Lent Term 2024

O. Randal-Williams

II Algebraic Topology // Example Sheet 2

Recall that the wedge $X \vee Y$ of based spaces (X, x_0) and (Y, y_0) is the space obtained from the disjoint union $X \sqcup Y$ by identifying x_0 with y_0 .

- 1. What is the universal cover of $S^1 \vee S^2$? Draw a picture.
- 2. Show that the inclusion $i: S^1 \vee S^1 = (S^1 \times \{*\}) \cup (\{*\} \times S^1) \hookrightarrow S^1 \times S^1$ does not admit a retraction.
- 3. A covering space is called *normal* if its corresponds to a normal subgroup. Draw pictures of all the connected degree 2 covering spaces of $S^1 \vee S^1$. Show that they are all normal coverings. Now do the same thing for the connected degree 3 covering spaces of $S^1 \vee S^1$. Which of them are normal coverings?
- 4. Consider $X = S^1 \vee S^1$ with basepoint x_0 the wedge point, which has $\pi_1(X, x_0) = \langle a, b \rangle$ where a and b are given by the two characteristic loops. Describe covering spaces associated to
 - (i) $\langle \langle a \rangle \rangle$, the normal subgroup generated by a,
 - (ii) $\langle a \rangle$, the subgroup generated by a,
 - (iii) the kernel of the homomorphism $\phi : \langle a, b \rangle \to \mathbb{Z}/4$ given by $\phi(a) = [1]$ and $\phi(b) = [3] = [-1]$.

What are the fundamental groups of these covering spaces?

- 5. Show that the free group F_2 contains subgroups isomorphic to F_n for any n > 1.
- 6. Let X be a Hausdorff space, and G a group acting on X by homeomorphisms, freely (i.e. if $g \in G$ satisfies $g \cdot x = x$ for some $x \in X$, then g = e) and properly discontinuously (i.e. each $x \in X$ has an open neighbourhood $U \ni x$ such that $\{g \in G \mid g(U) \cap U \neq \emptyset\}$ is finite).
 - (i) Show that the quotient map $X \to X/G$ is a covering map.
 - (ii) Deduce that if X is simply-connected and locally path-connected then for any point $[x] \in X/G$ we have an isomorphism of groups $\pi_1(X/G, [x]) \cong G$.
 - (iii) Hence show that for $n \ge 2$ odd and any $m \ge 2$ there is a space X with fundamental group \mathbb{Z}/m and universal cover S^n . [Hint: Consider S^n as the unit sphere in \mathbb{C}^k .]
- 7. Show that the groups

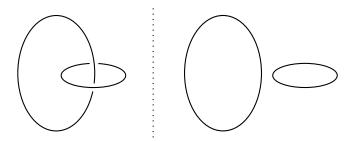
$$G = \langle a, b | a^3 b^{-2} \rangle$$
 and $H = \langle x, y | xyxy^{-1}x^{-1}y^{-1} \rangle$

are isomorphic. Show that this group is non-abelian and infinite. [Hint: Construct surjective homomorphisms to appropriate groups.]

8. Let $Y = \mathbb{RP}^2 \vee \mathbb{RP}^2$ and * be the wedge point, so that

$$\pi_1(Y,*) \cong \mathbb{Z}/2 * \mathbb{Z}/2 \cong \langle a, b | a^2, b^2 \rangle.$$

- (i) Describe the covering space of Y corresponding to the kernel of the homomorphism ϕ : $\langle a, b | a^2, b^2 \rangle \rightarrow \mathbb{Z}/2$ given by $\phi(a) = 1$ and $\phi(b) = 0$. Hence show that $\text{Ker}(\phi)$ is isomorphic to $\langle a, b | a^2, b^2 \rangle$.
- (ii) Draw a picture of the universal cover \tilde{Y} . Deduce that ab has infinite order in $\langle a, b | a^2, b^2 \rangle$.



- 9. Show that the Klein bottle has a cell structure with a single 0-cell, two 1-cells, and a single 2-cell. Deduce that its fundamental group has a presentation $\langle a, b | baba^{-1} \rangle$, and show this is isomorphic to the group in Q13 of Example Sheet 1.
- 10. Consider the following configurations of pairs of circles in S^3 (we have drawn them in \mathbb{R}^3 ; add a point at infinity).

By computing the fundamental groups of the complements of the circles, show there is no homeomorphism of S^3 taking one configuration to the other.

Optional Question

- 11. A graph G is a space obtained by starting with a set E(G) of copies of the interval I and an equivalence relation \sim on $E(G) \times \{0, 1\}$, and forming the quotient space of $E(G) \times I$ by the minimal equivalence relation containing \sim . (That is, it is a space obtained from a set of copies of I by gluing their ends together.) The vertices are the equivalence classes represented by the ends of the intervals.
 - (i) A *tree* is a simply-connected graph. A *star* is a tree with a vertex x_0 such that one end of each edge is attached to x_0 . A *leaf* of a tree is a vertex attached to only one edge. Prove that every tree is homotopy equivalent to a star, relative to its leaves.
 - (ii) If $T \subset G$ is a tree, show that the quotient map $G \to G/T$ is a homotopy equivalence, and that G/T is again a graph. Hence show that every connected graph is homotopy equivalent to a graph with a single vertex. [You should assume that every graph has a maximal tree.]
 - (iii) Show that the fundamental group of a graph with one vertex, based at the vertex, is a free group with one generator for each edge of the graph. Hence show that any free group occurs as the fundamental group of some graph. (We have *not* required that a graph have finitely many edges.)
 - (iv) Show that a covering space of a graph is again a graph, and deduce that a subgroup of a free group is again a free group.

Comments or corrections to or257@cam.ac.uk