Algebraic Topology, Examples 4

Oscar Randal-Williams

Michaelmas 2013

- 1. Show that if $n \neq m$ then \mathbb{R}^n and \mathbb{R}^m are not homeomorphic.
- **2.** For each of the following exact sequences of abelian groups and homomorphisms say as much as possible about the unknown group G and homomorphism α .
 - (i) $0 \longrightarrow \mathbb{Z}/2 \longrightarrow G \longrightarrow \mathbb{Z} \longrightarrow 0$,
 - (ii) $0 \longrightarrow \mathbb{Z}/2 \longrightarrow G \longrightarrow \mathbb{Z}/2 \longrightarrow 0$,
- (iii) $0 \longrightarrow \mathbb{Z} \stackrel{\alpha}{\longrightarrow} \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z}/2 \longrightarrow 0$,
- (iv) $0 \longrightarrow G \longrightarrow \mathbb{Z} \stackrel{\alpha}{\longrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/2 \longrightarrow 0$,
- (v) $0 \longrightarrow \mathbb{Z}/3 \longrightarrow G \longrightarrow \mathbb{Z}/2 \longrightarrow \mathbb{Z} \stackrel{\alpha}{\longrightarrow} \mathbb{Z} \longrightarrow 0$.
- 3. For triangulated surfaces X and Y, let X # Y be the surface obtained by cutting out a 2-simplex from both X and Y and then gluing together the two copies of $\partial \Delta^2$ formed. Use the Mayer–Vietoris sequence to compute the homology of $\Sigma_g \# S_n$, and hence deduce that it is homeomorphic to S_{n+2g} .
- **4.** Let K be a simplicial complex in \mathbb{R}^m , and consider this as lying inside \mathbb{R}^{m+1} as the vectors of the form $(x_1, \ldots, x_n, 0)$. Let $e_+ = (0, \ldots, 0, 1) \in \mathbb{R}^{m+1}$ and $e_- = (0, \ldots, 0, -1) \in \mathbb{R}^{m+1}$. The suspension of K is the simplicial complex in \mathbb{R}^{m+1}

$$SK := K \cup \{\langle v_0, \dots, v_n, e_+ \rangle \mid \langle v_0, \dots, v_n \rangle \in K\} \cup \{\langle v_0, \dots, v_n, e_- \rangle \mid \langle v_0, \dots, v_n \rangle \in K\}.$$

- (i) Show that SK is a simplicial complex, and that if $|K| \cong S^n$ then $|SK| \cong S^{n+1}$.
- (ii) Using the Mayer-Vietoris sequence, show that if K is connected then $H_0(SK) \cong \mathbb{Z}$, $H_1(SK) = 0$, and $H_i(SK) \cong H_{i-1}(K)$ if $i \geq 2$.
- (iii) If $f: K \to K$ is a simplicial map, let $Sf: SK \to SK$ be the unique simplicial map which agrees with f on the subcomplex K and fixes the points e_+ and e_- . Show that under the isomorphism in (ii), the maps f_* and Sf_* agree. [It may help to describe the isomorphism in (ii) at the level of chains.]
- (iv) Deduce that for every $n \geq 1$ and $d \in \mathbb{Z}$ there is a map $f: S^n \to S^n$ so that f_* induces multiplication by d on $H_n(S^n) \cong \mathbb{Z}$.

Michaelmas 2013

- **5.** Let $n \geq 2$. Show that the following are equivalent:
 - (i) There is no map $f: S^n \to S^{n-1}$ such that f(-x) = -f(x) for all $x \in S^n$.
- (ii) There is no map $r:D^n\to S^{n-1}$ which restricts to the antipodal map on $\partial D^n=S^{n-1}.$
- (iii) For every map $g: \mathbb{RP}^n \to \mathbb{RP}^{n-1}$, the homomorphism $g_*: \pi_1(\mathbb{RP}^n) \to \pi_1(\mathbb{RP}^{n-1})$ is trivial.
- (iv) For every map $h: S^n \to \mathbb{R}^n$, there is an $x \in S^n$ such that h(x) = h(-x).

[Show that (i) \iff (ii) \iff (iii) and (i) \iff (iv).] Prove (ii).

- **6.** If K is a simplicial complex with $H_i(K) \cong \mathbb{Z}^r \oplus F$, for F a finite abelian group, show that $H_i(K;\mathbb{Q}) \cong \mathbb{Q}^r$. [Note that there is a chain map $C_{\bullet}(K) \to C_{\bullet}(K;\mathbb{Q})$.]
- 7. Let $p: \widetilde{X} \to X$ be a finite-sheeted covering space, and $h: |K| \to X$ a triangulation. Show that there is an $r \geq 1$ and triangulation $g: |L| \to \widetilde{X}$ so that the composition $h^{-1} \circ p \circ g: |L| \to |K^{(r)}|$ is a simplicial map. If p has n sheets, show that $\chi(\widetilde{X}) = n \cdot \chi(X)$. Hence show that Σ_g is a covering space of Σ_h if and only if $\frac{1-g}{1-h}$ is an integer. [If $g = 1 + k \cdot (h-1)$, show that \mathbb{Z}/k acts freely and properly discontinuously on a particular orientable surface of genus g, and identify the quotient.]
- 8. By describing a triangulation of S^n which is preserved under the antipodal map, show that \mathbb{RP}^n has a triangulation. [Be careful that the triangulation you describe actually comes from a simplicial complex! Some subdivision may be necessary.] Using the Mayer-Vietoris sequence, show that there is an exact sequence

$$0 \longrightarrow H_n(\mathbb{RP}^n) \longrightarrow \mathbb{Z} \longrightarrow H_{n-1}(\mathbb{RP}^{n-1}) \longrightarrow H_{n-1}(\mathbb{RP}^n) \longrightarrow 0$$

and that $H_i(\mathbb{RP}^{n-1}) \to H_i(\mathbb{RP}^n)$ is an isomorphism for i < n-1. Hence show that

$$H_i(\mathbb{RP}^n) \cong \begin{cases} \mathbb{Z} & \text{if } i = 0 \text{ or if } i = n \text{ and } n \text{ is odd} \\ \mathbb{Z}/2 & \text{if } i \text{ is odd and } 0 < i < n \\ 0 & \text{otherwise.} \end{cases}$$

Deduce that \mathbb{RP}^{2k} does not retract onto \mathbb{RP}^{2k-1} , and that any map $f: \mathbb{RP}^{2k} \to \mathbb{RP}^{2k}$ has a fixed point.

- **9.** Let $p: S^{2k} \to X$ be a covering map, $G = \pi_1(X, [x_0])$, and recall that G then acts freely on S^{2k} . Show that for any $g \in G$ the map $g_*: H_{2k}(S^{2k}) \to H_{2k}(S^{2k})$ is multiplication by -1. Deduce that G is either trivial or $\mathbb{Z}/2$, and that \mathbb{RP}^{2k} is not a proper covering space of any other space.
- **10.** If $f: K \to K$ is a simplicial isomorphism, let $X \subset |K|$ be the fixed set of |f| i.e. $\{x \in |K| \text{ s.t. } |f|(x) = x\}$. Show that the Lefschetz number L(f) is equal to $\chi(X)$. [Barycentrically subdivide K so that X is the polyhedron of a sub simplicial complex.]