Free Groups

Oscar Randal-Williams

In lectures I gave the definition of a free group, described its multiplication, but didn't prove that it is indeed a group. This handout gives an alternative definition which is clearly a group, and show it is equivalent to the definition given in lectures.

Let $S = \{s_{\alpha}\}_{\alpha \in I}$ be a set, the *alphabet*, and let $S^{-1} = \{s_{\alpha}^{-1}\}_{\alpha \in I}$; suppose that $S \cap S^{-1} = \emptyset$. A *word* in the alphabet S is a (possibly empty) finite sequence

$$(x_1, x_2, \ldots, x_n)$$

of elements of $S \cup S^{-1}$. A word is *reduced* if it contains no subwords

 $(s_{\alpha}, s_{\alpha}^{-1})$ or $(s_{\alpha}^{-1}, s_{\alpha})$.

We let W be the set of reduced words, and P(W) be the group of permutations of the set W.

Definition 1. For each $\alpha \in I$, define a function $L_{\alpha}: W \to W$ by the formula

$$L_{\alpha}(x_1, x_2, \dots, x_n) = \begin{cases} (s_{\alpha}, x_1, x_2, \dots, x_n) & \text{if } x_1 \neq s_{\alpha}^{-1} \\ (x_2, \dots, x_n) & \text{if } x_1 = s_{\alpha}^{-1} \end{cases}$$

Note that in the second case $x_2 \neq s_{\alpha}$, otherwise (x_1, x_2, \ldots, x_n) would not be reduced.

Lemma 2. L_{α} is a bijection, so represents an element of P(W).

Proof. Let $(x_1, \ldots, x_n) \in W$. If $x_1 = s_\alpha$ then $x_2 \neq s_\alpha^{-1}$, so $L_\alpha(x_2, \ldots, x_n) = (x_1, \ldots, x_n)$. If $x_1 \neq s_\alpha$ then $(s_\alpha^{-1}, x_1, \ldots, x_n)$ is a reduced word, and $L_\alpha(s_\alpha^{-1}, x_1, \ldots, x_n) = (x_1, \ldots, x_n)$. Thus L_α is surjective.

If $L_{\alpha}(x_1, x_2, \ldots, x_n) = L_{\alpha}(y_1, y_2, \ldots, y_m)$ and this reduced word starts with s_{α} then $x_1 \neq s_{\alpha}^{-1}$ and $y_1 \neq s_{\alpha}^{-1}$, and so $x_i = y_i$ for each *i*. If this reduced word does not start with s_{α} then $x_1 = y_1 = s_{\alpha}^{-1}$, and

$$(x_2, \ldots, x_n) = L_{\alpha}(x_1, x_2, \ldots, x_n) = L_{\alpha}(y_1, y_2, \ldots, y_m) = (y_2, \ldots, y_m),$$

so $(x_1, x_2, \dots, x_n) = (y_1, y_2, \dots, y_m).$

Definition 3. The free group F(S) is the subgroup of P(W) generated by the elements $\{L_{\alpha}\}_{\alpha \in I}$.

Lemma 4. The function $\phi : F(S) \to W$ given by $\sigma \mapsto \sigma \cdot ()$ is a bijection.

This identifies F(S) with the set of reduced words W in the alphabet S, and shows that the group operation is given by concatenation of words followed by word reduction. Thus the definition given in lectures is indeed a group.

Proof. If $(s_{\alpha_1}^{\epsilon_1}, \ldots, s_{\alpha_n}^{\epsilon_n})$ is a reduced word, with $\epsilon_i \in \{\pm 1\}$, then

$$(s_{\alpha_1}^{\epsilon_1},\ldots,s_{\alpha_n}^{\epsilon_n})=L_{\alpha_1}^{\epsilon_1}\cdots L_{\alpha_n}^{\epsilon_n}\cdot()=\phi(L_{\alpha_1}^{\epsilon_1}\cdots L_{\alpha_n}^{\epsilon_n}),$$

and so ϕ is surjective.

As the $\{L_{\alpha}\}_{\alpha \in I}$ generate F(S), any element σ may be represented by a concatenation

$$\sigma = L_{\alpha_1}^{\epsilon_1} \cdots L_{\alpha_n}^{\epsilon_n} \in P(W).$$

As $L_{\alpha} \cdot L_{\alpha}^{-1} = \operatorname{Id}_{W}$ and $L_{\alpha}^{-1} \cdot L_{\alpha} = \operatorname{Id}_{W}$, if the word $(s_{\alpha_{1}}^{\epsilon_{1}}, \ldots, s_{\alpha_{n}}^{\epsilon_{n}})$ is not reduced then we can simplify $L_{\alpha_{1}}^{\epsilon_{1}} \cdots L_{\alpha_{n}}^{\epsilon_{n}}$ while giving the same element $\sigma \in P(W)$. Thus we may suppose that any σ is represented by $L_{\alpha_{1}}^{\epsilon_{1}} \cdots L_{\alpha_{n}}^{\epsilon_{n}}$ such that the associated word $(s_{\alpha_{1}}^{\epsilon_{1}}, \ldots, s_{\alpha_{n}}^{\epsilon_{n}})$ is reduced. But then

$$\phi(\sigma) = \sigma \cdot () = (s_{\alpha_1}^{\epsilon_1}, \dots, s_{\alpha_n}^{\epsilon_n}),$$

from which we can recover $\sigma = L_{\alpha_1}^{\epsilon_1} \cdots L_{\alpha_n}^{\epsilon_n}$, which shows that ϕ is injective. \Box

Note that there is a function $\iota: S \to F(S)$ given by sending s_{α} to the word (s_{α}) .

Lemma 5. For any group H, the function

$$\left\{\begin{array}{c} group \ homomorphisms \\ \varphi: F(S) \to H \end{array}\right\} \longrightarrow \left\{\begin{array}{c} functions \\ \phi: S \to H \end{array}\right\},$$

given by precomposing with ι , is a bijection.

Proof. Given a function $\phi : S \to H$, we want a homomorphism φ such that $\varphi((s_{\alpha})) = \phi(s_{\alpha})$. But there is a unique way to do this, by defining, on not necessarily reduced words,

$$\varphi((s_{\alpha_1}^{\epsilon_1},\ldots,s_{\alpha_n}^{\epsilon_n})) = \phi(s_{\alpha_1})^{\epsilon_1}\cdots\phi(s_{\alpha_n})^{\epsilon_n}$$

Note that if $(s_{\alpha_1}^{\epsilon_1}, \ldots, s_{\alpha_n}^{\epsilon_n})$ is not reduced, so contains for example $(s_\alpha, s_\alpha^{-1})$, then the product $\phi(s_{\alpha_1})^{\epsilon_1} \cdots \phi(s_{\alpha_n})^{\epsilon_n}$ contains $\phi(s_\alpha) \cdot \phi(s_\alpha)^{-1} = 1$ and so we may reduce the word $(s_{\alpha_1}^{\epsilon_1}, \ldots, s_{\alpha_n}^{\epsilon_n})$ without changing the value of φ on it. As the group operation in F(S) is given by concatenation and reduction of words, this shows that φ is a homomorphism.