The Acyclic Carrier Theorem

Oscar Randal-Williams

Michaelmas 2013

Definition 1. Let K and L be simplicial complexes, and $f_{\bullet}: C_{\bullet}(K) \to C_{\bullet}(L)$ be a chain map between their associated chain complexes. A *carrier* for f_{\bullet} is a function

 $\Phi: K \longrightarrow \{ \text{sub simplicial complexes of } L \}$

such that

1. $f_n([a_0,\ldots,a_n])$ may be represented by a sum of simplices in $\Phi(\langle a_0,\ldots,a_n\rangle)$,

2. if $\tau \leq \sigma$ then $\Phi(\tau) \subseteq \Phi(\sigma)$.

A carrier Φ is called *acyclic* if $\Phi(\sigma)$ has the homology of the one point simplicial complex for every simplex $\sigma \in K$.

Definition 2. For a simplicial complex K define $\epsilon_K : C_0(K) \to \mathbb{Z}$ by $\epsilon_K([a_0]) = 1$ (and extending linearly). Say a chain map $f_{\bullet} : C_{\bullet}(K) \to C_{\bullet}(L)$ is augmentation-preserving if $\epsilon_K = \epsilon_L \circ f_0$.

Note that $\epsilon_K \circ \partial_1 = 0$ (as $\epsilon_K \circ \partial_1([a_0, a_1]) = \epsilon_K([a_1] - [a_0]) = 1 - 1 = 0$) so ϵ_K induces a well-defined map $(\epsilon_K)_* : H_0(K) \to \mathbb{Z}$. If $H_0(K) \cong \mathbb{Z}$ then it is generated by any vertex of K, so $(\epsilon_K)_*$ is an isomorphism.

Theorem 3. Let $f_{\bullet}, g_{\bullet} : C_{\bullet}(K) \to C_{\bullet}(L)$ be augmentation-preserving chain maps and Φ be a carrier for both of them which is acyclic. Then $f_{\bullet} \simeq g_{\bullet}$.

Proof. Choose a total order \prec on V_K , so that a basis for $C_n(K)$ is given by

 $\{[a_0,\ldots,a_n] \mid \langle a_0,\ldots,a_n \rangle \in K \text{ and } a_0 \prec \cdots \prec a_n \}.$

We will construct maps $H_n : C_n(K) \to C_{n+1}(L)$ by induction. For each vertex a_0 of K the element $x = (f_0 - g_0)([a_0])$ is a sum of 0-simplices of $\Phi(\langle a_0 \rangle)$, so represents a class $[x] \in H_0(\Phi(\langle a_0 \rangle)) \cong \mathbb{Z}$. But

$$(\epsilon_{\Phi(\langle a_0 \rangle)})_*([x]) = \epsilon_L((f_0 - g_0)([a_0])) = \epsilon_L(f_0([a_0])) - \epsilon_L(g_0([a_0])) = 1 - 1 = 0$$

and $(\epsilon_{\Phi(\langle a_0 \rangle)})_*$ is an isomorphism, so [x] = 0. Thus there is a $y \in C_1(\Phi(\langle a_0 \rangle))$ so that $x = \partial_1 y$, and we define $H_0([a_0]) = y$. By construction this satisfies

$$(\partial_1 \circ H_0 + H_{-1} \circ \partial_0)([a_0]) = \partial_1 y = x = (f_0 - g_0)([a_0]).$$

Now let n > 0 and suppose that for each i < n we have defined homomorphisms $H_i: C_i(K) \to C_{i+1}(L)$ such that

- 1. $\partial_{i+1} \circ H_i + H_{i-1} \circ \partial_i = f_i g_i$,
- 2. $H_i(\sigma)$ may be represented by a sum of simplices in $\Phi(\sigma)$.

We wish to define $H_n([a_0, \ldots, a_n])$, so consider

$$x = (f_n - g_n - H_{n-1} \circ \partial_n)([a_0, \dots, a_n]).$$

Both $f_n([a_0, \ldots, a_n])$ and $g_n([a_0, \ldots, a_n])$ are sums of simplices in $\Phi(\langle a_0, \ldots, a_n \rangle)$ as both maps are carried by Φ . The chain $H_{n-1} \circ \partial_n([a_0, \ldots, a_n])$ is a sum of simplices each in $\Phi(\tau)$ for some $\tau \leq \langle a_0, \ldots, a_n \rangle$, but $\Phi(\tau) \subseteq \Phi(\langle a_0, \ldots, a_n \rangle)$ by definition of a carrier, so $H_{n-1} \circ \partial_n([a_0, \ldots, a_n])$ is also a sum of simplices in $\Phi(\langle a_0, \ldots, a_n \rangle)$. Thus x lies in $C_n(\Phi(\langle a_0, \ldots, a_n \rangle))$. We compute

$$\partial_n(x) = (\partial_n \circ f_n - \partial_n \circ g_n - \partial_n \circ H_{n-1} \circ \partial_n)([a_0, \dots, a_n])$$

= $(f_{n-1} \circ \partial_n - g_{n-1} \circ \partial_n - \partial_n \circ H_{n-1} \circ \partial_n)([a_0, \dots, a_n])$
= $(f_{n-1} \circ \partial_n - g_{n-1} \circ \partial_n - (f_{n-1} - g_{n-1} - H_{n-2} \circ \partial_{n-1}) \circ \partial_n)([a_0, \dots, a_n])$
= $H_{n-1} \circ \partial_{n-1} \circ \partial_n([a_0, \dots, a_n])$
= 0.

Thus, as Φ is acyclic (i.e. $\Phi(\langle a_0, \ldots, a_n \rangle)$ has the homology of a point) we have $H_n(\Phi(\langle a_0, \ldots, a_n \rangle)) = 0$ and so $x = \partial_{n+1}(y)$ for some $y \in C_{n+1}(\Phi(\langle a_0, \ldots, a_n \rangle))$. We define $H_n([a_0, \ldots, a_n]) = y$. By construction this satisfies

$$\partial_{n+1} \circ H_n + H_{n-1} \circ \partial_n = f_n - g_n,$$

so the H_n give a chain homotopy between f_{\bullet} and g_{\bullet} .