Part III Algebraic Topology // The small simplices theorem

Let $\mathcal{U}=\left\{U_{\alpha}\right\}_{\alpha \in I}$ be a collection of subsets of X whose interiors cover X, and $C_{\bullet}^{\mathcal{U}}(X) \subset C_{\bullet}(X)$ be the sub-chain complex generated by those singular simplices $\sigma: \Delta^{n} \rightarrow X$ whose image lies entirely within some U_{α}. The goal of this note is to prove the following theorem.

Theorem 1. The $\operatorname{map} H_{*}^{\mathcal{U}}(X):=H_{*}\left(C_{\bullet}^{\mathcal{U}}(X)\right) \rightarrow H_{*}(X)$ is an isomorphism.

1. Barycentric subdivision.

Definition 2. If $x=\left\{x_{0}, \ldots, x_{n}\right\}$ is a collection of points in \mathbb{R}^{N} which span an n-simplex, we write $b_{x}=\frac{1}{n+1} \sum x_{i}$ for the barycentre of the simplex x. In particular, we write $b_{n} \in \Delta^{n} \subset \mathbb{R}^{n+1}$ for the barycentre of the standard n-simplex.

Let us write $\iota_{n}: \Delta^{n} \rightarrow \Delta^{n}$ for the identity map considered as a singular n-simplex, so as an element of $C_{n}\left(\Delta^{n}\right)$. If $\sigma: \Delta^{i} \rightarrow \Delta^{n}$ is a singular i-simplex, let

$$
\begin{aligned}
\operatorname{Cone}_{i}^{\Delta^{n}}(\sigma): \Delta^{i+1} & \longrightarrow \Delta^{n} \\
\left(t_{0}, t_{1}, \ldots, t_{i+1}\right) & \longmapsto t_{0} \cdot b_{n}+\left(1-t_{0}\right) \cdot \sigma\left(\frac{\left(t_{1}, \ldots, t_{i+1}\right)}{1-t_{0}}\right)
\end{aligned}
$$

where we have used that Δ^{n} is convex to linearly interpolate between $b_{n}, \sigma\left(t_{1}, \ldots, t_{i+1}\right) \in \Delta^{n}$. This construction extended linearly gives a homomorphism Cone ${ }_{i}^{\Delta^{n}}: C_{i}\left(\Delta^{n}\right) \rightarrow C_{i+1}\left(\Delta^{n}\right)$, which satisfies

$$
d\left(\mathrm{Cone}_{i}^{\Delta^{n}}(\sigma)\right)= \begin{cases}\sigma-\mathrm{Cone}_{i-1}^{\Delta^{n}}(d \sigma) & i>0 \\ \sigma-\epsilon(\sigma) \cdot b_{n} & i=0\end{cases}
$$

Therefore, if we let $c_{\bullet}: C_{\bullet}\left(\Delta^{n}\right) \rightarrow C_{\bullet}\left(\Delta^{n}\right)$ be the chain map given by $c_{0}(\sigma)=\epsilon(\sigma) \cdot b_{n}$ on a 0 -simplex σ, and by $c_{i}(\sigma)=0$ on simplices of higher dimension, then

$$
d \text { Cone }^{\Delta^{n}}+\text { Cone }^{\Delta^{n}} d=\operatorname{id}_{C \bullet\left(\Delta^{n}\right)}-c_{\bullet}
$$

Remark 3. This in particular shows that $H_{i}\left(\Delta^{n}\right)=0$ for $i>0$.
Definition 4. If $p_{\bullet}^{X}: C_{\bullet}(X) \rightarrow C_{\bullet}(X)$ is a collection of chain maps, one for each space X, we say they are natural if for each map $f: X \rightarrow Y$ of spaces we have $f_{n} \circ p_{n}^{X}=p_{n}^{Y} \circ f_{n}$. We make the analogous definition for a collection of chain homotopies $F_{\bullet}^{X}: C_{\bullet}(X) \rightarrow C_{\bullet+1}(X)$.

Definition 5. Define homomorphisms $\rho_{n}^{X}: C_{n}(X) \rightarrow C_{n}(X)$ inductively by:
(i) Let $\rho_{0}^{X}=\mathrm{id}_{C_{0}(X)}$ for all spaces X .
(ii) If ρ_{n-1}^{X} has been defined for all spaces X, let

$$
\begin{aligned}
\rho_{n}^{X}: C_{n}(X) & \longrightarrow C_{n}(X) \\
\sigma & \longmapsto \sigma_{\#}\left(\operatorname{Cone}_{n-1}^{\Delta^{n}}\left(\rho_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)\right)\right) .
\end{aligned}
$$

Lemma 6. $\rho_{\bullet}^{X}: C \bullet(X) \rightarrow C \bullet(X)$ is a natural chain map.

Proof. If $f: X \rightarrow Y$ then

$$
f_{\#}\left(\rho_{n}^{X}(\sigma)\right)=f_{\#} \sigma_{\#}\left(\operatorname{Cone}_{n-1}^{\Delta^{n}}\left(\rho_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)\right)\right)=(f \circ \sigma)_{\#}\left(\operatorname{Cone}_{n-1}^{\Delta^{n}}\left(\rho_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)\right)\right)
$$

which is $\rho_{n}^{Y}(f \circ \sigma)=\rho_{n}^{Y}\left(f_{\#}(\sigma)\right)$, so this is natural.
Let us suppose for an induction that $d \rho_{n-1}^{X}=\rho_{n-2}^{X} d$ for all spaces X, which is certainly satisfied when $n-1=0$. Then for $n \geq 1$ calculate

$$
\begin{aligned}
d \rho_{n}^{X}(\sigma) & =\sigma_{\#}\left(d\left(\operatorname{Cone}_{n-1}^{\Delta^{n}}\left(\rho_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)\right)\right)\right) \\
& =\sigma_{\#}\left(\rho_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)-\operatorname{Cone}_{n-2}^{\Delta^{n}}\left(d \rho_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)\right)\right) \\
& =\sigma_{\#}\left(\rho_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)-\operatorname{Cone}_{n-2}^{\Delta^{n}}\left(\rho_{n-1}^{\Delta^{n}}\left(d d \iota_{n}\right)\right)\right) \\
& =\sigma_{\#}\left(\rho_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)\right)=\rho_{n-1}^{X}(d \sigma)
\end{aligned}
$$

as required, where at the end we have used the naturality property $\sigma_{\#} \circ \rho_{n-1}^{\Delta^{n}}=\rho_{n-1}^{X} \circ \sigma_{\#}$.
We now wish to show that ρ_{\bullet}^{X} is naturally chain homotopic to the identity.
Definition 7. Define homomorphisms $T_{n}^{X}: C_{n}(X) \rightarrow C_{n+1}(X)$ inductively by:
(i) Let $T_{0}^{X}=0$ for all spaces X .
(ii) If T_{n-1}^{X} has been defined for all spaces X, let

$$
\begin{aligned}
T_{n}^{X}: C_{n}(X) & \longrightarrow C_{n+1}(X) \\
\sigma & \longmapsto \sigma_{\#}\left(\operatorname{Cone}_{n}^{\Delta^{n}}\left(\rho_{n}^{\Delta^{n}}\left(\iota_{n}\right)-\iota_{n}-T_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)\right)\right) .
\end{aligned}
$$

Lemma 8. $T_{\bullet}^{X}: C_{\bullet}(X) \rightarrow C_{\bullet}+1(X)$ is a natural chain homotopy from ρ_{\bullet}^{X} to the identity.
Proof. It is natural for the same reason ρ_{n}^{X} was: $T_{n}^{X}(\sigma)$ is obtained by applying $\sigma_{\#}$ to an element of $C_{n+1}\left(\Delta^{n}\right)$.

Suppose for an induction that $d T_{n-1}^{X}+T_{n-2}^{X} d=\rho_{n-1}^{X}-\mathrm{id}_{C_{n-1}(X)}$ for all spaces X, which is certainly satisfied for $n-1=0$. Then for $n \geq 1$ calculate

$$
\begin{aligned}
d T_{n}^{X}(\sigma) & =\sigma_{\#}\left(d \operatorname{Cone}_{n}^{\Delta^{n}}\left(\rho_{n}^{\Delta^{n}}\left(\iota_{n}\right)-\iota_{n}-T_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)\right)\right) \\
& =\sigma_{\#}\left(\left(\operatorname{id}_{C_{n}\left(\Delta^{n}\right)}-\operatorname{Cone}_{n-1}^{\Delta^{n}} d\right)\left(\rho_{n}^{\Delta^{n}}\left(\iota_{n}\right)-\iota_{n}-T_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)\right)\right)
\end{aligned}
$$

Now by the inductive assumption we have

$$
d\left(\rho_{n}^{\Delta^{n}}\left(\iota_{n}\right)-\iota_{n}-T_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)\right)=\rho_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)-d \iota_{n}-d T_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)=T_{n-2}^{\Delta^{n}}\left(d d \iota_{n}\right)=0
$$

so the expression simplifies to

$$
d T_{n}^{X}(\sigma)=\sigma_{\#}\left(\rho_{n}^{\Delta^{n}}\left(\iota_{n}\right)-\iota_{n}-T_{n-1}^{\Delta^{n}}\left(d \iota_{n}\right)\right)=\rho_{n}^{X}(\sigma)-\sigma-T_{n-1}^{X}(d \sigma)
$$

as required, where we have again used naturality of ρ^{X} and T^{X}.

2. Some geometry of simplices.

The standard simplex Δ^{n} is a metric space via the metric inherited from \mathbb{R}^{n+1}, so we may talk about the diameter of a subset of Δ^{n}. For points $v_{0}, v_{1}, \ldots, v_{n} \in \Delta^{n}$, we write $\left[v_{0}, v_{1}, \ldots, v_{n}\right]$: $\Delta^{n} \rightarrow \Delta^{n}$ for the map $\left(t_{0}, t_{1}, \ldots, t_{n}\right) \mapsto \sum_{i} t_{i} v_{i}$; when it is injective, let us also write $\left[v_{0}, v_{1}, \ldots, v_{n}\right]$ for the image of this map, which is the convex hull of the v_{i}.

Lemma 9. $\operatorname{diam}\left(\left[v_{0}, v_{1}, \ldots, v_{n}\right]\right)=\max _{i, j}\left\{\left|v_{i}-v_{j}\right|\right\}$

Proof. For $v \in\left[v_{0}, v_{1}, \ldots, v_{n}\right]$ we have

$$
\begin{aligned}
\left|v-\sum_{i} t_{i} v_{i}\right| & =\left|\sum_{i} t_{i} v-\sum_{i} t_{i} v_{i}\right| \\
& \leq \sum_{i} t_{i}\left|v_{i}-v\right| \\
& \leq \max _{j}\left\{\left|v-v_{j}\right|\right\}
\end{aligned}
$$

and by convexity the latter is maximised when v is a vertex.
Lemma 10. Each simplex of $\rho_{n}^{\Delta^{n}}\left(\left[v_{0}, \ldots, v_{n}\right]\right)$ has diameter $\leq \frac{n}{n+1} \operatorname{diam}\left(\left[v_{0}, v_{1}, \ldots, v_{n}\right]\right)$.
Proof. Let us prove this by induction on dimension; it clearly holds for 0 -simplices.
Now $\rho_{n}^{\Delta^{n}}\left(\left[v_{0}, \ldots, v_{n}\right]\right)$ is a signed sum of n-simplices $\left[b_{v}, x_{1}, \ldots, x_{n}\right]$ where b_{v} is the barycentre of $\left[v_{0}, \ldots, v_{n}\right]$ and the x_{i} lie in the boundary of $\left[v_{0}, \ldots, v_{n}\right]$. If the maximal distance between two vertices of such a simplex is between two x_{i} 's, then this takes place in a face of $\left[v_{0}, \ldots, v_{n}\right]$, which has dimension $<n$ so the distance between them is $\leq \frac{n}{n+1} \operatorname{diam}\left(\left[v_{0}, v_{1}, \ldots, v_{n}\right]\right)$ by inductive assumption.

If the maximal distance is between b_{v} and some x_{i}, then x_{i} lies in some face $\left[v_{0}, \ldots, \widehat{v}_{j}, \ldots, v_{n}\right]$ so $\left|b_{v}-x_{i}\right| \leq\left|b_{v}-v_{k}\right|$ for some k. But

$$
\begin{aligned}
\left|b_{v}-v_{k}\right| & =\left|\frac{1}{n+1} \sum_{i} v_{i}-\frac{n+1}{n+1} v_{k}\right| \\
& =\frac{1}{n+1}\left|\sum_{i} v_{i}-v_{k}\right| \\
& \leq \sum_{i} \frac{1}{n+1}\left|v_{i}-v_{k}\right|
\end{aligned}
$$

and each $\left|v_{i}-v_{k}\right|$ is at $\operatorname{most} \operatorname{diam}\left(\left[v_{0}, \ldots, v_{n}\right]\right)$, though $\left|v_{k}-v_{k}\right|=0$. This shows that $\left|b_{v}-v_{k}\right| \leq$ $\frac{n}{n+1} \operatorname{diam}\left(\left[v_{0}, \ldots, v_{n}\right]\right)$ as required.

Proposition 11. Let $\mathcal{U}=\left\{U_{\alpha}\right\}_{\alpha \in I}$ be a collection of subsets of X whose interiors cover.
(i) If $c \in C_{n}^{\mathcal{U}}(X)$ then $\rho_{n}^{X}(c) \in C_{n}^{\mathcal{U}}(X)$ too.
(ii) If $c \in C_{n}(X)$ then there is a $k \gg 0$ such that $\left(\rho_{n}^{X}\right)^{k}(c) \in C_{n}^{\mathcal{U}}(X)$.

Proof. The first part follows from naturality of $\rho_{n}^{X}:$ if $\sigma: \Delta^{n} \rightarrow U_{\alpha}$ and $i_{\alpha}: U_{\alpha} \rightarrow X$ is the inclusion of spaces, then $\rho_{n}^{X}\left(\left(i_{\alpha}\right)_{\#}(\sigma)\right)=\left(i_{\alpha}\right)_{\#}\left(\rho_{n}^{U_{\alpha}}(\sigma)\right)$ is a sum of simplices in U_{α}.

For the second part, by (i) and the fact that an n-chain is a finite sum of singular n-simplices, we may suppose that c is a single singular n-simplex $\sigma: \Delta^{n} \rightarrow X$. Then $\mathcal{V}=\left\{\sigma^{-1} \dot{U}_{\alpha}\right\}_{\alpha \in I}$ is an open cover of Δ^{n}, which is a compact metric space. By the Lesbegue Number Lemma there is an $\epsilon>0$ such that each ϵ-ball in Δ^{n} is contained in some $\sigma^{-1} \stackrel{\circ}{U}_{\alpha}$. By iterating Lemma 10, each simplex of $\left(\rho_{n}^{\Delta^{n}}\right)^{k}\left(\iota_{n}\right)$ has diameter $\leq\left(\frac{n}{n+1}\right)^{k} \operatorname{diam}\left(\Delta^{n}\right)$, so by choosing $k \gg 0$ we may suppose that each simplex of $\left(\rho_{n}^{\Delta^{n}}\right)^{k}\left(\iota_{n}\right)$ has diameter less than ϵ, and so lies in some $\sigma^{-1} \dot{U}_{\alpha}$.

Hence $\left(\rho_{n}^{\Delta^{n}}\right)^{k}\left(\iota_{n}\right) \in C_{n}^{\mathcal{V}}\left(\Delta^{n}\right)$, and so $\left(\rho_{n}^{X}\right)^{k}(\sigma)=\sigma_{\#}\left(\left(\rho_{n}^{\Delta^{n}}\right)^{k}\left(\iota_{n}\right)\right) \in C_{n}^{\mathcal{U}}(X)$, as required.

3. Proof of Theorem 1.

We consider the chain map $C_{\bullet}^{\mathcal{U}}(X) \rightarrow C_{\bullet}(X)$ given by inclusion, and the induced map U : $H_{*}^{u}(X) \rightarrow H_{*}(X)$ on homology.

Let $[c] \in H_{n}(X)$. By Proposition 11 there is a $k \gg 0$ such that $\left(\rho_{n}^{X}\right)^{k}(c) \in C_{n}^{\mathcal{U}}(X)$. As ρ_{\bullet}^{X} is naturally chain homotopic to the identity, so is the composition $\left(\rho_{\bullet}^{X}\right)^{k}$. One could find a formula for such a chain homotopy in terms of $T_{\mathbf{0}}^{X}$, but the formula does not matter so let us simply write F_{\bullet}^{k} for such a chain homotopy, satisfying $d F_{n}^{k}+F_{n-1}^{k} d=\left(\rho_{n}^{X}\right)^{k}-\mathrm{id}$. Then

$$
\left(\rho_{n}^{X}\right)^{k}(c)-c=d F_{n}^{k}(c)+F_{n-1}^{k} d(c)
$$

but the last term vanishes as c is a cycle (because it represents a homology class). Thus $\left(\rho_{n}^{X}\right)^{k}(c)$ is equivalent to c modulo boundaries, so $U: H_{n}^{\mathcal{U}}(X) \rightarrow H_{n}(X)$ is surjective.

Now let $[c] \in H_{n}^{\mathcal{U}}(X)$ be such that $U([c])=0 \in H_{n}(X)$. Thus there is a $z \in C_{n+1}(X)$ such that $d(z)=c \in C_{n}(X)$. By Proposition 11 there is a $k \gg 0$ such that $\left(\rho_{n+1}^{X}\right)^{k}(z) \in C_{n+1}^{\mathcal{u}}(X)$, and we have

$$
\left(\rho_{n+1}^{X}\right)^{k}(z)-z=d F_{n+1}^{k}(z)+F_{n}^{k} d(z)
$$

and so applying d we get

$$
d\left(\left(\rho_{n+1}^{X}\right)^{k}(z)-F_{n}^{k} d(z)\right)=d(z)=c .
$$

Now $\left(\rho_{n+1}^{X}\right)^{k}(z) \in C_{n+1}^{\mathcal{U}}(X)$ by our choice of k, and as $d(z)=c \in C_{n}^{\mathcal{U}}(X)$ and the chain homotopy F_{\bullet}^{k} is natural, $F_{n}^{k} d(z) \in C_{n+1}^{u}(X)$ too. Thus c is a boundary in $C_{\bullet}^{u}(X)$, so $[c]=0 \in H_{n}^{u}(X)$, and hence $U: H_{n}^{U}(X) \rightarrow H_{n}(X)$ is injective.

