Algebraic Topology, Examples 2

Oscar Randal-Williams

Michaelmas 2013

- **1.** Let X be a Hausdorff space, and G a group acting on X by homeomorphisms, freely (i.e. if $g \in G$ satisfies $g \cdot x = x$ for some $x \in X$, then g = e) and properly discontinuously (i.e. each $x \in X$ has an open neighbourhood $U \ni x$ such that $\{g \in G \mid g(U) \cap U \neq \emptyset\}$ is finite).
 - 1. Show that the quotient map $X \to X/G$ is a covering map.
 - 2. Deduce that if X is simply-connected and locally path-connected then for any point $[x] \in X/G$ we have $\pi_1(X/G, [x]) \cong G$.
- **2.** If $p: \widetilde{X} \to X$ is a covering map such that \widetilde{X} is path-connected, and $x_0 \in X$ and $\tilde{x}_0, \tilde{x}_1 \in p^{-1}(x_0)$ are basepoints, show that the subgroups $p_*\pi_1(\widetilde{X}, \tilde{x}_0)$ and $p_*\pi_1(\widetilde{X}, \tilde{x}_1)$ of $\pi_1(X, x_0)$ are conjugate. Hence, using the correspondence proved in lectures, show that for a based space (X, x_0) which is path-connected, locally path-connected, and semilocally simply-connected, there is a bijection

$$\left\{ \begin{array}{l} \text{path-connected} \\ \text{covering spaces} \\ p:\widetilde{X} \to X \end{array} \right\} / \left\{ \begin{array}{l} \text{homeomorphisms} \\ h:\widetilde{X}_1 \to \widetilde{X}_2 \\ \text{s.t. } p_1 = p_2 \circ h \end{array} \right\} \longrightarrow \left\{ \begin{array}{l} \text{conjugacy classes of} \\ \text{subgroups of} \\ \pi_1(X,x_0) \end{array} \right\}.$$

- **3.** Show that the Klein bottle has a cell structure with a single 0-cell, two 1-cells, and a single 2-cell. Deduce that its fundamental group has a presentation $\langle a, b \, | \, baba^{-1} \rangle$, and show this is isomorphic to the group in Q12 of Sheet 1.
- **4.** Consider $X = S^1 \vee S^1$ with basepoint x_0 the wedge point, which has $\pi_1(X, x_0) = \langle a, b \rangle$ where a and b are given by the two characteristic loops. Describe covering spaces associated to
 - 1. $\langle \langle a \rangle \rangle$, the normal subgroup generated by a,
 - 2. $\langle a \rangle$, the subgroup generated by a,
 - 3. the kernel of the homomorphism $\phi: \langle a,b\rangle \to \mathbb{Z}/4$ given by $\phi(a)=[1]$ and $\phi(b)=[3]=[-1].$

Michaelmas 2013

Show that the free group on two letters contains a copy of itself as a proper subgroup.

5. Consider the 2-dimensional cell complex Y obtained from X in the previous question by attaching 2-cells along loops in the homotopy classes a^2 and b^2 , so that

$$\pi_1(Y, x_0) \cong \langle a, b \mid a^2, b^2 \rangle.$$

- 1. Construct, as a cell complex (in pictures), the covering space of Y corresponding to the subgroup $\langle a \mid a^2 \rangle$.
- 2. Construct, as a cell complex (in pictures), the covering space of Y corresponding to the kernel of the homomorphism $\phi : \langle a, b \, | \, a^2, b^2 \rangle \to \mathbb{Z}/2$ given by $\phi(a) = 1$ and $\phi(b) = 0$. Hence show that $\text{Ker}(\phi)$ is isomorphic to $\langle a, b \, | \, a^2, b^2 \rangle$.
- **6.** Show that the groups

$$G = \langle a, b \mid a^3 b^{-2} \rangle$$
 and $H = \langle x, y \mid xyxy^{-1}x^{-1}y^{-1} \rangle$

are isomorphic. Show that this group is non-abelian and infinite. [Construct surjective homomorphisms to S_3 and \mathbb{Z} .]

7. Consider the following configurations of pairs of circles in S^3 (we have drawn them in \mathbb{R}^3 ; add a point at infinity).

By computing the fundamental groups of the complements of the circles, show there is no homeomorphism of S^3 taking one configuration to the other.

- **8.** A graph is a cell complex which only has cells of dimension 0 and 1. A tree is a graph which is contractible. A tree T inside a graph G is maximal if no strictly larger subgraph is a tree.
 - 1. If $T \subset G$ is a tree, show that the quotient map $G \to G/T$ is a homotopy equivalence, and that G/T has the structure of a cell complex.
 - 2. Hence show that every connected graph is homotopy equivalent to a graph with a single vertex, and so show that the fundamental group of a connected graph is a free group.
 - 3. Show that any free group occurs as the fundamental group of a graph, and deduce that a subgroup of a free group is again a free group.