used the naturality property oy o p2" = piX_; o 4. O
We now wish to show that p is naturally chain homotopic to the identity.
Definition 7. Define homomorphisms T:X : C,,(X) — Cp,11(X) inductively by:
(i) Let Tg< = 0 for all spaces X.
(ii) If T:X | has been defined for all spaces X, let
TX : Cp(X) — Cpga(X)
o— O'#(COHG “(PR" (tn) = tn — T2 (den))).
Lemma 8. T,X : Co(X) — Cor1(X) is a natural chain homotopy from pY to the identity.

Proof. It is natural for the same reason p;X was: T (¢) is obtained by applying oy to an element
of Cry1(A™).

Suppose for an induction that dTX ; + T:X od = pX | — idg, _,(x) for all spaces X, which is
certainly satisfied for n — 1 = 0. Then for n > 1 calculate

dT¥ (0) = o (dConey” (py" (tn) — tn — T3y (d1n)))
= J#((lan(A") - Conen—ld) (pn (Ln) —ln — T (dbn)))

Now by the inductive assumption we have
d(pp" (tn) = tn = T2y (den)) = Py (di) — den — AT (di) = T 5 (dden) = 0,
so the expression simplifies to
dTX (0) = o4(py" (tn) — tn = T2y (din)) = pp (0) — 0 = T,y (dor)

as required, where we have again used naturality of pX and T. O

2. Some geometry of simplices.

The standard simplex A" is a metric space via the metric inherited from R"*!, so we may talk
about the diameter of a subset of A™. For points vg,v1,...,v, € A", we write [vg,v1,..., U] :
A"™ — A" for the map (to, t1,...,tn) — Y, tiv;; when it is injective, let us also write [vg, v1, ..., vy]
for the image of this map, which is the convex hull of the v;.

Lemma 9. diam([vg,v1, ..., v,]) = max; ;j{|v; — vj|}



Proof. For v € [vg,v1,...,v,] we have

v — Zt{l}i
i

Ztiv — Ztﬂ)z‘
7 7
S Ztilvi — U’
%

< max{[v - v}
J

and by convexity the latter is maximised when v is a vertex. O
Lemma 10. Each simplex of p5" ([vo, ..., vn]) has diameter < —ardiam([vg, v1, ..., vn)).

Proof. Let us prove this by induction on dimension; it clearly holds for 0-simplices.

Now p2" ([vo, .. .,vs]) is a signed sum of n-simplices [by, 1, ..., T,] where b, is the barycentre
of [vg,...,v,] and the z; lie in the boundary of [vg,...,v,]. If the maximal distance between
two vertices of such a simplex is between two x;’s, then this takes place in a face of [vg, ..., v,],
which has dimension < n so the distance between them is < %5 diam([vo, v1, . . ., vy]) by inductive
assumption.

If the maximal distance is between b, and some x;, then z; lies in some face [vo, ..., 0}, ..., vy]
S0 |by — x| < |by — vi| for some k. But

’by - Uk| = %_HZUZ - Z—I}vk
i
i
<D v =il
i
and each |v; — vg| is at most diam([vy, ..., v,]), though |vg — vx| = 0. This shows that |b, — vg| <
ardiam([vo, . .., v,]) as required. O

Proposition 11. Let U = {Uy}acr be a collection of subsets of X whose interiors cover.
(i) If c € CY(X) then pX (c) € CY(X) too.
(ii) If c € Cp(X) then there is a k> 0 such that (pX)*(c) € CY(X).

Proof. The first part follows from naturality of pX: if o : A" — U, and i : Uy — X is the
inclusion of spaces, then piX ((iq)4(0)) = (ia)4(p%>(c)) is a sum of simplices in U,.

For the second part, by (i) and the fact that an n-chain is a finite sum of singular n-simplices,
we may suppose that ¢ is a single singular n-simplex o : A™ — X. Then V = {Gfllofa}ae 7 is
an open cover of A™ which is a compact metric space. By the Lesbeque Number Lemma there is
an € > 0 such that each e-ball in A" is contained in some o~ 1U,. By iterating Lemma 10, each

n

simplex of (p5")* (1) has diameter < (n—ﬂ)kdiam(A"), so by choosing k >> 0 we may suppose that

each simplex of (p2")*(1,) has diameter less than €, and so lies in some o~ U,.
Hence (p2")* (1) € CY(A™), and so (pX)*(0) = o4 ((p5")¥(1n)) € CY(X), as required. O



3. Proof of Theorem 1.

We consider the chain map CY(X) — Co(X) given by inclusion, and the induced map U :
HY(X) — H,(X) on homology.

Let [¢] € H,(X). By Proposition 11 there is a k > 0 such that (pX)*(c) € CY(X). As p¥ is
naturally chain homotopic to the identity, so is the composition (p¥)¥. One could find a formula
for such a chain homotopy in terms of T;X, but the formula does not matter so let us simply write
F¥ for such a chain homotopy, satisfying dE¥ + F¥  d = (pX)¥ —id. Then

(on ) (e) = ¢ = dFy(c) + Fy_yd(c)

but the last term vanishes as ¢ is a cycle (because it represents a homology class). Thus (pX)¥(c)
is equivalent to ¢ modulo boundaries, so U : HY(X) — H,(X) is surjective.

Now let [c] € HY(X) be such that U([c]) =0 € H,(X). Thus there is a z € C,,;1(X) such that
d(z) = ¢ € C,(X). By Proposition 11 there is a k > 0 such that (p\,;)*(z) € C¥,;(X), and we
have

(Pns1)"(2) = 2 = dF} 4 (2) + Fpd(2)
and so applying d we get

d((pny1)"(2) = Fyd(2)) = d(2) = c.
Now (i, 1)*(2) € CY,1(X) by our choice of k, and as d(z) = ¢ € C%(X) and the chain homotopy
F¥ is natural, F¥d(z) € C%,,(X) too. Thus c is a boundary in C¥(X), so [c] = 0 € HY(X), and
hence U : HY(X) — H,(X) is injective.



