Algebraic Topology, Examples 4

Oscar Randal-Williams

Michaelmas 2014

1. Show that if $n \neq m$ then \mathbb{R}^{n} and \mathbb{R}^{m} are not homeomorphic.
2. For each of the following exact sequences of abelian groups and homomorphisms say as much as possible about the unknown group G and homomorphism α.
(i) $0 \longrightarrow \mathbb{Z} / 2 \longrightarrow G \longrightarrow \mathbb{Z} \longrightarrow 0$,
(ii) $0 \longrightarrow \mathbb{Z} / 2 \longrightarrow G \longrightarrow \mathbb{Z} / 2 \longrightarrow 0$,
(iii) $0 \longrightarrow G \longrightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \longrightarrow \mathbb{Z} / 2 \longrightarrow 0$,
(iv) $0 \longrightarrow \mathbb{Z} / 3 \longrightarrow G \longrightarrow \mathbb{Z} / 2 \longrightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \longrightarrow 0$.
3. Consider a commutative diagram

in which the rows are exact and each square commutes. If h_{1}, h_{2}, h_{4}, and h_{5} are isomorphisms, show that h_{3} is too.
4. Let K be a simplicial complex in \mathbb{R}^{m}, and consider this as lying inside \mathbb{R}^{m+1} as the vectors of the form $\left(x_{1}, \ldots, x_{n}, 0\right)$. Let $e_{+}=(0, \ldots, 0,1) \in \mathbb{R}^{m+1}$ and $e_{-}=$ $(0, \ldots, 0,-1) \in \mathbb{R}^{m+1}$. The suspension of K is the simplicial complex in \mathbb{R}^{m+1}

$$
S K:=K \cup\left\{\left\langle v_{0}, \ldots, v_{n}, e_{+}\right\rangle,\left\langle v_{0}, \ldots, v_{n}, e_{-}\right\rangle \mid\left\langle v_{0}, \ldots, v_{n}\right\rangle \in K\right\} .
$$

(i) Show that $S K$ is a simplicial complex, and that if $|K| \cong S^{n}$ then $|S K| \cong S^{n+1}$.
(ii) Using the Mayer-Vietoris sequence, show that if K is connected then $H_{0}(S K) \cong$ $\mathbb{Z}, H_{1}(S K)=0$, and $H_{i}(S K) \cong H_{i-1}(K)$ if $i \geq 2$.
(iii) If $f: K \rightarrow K$ is a simplicial map, let $S f: S K \rightarrow S K$ be the unique simplicial map which agrees with f on the subcomplex K and fixes the points e_{+}and e_{-}. Show that under the isomorphism in (ii), the maps f_{*} and $S f_{*}$ agree. [It may help to describe the isomorphism in (ii) at the level of chains.]
(iv) Deduce that for every $n \geq 1$ and $d \in \mathbb{Z}$ there is a map $f: S^{n} \rightarrow S^{n}$ so that f_{*} induces multiplication by d on $H_{n}\left(S^{n}\right) \cong \mathbb{Z}$.
5. If K is a simplicial complex with $H_{i}(K) \cong \mathbb{Z}^{r} \oplus F$, for F a finite abelian group, show that $H_{i}(K ; \mathbb{Q}) \cong \mathbb{Q}^{r}$. [Note that there is a chain map $C_{\bullet}(K) \rightarrow C_{\bullet}(K ; \mathbb{Q})$.]
6. By describing a triangulation of S^{n} which is preserved under the antipodal map, show that $\mathbb{R P}^{n}$ has a triangulation. [Be careful that the triangulation you describe actually comes from a simplicial complex! Some subdivision may be necessary.] Using the Mayer-Vietoris sequence, show that there is an exact sequence

$$
0 \longrightarrow H_{n}\left(\mathbb{R P}^{n}\right) \longrightarrow \mathbb{Z} \longrightarrow H_{n-1}\left(\mathbb{R} \mathbb{P}^{n-1}\right) \longrightarrow H_{n-1}\left(\mathbb{R} \mathbb{P}^{n}\right) \longrightarrow 0
$$

and that $H_{i}\left(\mathbb{R} \mathbb{P}^{n-1}\right) \rightarrow H_{i}\left(\mathbb{R}^{n}\right)$ is an isomorphism for $i<n-1$. Hence show that

$$
H_{i}\left(\mathbb{R P}^{n}\right) \cong \begin{cases}\mathbb{Z} & \text { if } i=0 \text { or if } i=n \text { and } n \text { is odd } \\ \mathbb{Z} / 2 & \text { if } i \text { is odd and } 0<i<n \\ 0 & \text { otherwise } .\end{cases}
$$

Deduce that $\mathbb{R P}^{2 k}$ does not retract onto $\mathbb{R P}^{2 k-1}$, and that any map $f: \mathbb{R} \mathbb{P}^{2 k} \rightarrow \mathbb{R} \mathbb{P}^{2 k}$ has a fixed point.
7. Let A be a 2×2 matrix with entries in \mathbb{Z}. Show that the linear map $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ peserves the equivalence relation $(a, b) \sim\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow\left(a-a^{\prime}, b-b^{\prime}\right) \in \mathbb{Z}^{2}$, and so induces a continuous map f_{A} from the torus T to itself. Compute the effect of the continuous map f_{A} on the homology of T.
8. For triangulated surfaces X and Y, let $X \# Y$ be the surface obtained by cutting out a 2-simplex from both X and Y and then gluing together the two copies of $\partial \Delta^{2}$ formed. Use the Mayer-Vietoris sequence to compute the homology of $\Sigma_{g} \# S_{n}$, and hence deduce that it is homeomorphic to $S_{n+2 g}$.
9. Let $p: \widetilde{X} \rightarrow X$ be a finite-sheeted covering space, and $h:|K| \rightarrow X$ a triangulation. Show that there is an $r \geq 1$ and triangulation $g:|L| \rightarrow \widetilde{X}$ so that the composition $h^{-1} \circ p \circ g:|L| \rightarrow\left|K^{(r)}\right|$ is a simplicial map. If p has n sheets, show that $\chi(\widetilde{X})=$ $n \cdot \chi(X)$. Hence show that Σ_{g} is a covering space of Σ_{h} if and only if $\frac{1-g}{1-h}$ is an integer. [If $g=1+k \cdot(h-1)$, show that \mathbb{Z} / k acts freely and properly discontinuously on a particular orientable surface of genus g, and identify the quotient.]
10. Let $p: S^{2 k} \rightarrow X$ be a covering map, $G=\pi_{1}\left(X,\left[x_{0}\right]\right)$, and recall that G then acts freely on $S^{2 k}$. Show that for any $g \in G$ the map $g_{*}: H_{2 k}\left(S^{2 k}\right) \rightarrow H_{2 k}\left(S^{2 k}\right)$ is multiplication by -1 . Deduce that G is either trivial or $\mathbb{Z} / 2$, and that $\mathbb{R P}^{2 k}$ is not a proper covering space of any other space.
11. If $f: K \rightarrow K$ is a simplicial isomorphism, let $X \subset|K|$ be the fixed set of $|f|$ i.e. $\{x \in|K|$ s.t. $|f|(x)=x\}$. Show that the Lefschetz number $L(f)$ is equal to $\chi(X)$. [Barycentrically subdivide K so that X is the polyhedron of a sub simplicial complex.]

