Algebraic Topology, Examples 1

Oscar Randal-Williams

Michaelmas 2013

1. Let $a: S^n \to S^n$ be the antipodal map, a(x) = -x. Show that a is homotopic to the identity map when n is odd.

2. Let $f: S^1 \to S^1$ be a map which is not homotopic to the identity map. Show that there exists an $x \in S^1$ such that f(x) = x, and a $y \in S^1$ so that f(y) = -y.

3. Suppose that $f: X \to Y$ is a map for which there exist maps $g, h: Y \to X$ such that $g \circ f \simeq \operatorname{Id}_X$ and $f \circ h \simeq \operatorname{Id}_Y$. Show that f, g, and h are homotopy equivalences.

4. Show that a retract of a contractible space is contractible.

5. Show that if a space X deformation retracts to a point $x_0 \in X$, then for every open neighbourhood $x_0 \in U$ there exists a smaller open neighbourhood $x_0 \in V \subset U$ such that the inclusion $(V, x_0) \hookrightarrow (U, x_0)$ is pointed nullhomotopic.

6. Construct a 2-dimensional cell complex which contains both the annulus $S^1 \times I$ and the Möbius band as deformation retracts.

7. For m < n, consider S^m as a subspace of S^n given by

$$\{(x_1, x_2, \dots, x_{m+1}, 0, \dots, 0) \mid \sum x_i^2 = 1\}.$$

Show that the complement $S^n - S^m$ is homotopy equivalent to S^{n-m-1} .

8. A space is called *locally path connected* if for every point $x \in X$ and every neighbourhood $U \ni x$, there exists a smaller neighbourhood V, i.e. $x \in V \subset U$, which is path connected. Show that a locally path connected space which is connected is also path connected.

9. Recall that for a map $f: S^{n-1} \to X$ we define the space obtained by attaching an *n*-cell to X along f to be

$$X \cup_f D^n := (X \amalg D^n) / \sim$$

where \sim is the smallest equivalence relation containing $b \sim f(b)$ for every $b \in S^{n-1} \subset D^n$. Show that if f and f' are homotopic maps $S^{n-1} \to X$, then $X \cup_f D^n \simeq X \cup_{f'} D^n$.

10. Show that The Möbius band does not retract onto its boundary.

11. For based spaces (X, x_0) and (Y, y_0) show there is an isomorphism

 $\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$

Hence show that the inclusion $i: (S^1 \times \{1\}) \cup (\{1\} \times S^1) \hookrightarrow S^1 \times S^1$ does not admit a retraction. [Here we consider $S^1 \subset \mathbb{C}$ as the elements of unit modulus, so it contains the point 1.]

12. Construct a covering map $\pi : \mathbb{R}^2 \to K$ of the Klein bottle, and hence show that $\pi_1(K, k_0)$ is isomorphic to the group G with elements $(m, n) \in \mathbb{Z}^2$ and group operation

$$(m, n) * (p, q) = (m + (-1)^n \cdot p, n + q).$$

- 1. Let a = (-1, 0) and b = (0, 1). Show that $b^{-1} = (0, -1)$ and that $bab^{-1}a = (0, 0)$. Describe the centre $Z(G) \triangleleft G$ and commutator subgroup $G' \triangleleft G$ in terms of the generators a and b.
- 2. Describe the group $\operatorname{Aut}(G)$ of all self-isomorphisms of G. [You may use, and prove, that both the centre and commutator subgroups are *characteristic sub-groups* i.e. are preserved by any automorphism.] Describe the normal subgroup $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$ of inner automorphisms (those induced by conjugation in G), and the quotient group $\operatorname{Out}(G) = \operatorname{Aut}(G)/\operatorname{Inn}(G)$.
- 3. Show that any self-isomorphism $\phi: G \to G$ is induced by a (pointed) homotopy equivalence of (K, k_0) .
- 4. Let $H \leq G$ be the subgroup generated by a and b^2 , and describe the covering space $p : C \to K$ which corresponds to this subgroup. Show that any automorphism of G preserves H, so there is an induced homomorphism

$$\operatorname{res}:\operatorname{Aut}(G)\longrightarrow\operatorname{Aut}(H),$$

and describe the image and kernel of this homomorphism.

13.* Let G be a path-connected, locally path connected topological group, and $p : \hat{G} \to G$ be a covering map. Let $\epsilon \in p^{-1}(e)$ be a point in the fibre over the identity $e \in G$.

- 1. Show that \hat{G} has a unique structure of a topological group with unit ϵ so that p is a homomorphism.
- 2. Show that $\operatorname{Ker}(p) \subset \hat{G}$ lies in the centre of \hat{G} .
- 3. Show that SO(3), the group of rotations of \mathbb{R}^3 (or equivalently of orthogonal 3×3 matrices of determinant 1), is homeomorphic to the projective space \mathbb{RP}^3 .
- 4. Together, 1. and 3. give a group SO(3) homeomorphic to S^3 . Identify this group with a well-known matrix group.