Lent Term 2024 O. Randal-Williams

II Algebraic Topology // Example Sheet 1

- 1. Let $a: S^n \to S^n$ be the antipodal map, a(x) = -x. Show that a is homotopic to the identity map when n is odd. [Hint: Try n = 1 first.]
- 2. Let $f: S^1 \to S^1$ be a map which is not homotopic to the identity map. Show that there exists an $x \in S^1$ such that f(x) = x, and a $y \in S^1$ so that f(y) = -y.
- 3. Suppose that $f: X \to Y$ is a map for which there exist maps $g, h: Y \to X$ such that $g \circ f \simeq \operatorname{Id}_X$ and $f \circ h \simeq \operatorname{Id}_Y$. Show that f, g, and h are homotopy equivalences.
- 4. Show that a retract of a contractible space is contractible.
- 5. Show that if a space X strongly deformation retracts to a point $x_0 \in X$, then for every open neighbourhood $x_0 \in U$ there exists a smaller open neighbourhood $x_0 \in V \subset U$ such that the inclusion $(V, x_0) \hookrightarrow (U, x_0)$ is based homotopic to the constant map.
- 6. Construct a space which contains both the annulus $S^1 \times I$ and the Möbius band as deformation retracts.
- 7. For m < n, consider S^m as a subspace of S^n given by

$$\{(x_1, x_2, \dots, x_{m+1}, 0, \dots, 0) \mid \sum x_i^2 = 1\}.$$

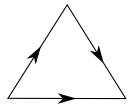
Show that the complement $S^n - S^m$ is homotopy equivalent to S^{n-m-1} .

- 8. A space is called *locally path connected* if for every point $x \in X$ and every neighbourhood $U \ni x$, there exists a smaller neighbourhood V of x (i.e. $x \in V \subset U$) which is path connected. Show that a locally path connected space which is connected is also path connected.
- 9. For a map $f: S^{n-1} \to X$ we define the space obtained by attaching an n-cell to X along f to be the quotient space

$$X \cup_f D^n := (X \coprod D^n) / \sim$$

where \sim is the smallest equivalence relation containing $b \sim f(b)$ for every $b \in S^{n-1} \subset D^n$. Show that if $f, f': S^{n-1} \to X$ are homotopic maps then $X \cup_f D^n \simeq X \cup_{f'} D^n$.

10. The dunce cap is the space obtained from a solid triangle by gluing the edges together as shown.



Show that this space is contractible. [Hint: Use the previous question.]

- 11. Show that the Möbius band does not retract onto its boundary.
- 12. For based spaces (X, x_0) and (Y, y_0) show there is an isomorphism

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

13. Construct a covering map $\pi: \mathbb{R}^2 \to K$ of the Klein bottle, and hence show that $\pi_1(K, k_0)$ is isomorphic to the group G with elements $(m, n) \in \mathbb{Z}^2$ and group operation

$$(m,n)*(p,q) = (m+(-1)^n \cdot p, n+q).$$

Show that K has a covering space homeomorphic to the torus $S^1 \times S^1$, but that the torus does not have a covering space homeomorphic to K.

Optional Question

- 11. Let G be a path-connected, locally path connected topological group, and $p:\widehat{G}\to G$ be a path connected covering space. Let $\epsilon\in p^{-1}(e)$ be a point in the fibre over the identity $e\in G$.
 - (i) Show that \widehat{G} has a unique structure of a topological group with unit ϵ so that p is a homomorphism.
 - (ii) Show that $\operatorname{Ker}(p) \subset \widehat{G}$ lies in the centre of \widehat{G} .
 - (iii) Show that SO(3), the group of rotations of \mathbb{R}^3 (or equivalently of orthogonal 3×3 matrices of determinant 1), is homeomorphic to the projective space \mathbb{RP}^3 .
 - (iv) Together, (i) and (iii) give a group $\widehat{SO(3)}$ homeomorphic to S^3 . Identify this group with a well-known matrix group.

Comments or corrections to or257@cam.ac.uk