Michaelmas Term 2016

O. Randal-Williams

Part III Algebraic Topology // Example Sheet 3

1. If X is a finite cell complex, by showing that $C^{cell}_{\bullet}(X)$ is (unnaturally) isomorphic to a direct sum of chain complexes of the form $0 \to B_n(X) \xrightarrow{A_n} Z_n(X) \to 0$, show that

$$H^n(X) \cong \frac{H_n(X)}{\operatorname{Tors}(H_n(X))} \oplus \operatorname{Tors}(H_{n-1}(X)),$$

where $Tors(A) \leq A$ denotes the subgroup of elements of finite order.

- 2. Let $E \to X$ be a vector bundle with inner product $\langle \cdot, \cdot \rangle$. Let $F \subset E$ be a subbundle. Prove that the orthogonal complement bundle F^{\perp} is locally trivial.
- 3. (i) Explain how to view an open Möbius band as a 1-dimensional real bundle over S^1 . Show that it is a non-trivial bundle.

(ii) Show that a 1-dimensional real bundle over S^n with n > 1 is trivial. Hence show that 1-dimensional real bundles over a finite cell complex X up to isomorphism are naturally in 1-1 correspondence with elements of $H^1(X; \mathbb{Z}/2)$. [Hint: Think about an associated double cover.]

- 4. Show that a complex vector bundle has a canonical orientation.
- 5. If $\pi: E \to X$ is a *d*-dimensional real vector bundle which is not necessarily *R*-orientable, show that we still have $H^i(E, E^{\#}; R) = 0$ for i < d. If X is path-connected show that restriction to the fibre at $x \in X$ still gives an injective map $H^d(E, E^{\#}; R) \to H^d(E_x, E_x^{\#}; R) \cong R$.

Give an example to show that $H^{i+d}(E, E^{\#}; R)$ need not be isomorphic to $H^{i}(X; R)$ in general.

6. (i) Show that any map $f : \mathbb{RP}^n \to \mathbb{RP}^m$ induces a trivial map on reduced cohomology if n > m. What about if n < m?

(ii) Show that \mathbb{RP}^3 is not homotopy equivalent to $\mathbb{RP}^2 \vee S^3$ although they have additively isomorphic (co)homology.

7. (i) If $f: S^n \to S^n$ is odd (i.e. f(-x) = -f(x)) show that it induces a map $\overline{f}: \mathbb{RP}^n \to \mathbb{RP}^n$. By considering the Gysin sequence show that f has odd degree.

(ii) Show that any $g: S^n \to \mathbb{R}^n$ satisfies g(x) = g(-x) for some $x \in S^n$.

8. (i) Let $L = \gamma_{1,n+1}^{\mathbb{C}} \to \mathbb{CP}^n$ be the canonical 1-dimensional complex bundle. By considering $\pi_1^* L \otimes_{\mathbb{C}} \pi_2^* L \to \mathbb{CP}^n \times \mathbb{CP}^n$, with the $\pi_i : \mathbb{CP}^n \times \mathbb{CP}^n \to \mathbb{CP}^n$ being projections to the factors, prove that the Euler class of $L \otimes_{\mathbb{C}} L$ is equal to twice the Euler class of L.

(ii) Show that the unit circle bundle in $L \otimes_{\mathbb{C}} L$ is homeomorphic to \mathbb{RP}^{2n+1} . Hence, compute the cohomology of \mathbb{RP}^{2n+1} from knowledge of the cohomology of \mathbb{CP}^n .

9. Let $V_k(\mathbb{C}^n) \subset (\mathbb{C}^n)^k$ be the subspace of k-tuples of orthonormal vectors in \mathbb{C}^n (a Stiefel manifold). Show there is a vector bundle $E_k \to V_k(\mathbb{C}^n)$ with fibre over (v_1, \ldots, v_k) given by the vector space $\operatorname{span}(v_1, \ldots, v_k) \leq \mathbb{C}^n$.

Show that the forgetful map $(v_1, \ldots, v_k) \mapsto (v_1, \ldots, v_{k-1}) : V_k(\mathbb{C}^n) \to V_{k-1}(\mathbb{C}^n)$ exhibits $V_k(\mathbb{C}^n)$ as the sphere bundle of a certain vector bundle $F \to V_{k-1}(\mathbb{C}^n)$. Hence compute $H^*(V_k(\mathbb{C}^n);\mathbb{Z})$ as a ring.

Deduce that the unitary group U(n) has the same cohomology ring as $S^1 \times S^3 \times S^5 \times \cdots \times S^{2n-1}$, and hence that

$$\sum_{j \ge 0} \operatorname{rk} H^{j}(U(n); \mathbb{Z}) t^{j} = \prod_{i=1}^{n} (1 + t^{2i-1}).$$

10. Let F = R or C. Let X be a compact Hausdorff space, and Gr_k = Gr_k(F[∞]) = ⋃_n Gr_k(Fⁿ) be the infinite Grassmannian. The bundles γ^F_{k,n} → Gr_k(Rⁿ) assemble to a bundle γ^F_k → Gr_k. To a map f : X → Gr_k we associate the pullback f*γ^R_k. Fix the standard inner product on F[∞] throughout.
(i) Suppose f₀, f₁ : X → Gr_k are maps with image in Gr_k(F^N) for some N. Let U ⊂ Gr_k(F^N) × Gr_k(F^N) be the following open neighbourhood of the diagonal:

$$U = \{ (v_1, v_2) \mid v_1 \cap v_2^{\perp} = \{0\} \}.$$

Show that if $f_0(x)$ and $f_1(x)$ belong to U for every $x \in X$ then $f_0^* \gamma_k^{\mathbb{F}} \cong f_1^* \gamma_k^{\mathbb{F}}$.

(ii) By splitting the homotopy into many small intervals, deduce that if $f_0, f_1 : X \to Gr_k$ are homotopic then $f_0^* \gamma_k^{\mathbb{F}}$ and $f_1^* \gamma_k^{\mathbb{F}}$ are isomorphic.

(iii) Let $i_j : V_j \hookrightarrow \mathbb{F}^N$ be the inclusion of k-dimensional subspaces V_j , for j = 0, 1, and let $\alpha : V_0 \to V_1$ be a linear isomorphism. Show that

$$\gamma: t \longmapsto (t \cdot (i_0 \oplus \{0\}^n) + (1-t) \cdot (\{0\}^n \oplus i_1 \circ \alpha))(V_0)$$

is a continuous path from $V_0 \oplus \{0\}$ to $\{0\} \oplus V_1$ in $Gr_k(\mathbb{F}^{2N})$.

(iv) Let $f_0, f_1: X \to Gr_k$ have image in $Gr_k(\mathbb{F}^N)$ and $f_0^* \gamma_k^{\mathbb{F}} \cong f_1^* \gamma_k^{\mathbb{F}}$. Let $T: \mathbb{F}^N \oplus \mathbb{F}^N \to \mathbb{F}^N \oplus \mathbb{F}^N$ be the map $(\xi, \eta) \mapsto (-\eta, \xi)$. Show that f_0 and $T \circ f_1$ are homotopic as maps from X to $Gr_k(\mathbb{F}^{2N})$, and deduce that $f_0 \simeq f_1: X \to Gr_k$.

Conclude that the set of isomorphism classes $\operatorname{Vect}_k(X)$ of k-dimensional vector bundles over X is in bijection with the set $[X, Gr_k]$ of homotopy classes of maps.

11. (i) Show that $Gr_k(\mathbb{C}^n)$ is a smooth manifold of dimension 2k(n-k). Show that the map j: $Gr_{k-1}(\mathbb{C}^n) \to Gr_k(\mathbb{C}^{n+1})$, which adds on the last coordinate direction to a (k-1)-dimensional subspace of \mathbb{C}^n , is the inclusion of a submanifold. Show that the complement U of the image of j is homotopy equivalent to the subspace $Gr_k(\mathbb{C}^n) \subset Gr_k(\mathbb{C}^{n+1})$, and hence deduce that $H^i(Gr_k(\mathbb{C}^{n+1}), Gr_k(\mathbb{C}^n); \mathbb{Z}) = 0$ for i < 2(n+1-k). [Hint: Tubular neighbourhood theorem.]

(ii) For the canonical bundle $\gamma_{n,k}^{\mathbb{C}} \to Gr_k(\mathbb{C}^n)$, show that $S(\gamma_{k,n}^{\mathbb{C}}) \cong S((\gamma_{k-1,n}^{\mathbb{C}})^{\perp})$, and hence deduce that there is an exact sequence

$$\cdots \longrightarrow H^{i-2k}(Gr_k(\mathbb{C}^n)) \xrightarrow{-\cdot e(\gamma_k^{\mathbb{C}}(\mathbb{C}^n))} H^i(Gr_{k,n}) \longrightarrow H^i(Gr_{k-1}(\mathbb{C}^n)) \longrightarrow H^{i-2k+1}(Gr_k(\mathbb{C}^n)) \longrightarrow \cdots$$

defined for $i \leq 2(n-k)$. Hence show by induction on k that the infinite complex Grassmannian Gr_k has cohomology ring $H^*(Gr_k; \mathbb{Z}) \cong \mathbb{Z}[c_1, c_2, \ldots, c_k]$ for certain classes c_i of degree 2i (the *Chern* classes).

Comments or corrections to or257@cam.ac.uk