## Part III Algebraic Topology // Example Sheet 2

1. Say a map $f: X \rightarrow Y$ between cell complexes is cellular if $f\left(X^{n}\right) \subset Y^{n}$ for every $n$. Show how to associate to such an $f$ a chain map $f_{\#}^{\text {cell }}: C_{\bullet}^{\text {cell }}(X) \rightarrow C_{\bullet}^{\text {cell }}(Y)$ and show that the induced map $f_{*}^{\text {cell }}: H_{*}^{\text {cell }}(X) \rightarrow H_{*}^{\text {cell }}(Y)$ agrees with $f_{*}: H_{*}(X) \rightarrow H_{*}(Y)$ under a suitable identification of the homology groups.
2. Let $X=S^{n} \cup_{f} D^{n+1}$ be given by gluing an $(n+1)$-cell to $S^{n}$ by a map $f: S^{n} \rightarrow S^{n}$ of degree $m>1$. Show that the natural map $X \rightarrow X / S^{n} \cong S^{n+1}$ is trivial on homology $H_{*>0}$, but is non-trivial on cohomology $H^{*>0}$. What happens if we instead consider the inclusion map $S^{n} \hookrightarrow X$ ?
3. (i) Let $X$ be a cell complex and $A \subset X$ be a subcomplex. Prove that the pair $(X, A)$ is good.
(ii) Let $X$ be a cell complex and $K \subset X$ a compact subspace. Prove that $K$ intersects only finitely many open cells in $X$. Hence show that any element of $H_{i}(X)$ lies in the image of $H_{i}\left(X^{m}\right) \rightarrow H_{i}(X)$ for some $m \gg 0$.
4. Show that for each $m \in \mathbb{Z}$ and any space $X$ there are short exact sequences of chain complexes

$$
\begin{aligned}
& 0 \longrightarrow C^{\bullet}(X) \longrightarrow C^{\bullet}(X) \longrightarrow C^{\bullet}(X ; \mathbb{Z} / m) \longrightarrow 0 \\
0 \longrightarrow & C^{\bullet}(X ; \mathbb{Z} / m) \longrightarrow C^{\bullet}\left(X ; \mathbb{Z} / m^{2}\right) \longrightarrow C^{\bullet}(X ; \mathbb{Z} / m) \longrightarrow 0
\end{aligned}
$$

and hence describe "Bockstein operations"

$$
\tilde{\beta}: H^{i}(X ; \mathbb{Z} / m) \longrightarrow H^{i+1}(X) \quad \text { and } \quad \beta: H^{i}(X ; \mathbb{Z} / m) \longrightarrow H^{i+1}(X ; \mathbb{Z} / m)
$$

How are these two operations related? Show that $\beta(x \smile y)=\beta(x) \smile y+(-1)^{|x|} x \smile \beta(y)$. Compute the effect of $\beta$ and $\tilde{\beta}$ for $m=2$ and $X=\mathbb{R} \mathbb{P}^{n}$, and hence compare $H^{*}\left(\mathbb{R} \mathbb{P}^{2} \times \mathbb{R} \mathbb{P}^{2} ; \mathbb{Z} / 4\right)$ with $H^{*}\left(\mathbb{R} \mathbb{P}^{2} ; \mathbb{Z} / 4\right) \otimes H^{*}\left(\mathbb{R} \mathbb{P}^{2} ; \mathbb{Z} / 4\right)$.
5. Compute the cohomology ring of $S^{1} \times S^{1}$. Hence compute the cohomology ring of the closed oriented surface $\Sigma_{g}$ of genus $g$.
6. Recall that $H^{2}\left(\Sigma_{g}\right) \cong \mathbb{Z}$ for every $g \geq 0$, and define the degree of a map of oriented surfaces to be the induced map on $H^{2}$. For which $g$ is there a map $\Sigma_{g} \rightarrow \Sigma_{1}$ of positive degree? For which $g$ is there a map $\Sigma_{1} \rightarrow \Sigma_{g}$ of positive degree?
7. A map $\pi: E \rightarrow B$ is called a covering map if there is an open cover $\left\{U_{\alpha}\right\}$ of $B$ such that $\pi^{-1}\left(U_{\alpha}\right)$ is a disjoint union $\coprod V_{\alpha, \beta}$ with each $\left.\pi\right|_{V_{\alpha, \beta}}: V_{\alpha, \beta} \rightarrow U_{\alpha}$ a homeomorphism.
(i) If $\pi: E \rightarrow B$ is a covering map with finite fibres of cardinality $N$, show how to construct a $\operatorname{map} \pi^{!}: H_{*}(B) \rightarrow H_{*}(E)$ such that $\pi_{*} \circ \pi^{!}$is multiplication by $N$.
(ii) In the same situation, show that $\chi(E)=N \cdot \chi(B)$.
(iii) Show there is a covering map $\Sigma_{g} \rightarrow \Sigma_{h}$ if and only if $g=k h-k+1$ for some $k \in \mathbb{N}$.
8. If $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ has components the elementary symmetric functions

$$
\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\sigma_{i}(\underline{z})\right) \quad \sigma_{1}=\sum_{j} z_{j} \quad \sigma_{2}=\sum_{i<j} z_{i} z_{j} \quad \cdots \quad \sigma_{n}=\prod_{j} z_{j}
$$

then prove that $f$ extends to a map $\psi: S^{2 n} \rightarrow S^{2 n}$ of degree $n!$.
Hence construct a map $\phi:\left(\mathbb{C P}^{1}\right)^{n} \rightarrow \mathbb{C P}^{n}$ of degree $n!$, and compute the effect of the map $\phi^{*}: H^{2}\left(\mathbb{C P}^{n}\right) \rightarrow H^{2}\left(\left(\mathbb{C P}^{1}\right)^{n}\right)$. Deduce that there is a $x \in H^{2}\left(\mathbb{C P}^{n}\right)$ such that $x^{n}$ is a generator of the abelian group $H^{2 n}\left(\mathbb{C P}^{n}\right)$, and hence that $H^{*}\left(\mathbb{C P} \mathbb{P}^{n}\right) \cong \mathbb{Z}[x] /\left(x^{n+1}\right)$ as a ring.
[Hint: relate $\mathbb{C P}^{k}$ to the space of degree $k$ homogeneous polynomials in two variables.]
9. By considering a map to the wedge (one-point-union) of two copies of $\mathbb{C P}^{2}$, or otherwise, compute $H^{*}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}\right)$ as a ring. Deduce that $\mathbb{C P}^{2} \# \mathbb{C P}^{2}$ is not homotopy equivalent to $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$, even though they have the same (co)homology groups additively.
10. Show that there is a relative cup product

$$
\smile: H^{i}(X, A) \times H^{j}(X, B) \rightarrow H^{i+j}(X, A \cup B)
$$

[Hint: it may be helpful to consider a cochain complex $C_{A+B}^{*}(X)$ of cochains vanishing on simplices lying wholly in $A$ or $B$, and use the Small Simplices Theorem.] Using this, show that if $X$ has a cover by $n$ contractible (i.e. homotopy equivalent to a point) open sets, then the cup-length

$$
\max \left\{k \mid \exists a_{1}, \ldots, a_{k} \in H^{*>0}(X), a_{1} \smile \ldots \smile a_{k} \neq 0\right\}
$$

is strictly smaller than $n$. What does this say about the ring $H^{*}(\Sigma X)$, where $\Sigma$ is the suspension operation?
11. (i) Let $e:[0,1]^{k} \rightarrow S^{n}$ be a map which is a homeomorphism onto its image $D \subset S^{n}$. By considering the open sets

$$
A=S^{n} \backslash e\left([0,1]^{k-1} \times[0,1 / 2]\right) \quad B=S^{n} \backslash e\left([0,1]^{k-1} \times[1 / 2,1]\right)
$$

in $S^{n}$, show by induction on $k$ that $\widetilde{H}_{i}\left(S^{n} \backslash D\right)=0$.
(ii) If $e: S^{k} \rightarrow S^{n}$ is a map which is a homeomorphism onto its image $S \subset S^{n}$, compute $\widetilde{H}_{i}\left(S^{n} \backslash S\right)$. Think about the consequence of this in the case $(n, k)=(2,1)$.

Comments or corrections to or257@cam.ac.uk

