Part III Algebraic Topology // The small simplices theorem

Let $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in I}$ be a collection of subsets of X whose interiors cover X, and $C^{\mathcal{U}}_{\bullet}(X) \subset C_{\bullet}(X)$ be the sub-chain complex generated by those singular simplices $\sigma : \Delta^n \to X$ whose image lies entirely within some U_{α} . The goal of this note is to prove the following theorem.

Theorem 1. The map $H_*^{\mathcal{U}}(X) := H_*(C_{\bullet}^{\mathcal{U}}(X)) \to H_*(X)$ is an isomorphism.

1. Barycentric subdivision.

Definition 2. If $x = \{x_0, \dots, x_n\}$ is a collection of points in \mathbb{R}^N which span an *n*-simplex, we write $b_x = \frac{1}{n+1} \sum x_i$ for the *barycentre* of the simplex x. In particular, we write $b_n \in \Delta^n \subset \mathbb{R}^{n+1}$ for the barycentre of the standard n-simplex.

Let us write $\iota_n: \Delta^n \to \Delta^n$ for the identity map considered as a singular *n*-simplex, so as an element of $C_n(\Delta^n)$. If $\sigma: \Delta^i \to \Delta^n$ is a singular *i*-simplex, let

$$\operatorname{Cone}_{i}^{\Delta^{n}}(\sigma): \Delta^{i+1} \longrightarrow \Delta^{n}$$

$$(t_{0}, t_{1}, \dots, t_{i+1}) \longmapsto t_{0} \cdot b_{n} + (1 - t_{0}) \cdot \sigma\left(\frac{(t_{1}, \dots, t_{i+1})}{1 - t_{0}}\right),$$

where we have used that Δ^n is convex to linearly interpolate between $b_n, \sigma(t_1, \ldots, t_{i+1}) \in \Delta^n$. This construction extended linearly gives a homomorphism $\operatorname{Cone}_i^{\Delta^n} : C_i(\Delta^n) \to C_{i+1}(\Delta^n)$, which satisfies

$$d(\operatorname{Cone}_{i}^{\Delta^{n}}(\sigma)) = \begin{cases} \sigma - \operatorname{Cone}_{i-1}^{\Delta^{n}}(d\sigma) & i > 0\\ \sigma - \epsilon(\sigma) \cdot b_{n} & i = 0. \end{cases}$$

Therefore, if we let $c_{\bullet}: C_{\bullet}(\Delta^n) \to C_{\bullet}(\Delta^n)$ be the chain map given by $c_0(\sigma) = \epsilon(\sigma) \cdot b_n$ on a 0-simplex σ , and by $c_i(\sigma) = 0$ on simplices of higher dimension, then

$$d\operatorname{Cone}^{\Delta^n} + \operatorname{Cone}^{\Delta^n} d = \operatorname{id}_{C_{\bullet}(\Delta^n)} - c_{\bullet}.$$

Remark 3. This in particular shows that $H_i(\Delta^n) = 0$ for i > 0.

Definition 4. If $p_{\bullet}^X : C_{\bullet}(X) \to C_{\bullet}(X)$ is a collection of chain maps, one for each space X, we say they are *natural* if for each map $f: X \to Y$ of spaces we have $f_n \circ p_n^X = p_n^Y \circ f_n$. We make the analogous definition for a collection of chain homotopies $F_{\bullet}^X : C_{\bullet}(X) \to C_{\bullet+1}(X)$.

Definition 5. Define homomorphisms $\rho_n^X: C_n(X) \to C_n(X)$ inductively by:

- (i) Let $\rho_0^X = \mathrm{id}_{C_0(X)}$ for all spaces X.
- (ii) If ρ_{n-1}^X has been defined for all spaces X, let

$$\rho_n^X : C_n(X) \longrightarrow C_n(X)$$
$$\sigma \longmapsto \sigma_{\#}(\operatorname{Cone}_{n-1}^{\Delta^n}(\rho_{n-1}^{\Delta^n}(d\iota_n))).$$

Lemma 6. $\rho_{\bullet}^X: C_{\bullet}(X) \to C_{\bullet}(X)$ is a natural chain map.

Proof. If $f: X \to Y$ then

$$f_{\#}(\rho_n^X(\sigma)) = f_{\#}\sigma_{\#}(\operatorname{Cone}_{n-1}^{\Delta^n}(\rho_{n-1}^{\Delta^n}(d\iota_n))) = (f \circ \sigma)_{\#}(\operatorname{Cone}_{n-1}^{\Delta^n}(\rho_{n-1}^{\Delta^n}(d\iota_n)))$$

which is $\rho_n^Y(f \circ \sigma) = \rho_n^Y(f_{\#}(\sigma))$, so this is natural.

Let us suppose for an induction that $d\rho_{n-1}^X = \rho_{n-2}^X d$ for all spaces X, which is certainly satisfied when n-1=0. Then for $n \geq 1$ calculate

$$d\rho_{n}^{X}(\sigma) = \sigma_{\#}(d(\operatorname{Cone}_{n-1}^{\Delta_{n}}(\rho_{n-1}^{\Delta_{n}}(d\iota_{n}))))$$

$$= \sigma_{\#}(\rho_{n-1}^{\Delta_{n}}(d\iota_{n}) - \operatorname{Cone}_{n-2}^{\Delta_{n}}(d\rho_{n-1}^{\Delta_{n}}(d\iota_{n})))$$

$$= \sigma_{\#}(\rho_{n-1}^{\Delta_{n}}(d\iota_{n}) - \operatorname{Cone}_{n-2}^{\Delta_{n}}(\rho_{n-1}^{\Delta_{n}}(dd\iota_{n})))$$

$$= \sigma_{\#}(\rho_{n-1}^{\Delta_{n}}(d\iota_{n})) = \rho_{n-1}^{X}(d\sigma)$$

as required, where at the end we have used the naturality property $\sigma_\# \circ \rho_{n-1}^{\Delta^n} = \rho_{n-1}^X \circ \sigma_\#$.

We now wish to show that ρ_{\bullet}^{X} is naturally chain homotopic to the identity.

Definition 7. Define homomorphisms $T_n^X:C_n(X)\to C_{n+1}(X)$ inductively by:

- (i) Let $T_0^X = 0$ for all spaces X.
- (ii) If T_{n-1}^X has been defined for all spaces X, let

$$T_n^X: C_n(X) \longrightarrow C_{n+1}(X)$$

 $\sigma \longmapsto \sigma_{\#}(\operatorname{Cone}_n^{\Delta^n}(\rho_n^{\Delta^n}(\iota_n) - \iota_n - T_{n-1}^{\Delta^n}(d\iota_n))).$

Lemma 8. $T_{\bullet}^X: C_{\bullet}(X) \to C_{\bullet+1}(X)$ is a natural chain homotopy from ρ_{\bullet}^X to the identity.

Proof. It is natural for the same reason ρ_n^X was: $T_n^X(\sigma)$ is obtained by applying $\sigma_\#$ to an element of $C_{n+1}(\Delta^n)$.

Suppose for an induction that $dT_{n-1}^X + T_{n-2}^X d = \rho_{n-1}^X - \mathrm{id}_{C_{n-1}(X)}$ for all spaces X, which is certainly satisfied for n-1=0. Then for $n \geq 1$ calculate

$$dT_n^X(\sigma) = \sigma_{\#}(d\operatorname{Cone}_n^{\Delta^n}(\rho_n^{\Delta^n}(\iota_n) - \iota_n - T_{n-1}^{\Delta^n}(d\iota_n)))$$

= $\sigma_{\#}((\operatorname{id}_{C_n(\Delta^n)} - \operatorname{Cone}_{n-1}^{\Delta^n}d)(\rho_n^{\Delta^n}(\iota_n) - \iota_n - T_{n-1}^{\Delta^n}(d\iota_n))).$

Now by the inductive assumption we have

$$d(\rho_n^{\Delta^n}(\iota_n) - \iota_n - T_{n-1}^{\Delta^n}(d\iota_n)) = \rho_{n-1}^{\Delta^n}(d\iota_n) - d\iota_n - dT_{n-1}^{\Delta^n}(d\iota_n) = T_{n-2}^{\Delta^n}(dd\iota_n) = 0,$$

so the expression simplifies to

$$dT_n^X(\sigma) = \sigma_{\#}(\rho_n^{\Delta^n}(\iota_n) - \iota_n - T_{n-1}^{\Delta^n}(d\iota_n)) = \rho_n^X(\sigma) - \sigma - T_{n-1}^X(d\sigma)$$

as required, where we have again used naturality of ρ^X and T^X .

2. Some geometry of simplices.

The standard simplex Δ^n is a metric space via the metric inherited from \mathbb{R}^{n+1} , so we may talk about the diameter of a subset of Δ^n . For points $v_0, v_1, \ldots, v_n \in \Delta^n$, we write $[v_0, v_1, \ldots, v_n]$: $\Delta^n \to \Delta^n$ for the map $(t_0, t_1, \ldots, t_n) \mapsto \sum_i t_i v_i$; when it is injective, let us also write $[v_0, v_1, \ldots, v_n]$ for the image of this map, which is the convex hull of the v_i .

Lemma 9. diam(
$$[v_0, v_1, \dots, v_n]$$
) = $\max_{i,j} \{|v_i - v_j|\}$

Proof. For $v \in [v_0, v_1, \dots, v_n]$ we have

$$\left| v - \sum_{i} t_{i} v_{i} \right| = \left| \sum_{i} t_{i} v - \sum_{i} t_{i} v_{i} \right|$$

$$\leq \sum_{i} t_{i} |v_{i} - v|$$

$$\leq \max_{j} \{ |v - v_{j}| \}$$

and by convexity the latter is maximised when v is a vertex.

Lemma 10. Each simplex of $\rho_n^{\Delta^n}([v_0,\ldots,v_n])$ has diameter $\leq \frac{n}{n+1} \operatorname{diam}([v_0,v_1,\ldots,v_n])$.

Proof. Let us prove this by induction on dimension; it clearly holds for 0-simplices.

Now $\rho_n^{\Delta^n}([v_0,\ldots,v_n])$ is a signed sum of *n*-simplices $[b_v,x_1,\ldots,x_n]$ where b_v is the barycentre of $[v_0, \ldots, v_n]$ and the x_i lie in the boundary of $[v_0, \ldots, v_n]$. If the maximal distance between two vertices of such a simplex is between two x_i 's, then this takes place in a face of $[v_0, \ldots, v_n]$, which has dimension < n so the distance between them is $\leq \frac{n}{n+1} \operatorname{diam}([v_0, v_1, \dots, v_n])$ by inductive assumption.

If the maximal distance is between b_v and some x_i , then x_i lies in some face $[v_0, \ldots, \widehat{v_i}, \ldots, v_n]$ so $|b_v - x_i| \le |b_v - v_k|$ for some k. But

$$|b_v - v_k| = \left| \frac{1}{n+1} \sum_i v_i - \frac{n+1}{n+1} v_k \right|$$
$$= \frac{1}{n+1} \left| \sum_i v_i - v_k \right|$$
$$\leq \sum_i \frac{1}{n+1} |v_i - v_k|$$

and each $|v_i - v_k|$ is at most diam $([v_0, \dots, v_n])$, though $|v_k - v_k| = 0$. This shows that $|b_v - v_k| \le 1$ $\frac{n}{n+1} \operatorname{diam}([v_0, \dots, v_n])$ as required.

Proposition 11. Let $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in I}$ be a collection of subsets of X whose interiors cover.

- (i) If $c \in C_n^{\mathcal{U}}(X)$ then $\rho_n^X(c) \in C_n^{\mathcal{U}}(X)$ too.
- (ii) If $c \in C_n(X)$ then there is a $k \gg 0$ such that $(\rho_n^X)^k(c) \in C_n^{\mathcal{U}}(X)$.

Proof. The first part follows from naturality of ρ_n^X : if $\sigma:\Delta^n\to U_\alpha$ and $i_\alpha:U_\alpha\to X$ is the inclusion of spaces, then $\rho_n^X((i_\alpha)_\#(\sigma))=(i_\alpha)_\#(\rho_n^{U_\alpha}(\sigma))$ is a sum of simplices in U_α .

For the second part, by (i) and the fact that an *n*-chain is a *finite* sum of singular *n*-simplices, we may suppose that c is a single singular n-simplex $\sigma:\Delta^n\to X$. Then $\mathcal{V}=\{\sigma^{-1}\mathring{U}_\alpha\}_{\alpha\in I}$ is an open cover of Δ^n , which is a compact metric space. By the Lesbegue Number Lemma there is an $\epsilon > 0$ such that each ϵ -ball in Δ^n is contained in some $\sigma^{-1}U_{\alpha}$. By iterating Lemma 10, each simplex of $(\rho_n^{\Delta^n})^k(\iota_n)$ has diameter $\leq (\frac{n}{n+1})^k \operatorname{diam}(\Delta^n)$, so by choosing $k \gg 0$ we may suppose that each simplex of $(\rho_n^{\Delta^n})^k(\iota_n)$ has diameter less than ϵ , and so lies in some $\sigma^{-1}\mathring{U}_{\alpha}$. Hence $(\rho_n^{\Delta^n})^k(\iota_n) \in C_n^{\mathcal{V}}(\Delta^n)$, and so $(\rho_n^X)^k(\sigma) = \sigma_\#((\rho_n^{\Delta^n})^k(\iota_n)) \in C_n^{\mathcal{U}}(X)$, as required.

3. Proof of Theorem 1.

We consider the chain map $C^{\mathcal{U}}_{\bullet}(X) \to C_{\bullet}(X)$ given by inclusion, and the induced map $U: H^{\mathcal{U}}_{*}(X) \to H_{*}(X)$ on homology.

Let $[c] \in H_n(X)$. By Proposition 11 there is a $k \gg 0$ such that $(\rho_n^X)^k(c) \in C_n^{\mathcal{U}}(X)$. As ρ_{\bullet}^X is naturally chain homotopic to the identity, so is the composition $(\rho_{\bullet}^X)^k$. One could find a formula for such a chain homotopy in terms of T_{\bullet}^X , but the formula does not matter so let us simply write F_{\bullet}^k for such a chain homotopy, satisfying $dF_n^k + F_{n-1}^k d = (\rho_n^X)^k - \mathrm{id}$. Then

$$(\rho_n^X)^k(c) - c = dF_n^k(c) + F_{n-1}^k d(c)$$

but the last term vanishes as c is a cycle (because it represents a homology class). Thus $(\rho_n^X)^k(c)$ is equivalent to c modulo boundaries, so $U: H_n^{\mathcal{U}}(X) \to H_n(X)$ is surjective.

Now let $[c] \in H_n^{\mathcal{U}}(X)$ be such that $U([c]) = 0 \in H_n(X)$. Thus there is a $z \in C_{n+1}(X)$ such that $d(z) = c \in C_n(X)$. By Proposition 11 there is a $k \gg 0$ such that $(\rho_{n+1}^X)^k(z) \in C_{n+1}^{\mathcal{U}}(X)$, and we have

$$(\rho_{n+1}^X)^k(z) - z = dF_{n+1}^k(z) + F_n^k d(z)$$

and so applying d we get

$$d((\rho_{n+1}^X)^k(z) - F_n^k d(z)) = d(z) = c.$$

Now $(\rho_{n+1}^X)^k(z) \in C_{n+1}^{\mathcal{U}}(X)$ by our choice of k, and as $d(z) = c \in C_n^{\mathcal{U}}(X)$ and the chain homotopy F_{\bullet}^k is natural, $F_n^k d(z) \in C_{n+1}^{\mathcal{U}}(X)$ too. Thus c is a boundary in $C_{\bullet}^{\mathcal{U}}(X)$, so $[c] = 0 \in H_n^{\mathcal{U}}(X)$, and hence $U: H_n^{\mathcal{U}}(X) \to H_n(X)$ is injective.