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Part III Algebraic Topology // The small simplices theorem

Let U = {Uα}α∈I be a collection of subsets of X whose interiors cover X, and CU• (X) ⊂ C•(X)
be the sub-chain complex generated by those singular simplices σ : ∆n → X whose image lies
entirely within some Uα. The goal of this note is to prove the following theorem.

Theorem 1. The map HU∗ (X) := H∗(C
U
• (X))→ H∗(X) is an isomorphism.

1. Barycentric subdivision.

Definition 2. If x = {x0, . . . , xn} is a collection of points in RN which span an n-simplex, we
write bx = 1

n+1

∑
xi for the barycentre of the simplex x. In particular, we write bn ∈ ∆n ⊂ Rn+1

for the barycentre of the standard n-simplex.

Let us write ιn : ∆n → ∆n for the identity map considered as a singular n-simplex, so as an
element of Cn(∆n). If σ : ∆i → ∆n is a singular i-simplex, let

Cone∆n

i (σ) : ∆i+1 −→ ∆n

(t0, t1, . . . , ti+1) 7−→ t0 · bn + (1− t0) · σ
(

(t1, . . . , ti+1)

1− t0

)
,

where we have used that ∆n is convex to linearly interpolate between bn, σ(t1, . . . , ti+1) ∈ ∆n.
This construction extended linearly gives a homomorphism Cone∆n

i : Ci(∆
n) → Ci+1(∆n), which

satisfies

d(Cone∆n

i (σ)) =

{
σ − Cone∆n

i−1(dσ) i > 0

σ − ε(σ) · bn i = 0.

Therefore, if we let c• : C•(∆
n) → C•(∆

n) be the chain map given by c0(σ) = ε(σ) · bn on a
0-simplex σ, and by ci(σ) = 0 on simplices of higher dimension, then

dCone∆n
+ Cone∆n

d = idC•(∆n) − c•.

Remark 3. This in particular shows that Hi(∆
n) = 0 for i > 0.

Definition 4. If pX• : C•(X)→ C•(X) is a collection of chain maps, one for each space X, we say
they are natural if for each map f : X → Y of spaces we have fn ◦ pXn = pYn ◦ fn. We make the
analogous definition for a collection of chain homotopies FX• : C•(X)→ C•+1(X).

Definition 5. Define homomorphisms ρXn : Cn(X)→ Cn(X) inductively by:

(i) Let ρX0 = idC0(X) for all spaces X.

(ii) If ρXn−1 has been defined for all spaces X, let

ρXn : Cn(X) −→ Cn(X)

σ 7−→ σ#(Cone∆n

n−1(ρ∆n

n−1(dιn))).

Lemma 6. ρX• : C•(X)→ C•(X) is a natural chain map.
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Proof. If f : X → Y then

f#(ρXn (σ)) = f#σ#(Cone∆n

n−1(ρ∆n

n−1(dιn))) = (f ◦ σ)#(Cone∆n

n−1(ρ∆n

n−1(dιn)))

which is ρYn (f ◦ σ) = ρYn (f#(σ)), so this is natural.
Let us suppose for an induction that dρXn−1 = ρXn−2d for all spaces X, which is certainly satisfied

when n− 1 = 0. Then for n ≥ 1 calculate

dρXn (σ) = σ#(d(Cone∆n

n−1(ρ∆n

n−1(dιn))))

= σ#(ρ∆n

n−1(dιn)− Cone∆n

n−2(dρ∆n

n−1(dιn)))

= σ#(ρ∆n

n−1(dιn)− Cone∆n

n−2(ρ∆n

n−1(ddιn)))

= σ#(ρ∆n

n−1(dιn)) = ρXn−1(dσ)

as required, where at the end we have used the naturality property σ# ◦ ρ∆n

n−1 = ρXn−1 ◦ σ#.

We now wish to show that ρX• is naturally chain homotopic to the identity.

Definition 7. Define homomorphisms TXn : Cn(X)→ Cn+1(X) inductively by:

(i) Let TX0 = 0 for all spaces X.

(ii) If TXn−1 has been defined for all spaces X, let

TXn : Cn(X) −→ Cn+1(X)

σ 7−→ σ#(Cone∆n

n (ρ∆n

n (ιn)− ιn − T∆n

n−1(dιn))).

Lemma 8. TX• : C•(X)→ C•+1(X) is a natural chain homotopy from ρX• to the identity.

Proof. It is natural for the same reason ρXn was: TXn (σ) is obtained by applying σ# to an element
of Cn+1(∆n).

Suppose for an induction that dTXn−1 + TXn−2d = ρXn−1 − idCn−1(X) for all spaces X, which is
certainly satisfied for n− 1 = 0. Then for n ≥ 1 calculate

dTXn (σ) = σ#(dCone∆n

n (ρ∆n

n (ιn)− ιn − T∆n

n−1(dιn)))

= σ#((idCn(∆n) − Cone∆n

n−1d)(ρ∆n

n (ιn)− ιn − T∆n

n−1(dιn))).

Now by the inductive assumption we have

d(ρ∆n

n (ιn)− ιn − T∆n

n−1(dιn)) = ρ∆n

n−1(dιn)− dιn − dT∆n

n−1(dιn) = T∆n

n−2(ddιn) = 0,

so the expression simplifies to

dTXn (σ) = σ#(ρ∆n

n (ιn)− ιn − T∆n

n−1(dιn)) = ρXn (σ)− σ − TXn−1(dσ)

as required, where we have again used naturality of ρX and TX .

2. Some geometry of simplices.
The standard simplex ∆n is a metric space via the metric inherited from Rn+1, so we may talk

about the diameter of a subset of ∆n. For points v0, v1, . . . , vn ∈ ∆n, we write [v0, v1, . . . , vn] :
∆n → ∆n for the map (t0, t1, . . . , tn) 7→

∑
i tivi; when it is injective, let us also write [v0, v1, . . . , vn]

for the image of this map, which is the convex hull of the vi.

Lemma 9. diam([v0, v1, . . . , vn]) = maxi,j{|vi − vj |}
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Proof. For v ∈ [v0, v1, . . . , vn] we have∣∣∣∣∣v −∑
i

tivi

∣∣∣∣∣ =

∣∣∣∣∣∑
i

tiv −
∑
i

tivi

∣∣∣∣∣
≤
∑
i

ti|vi − v|

≤ max
j
{|v − vj |}

and by convexity the latter is maximised when v is a vertex.

Lemma 10. Each simplex of ρ∆n

n ([v0, . . . , vn]) has diameter ≤ n
n+1diam([v0, v1, . . . , vn]).

Proof. Let us prove this by induction on dimension; it clearly holds for 0-simplices.
Now ρ∆n

n ([v0, . . . , vn]) is a signed sum of n-simplices [bv, x1, . . . , xn] where bv is the barycentre
of [v0, . . . , vn] and the xi lie in the boundary of [v0, . . . , vn]. If the maximal distance between
two vertices of such a simplex is between two xi’s, then this takes place in a face of [v0, . . . , vn],
which has dimension < n so the distance between them is ≤ n

n+1diam([v0, v1, . . . , vn]) by inductive
assumption.

If the maximal distance is between bv and some xi, then xi lies in some face [v0, . . . , v̂j , . . . , vn]
so |bv − xi| ≤ |bv − vk| for some k. But

|bv − vk| =

∣∣∣∣∣ 1
n+1

∑
i

vi − n+1
n+1vk

∣∣∣∣∣
= 1

n+1

∣∣∣∣∣∑
i

vi − vk

∣∣∣∣∣
≤
∑
i

1
n+1 |vi − vk|

and each |vi − vk| is at most diam([v0, . . . , vn]), though |vk − vk| = 0. This shows that |bv − vk| ≤
n
n+1diam([v0, . . . , vn]) as required.

Proposition 11. Let U = {Uα}α∈I be a collection of subsets of X whose interiors cover.

(i) If c ∈ CUn (X) then ρXn (c) ∈ CUn (X) too.

(ii) If c ∈ Cn(X) then there is a k � 0 such that (ρXn )k(c) ∈ CUn (X).

Proof. The first part follows from naturality of ρXn : if σ : ∆n → Uα and iα : Uα → X is the
inclusion of spaces, then ρXn ((iα)#(σ)) = (iα)#(ρUαn (σ)) is a sum of simplices in Uα.

For the second part, by (i) and the fact that an n-chain is a finite sum of singular n-simplices,
we may suppose that c is a single singular n-simplex σ : ∆n → X. Then V = {σ−1Ůα}α∈I is
an open cover of ∆n, which is a compact metric space. By the Lesbegue Number Lemma there is
an ε > 0 such that each ε-ball in ∆n is contained in some σ−1Ůα. By iterating Lemma 10, each
simplex of (ρ∆n

n )k(ιn) has diameter ≤ ( n
n+1)kdiam(∆n), so by choosing k � 0 we may suppose that

each simplex of (ρ∆n

n )k(ιn) has diameter less than ε, and so lies in some σ−1Ůα.
Hence (ρ∆n

n )k(ιn) ∈ CVn (∆n), and so (ρXn )k(σ) = σ#((ρ∆n

n )k(ιn)) ∈ CUn (X), as required.
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3. Proof of Theorem 1.
We consider the chain map CU• (X) → C•(X) given by inclusion, and the induced map U :

HU∗ (X)→ H∗(X) on homology.
Let [c] ∈ Hn(X). By Proposition 11 there is a k � 0 such that (ρXn )k(c) ∈ CUn (X). As ρX• is

naturally chain homotopic to the identity, so is the composition (ρX• )k. One could find a formula
for such a chain homotopy in terms of TX• , but the formula does not matter so let us simply write
F k• for such a chain homotopy, satisfying dF kn + F kn−1d = (ρXn )k − id. Then

(ρXn )k(c)− c = dF kn (c) + F kn−1d(c)

but the last term vanishes as c is a cycle (because it represents a homology class). Thus (ρXn )k(c)
is equivalent to c modulo boundaries, so U : HUn (X)→ Hn(X) is surjective.

Now let [c] ∈ HUn (X) be such that U([c]) = 0 ∈ Hn(X). Thus there is a z ∈ Cn+1(X) such that
d(z) = c ∈ Cn(X). By Proposition 11 there is a k � 0 such that (ρXn+1)k(z) ∈ CUn+1(X), and we
have

(ρXn+1)k(z)− z = dF kn+1(z) + F knd(z)

and so applying d we get
d((ρXn+1)k(z)− F knd(z)) = d(z) = c.

Now (ρXn+1)k(z) ∈ CUn+1(X) by our choice of k, and as d(z) = c ∈ CUn (X) and the chain homotopy
F k• is natural, F knd(z) ∈ CUn+1(X) too. Thus c is a boundary in CU• (X), so [c] = 0 ∈ HUn (X), and
hence U : HUn (X)→ Hn(X) is injective.
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