

IB Topological Spaces // Example Sheet 3

1. Show that the cone $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = 0\}$ is not a topological manifold.
2. Let $F : \mathbb{R}^{d+n} \rightarrow \mathbb{R}^n$ be a continuously differentiable function such that whenever $F(x) = 0$ the derivative $D_x F$ of F at x is surjective. Using the implicit function theorem from Part IB Analysis II show that $F^{-1}(0)$ is a topological manifold of dimension d .
3. Show that a connected-sum of two connected topological manifolds of dimension $d \geq 2$ is connected. What about $d = 1$?
4. For a pair of self-homeomorphisms $\varphi_0, \varphi_1 : X \xrightarrow{\cong} X$, an *isotopy* between them is a continuous function $\Phi : [0, 1] \times X \rightarrow X$ such that $\varphi_0 = \Phi_{\{0\} \times X}$, $\varphi_1 = \Phi_{\{1\} \times X}$, and each $\Phi_{\{t\} \times X}$ is a homeomorphism. The existence of an isotopy from φ_0 to φ_1 defines an equivalence relation on self-homeomorphisms. [Check this if you like.]
 - (a) Show that a self-homeomorphism of $[0, 1]$ is isotopic to either the identity or to $t \mapsto 1 - t$.
 - (b) Show that a self-homeomorphism of S^1 is isotopic to either the identity or to a reflection.
 - (c) Show that a self-homeomorphism φ of $D^n := \{v \in \mathbb{R}^n : |v| \leq 1\}$ which satisfies $\varphi(v) = v$ whenever $|v| = 1$ is isotopic to the identity. [Try to isotope φ so that it is the identity on increasingly-large neighbourhoods of the boundary of the disc.]
5. Let X be a connected topological manifold of dimension $d \geq 2$. If x_1, \dots, x_n is a collection of distinct points in X and y_1, \dots, y_n is another, show there is a self-homeomorphism φ of X such that $\varphi(x_i) = y_i$ for all $i = 1, \dots, n$. Show that the conclusion is not true if X has dimension 1.
6. Supply the details of the proof that the quotient P/\sim of a polygon $P \subset \mathbb{R}^2$ given by identifying pairs of edges is a topological surface.
By drawing pictures, explain how one may triangulate such a surface.
7. For triangulable surfaces S_1 and S_2 , show that (at least for well-chosen discs with which to form the connected-sum) $S_1 \# S_2$ is triangulable and $\chi(S_1 \# S_2) = \chi(S_1) + \chi(S_2) - 2$.
8. (a) A *polygonal decomposition* of a compact topological surface S consists of a finite collection of *faces* $\mathcal{F} = \{P_\alpha : \alpha \in I\}$, which are polygons, together with continuous functions $f_\alpha : P_\alpha \rightarrow S$ which are homeomorphisms on their image, such that if two subspaces $f_\alpha(P_\alpha)$ intersect they do so either along an entire edge, or in a single vertex. The *edges* \mathcal{E} are the subspaces $f_\alpha(e)$ where e is an edge of the polygon P_α , and the *vertices* \mathcal{V} are the subspaces $f_\alpha(v)$ where v is a vertex of the polygon P_α . Comment on why S may be triangulated, and writing F, E, V for the cardinalities of $\mathcal{F}, \mathcal{E}, \mathcal{V}$ show that

$$\chi(S) = V - E + F.$$

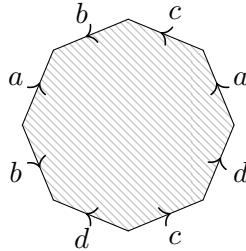
- (b) Consider a polygonal decomposition where all vertices have valence ≥ 3 and every face contains ≥ 3 vertices. Let F_n denote the number of faces bound by precisely n edges, and V_m the number of vertices where precisely m edges meet. Show that $\sum_n n F_n = 2E = \sum_m m V_m$. If $V_3 = 0$, deduce that $E \geq 2V$, whilst if $F_3 = 0$ deduce that $E \geq 2F$. If the surface is a sphere, deduce that $V_3 + F_3 > 0$.
- (c) For a polygonal decomposition of a sphere, further show that

$$\sum_n (6 - n)F_n = 12 + 2 \sum_m (m - 3)V_m.$$

If each face has at least 3 edges and at least 3 edges meet at each vertex, deduce that $3F_3 + 2F_4 + F_5 \geq 12$.

(d) The surface of a football is decomposed into hexagons and pentagons, with precisely 3 faces meeting at each vertex. How many pentagons are there?

9. Express the following surface as a connected-sum of tori and projective planes:



[You do not need to do so explicitly!]

10. If $S = P/\sim$ is a compact topological surface obtained by gluing the edges of a $2n$ -gon together in pairs, what are the maximum and minimum possible values of $\chi(S)$?

Optional Questions

11. Show that

$$\{(x, y, z) \in \mathbb{R}^3 : x^4 + y^4 + z^4 + 2(x^2y^2 + x^2z^2 + y^2z^2) + 8xyz - 10(x^2 + y^2 + z^2) + 20 = 0\}$$

is a compact topological surface. By plotting it on a computer, work out which surface it is in the classification.

12. (a) Let X be the set of unordered pairs of points on a circle S^1 . Explain why X is naturally a quotient space of the torus T^2 . By considering T^2 as a quotient space of a square, or otherwise, show that X is homeomorphic to $\mathbb{RP}^2 \setminus \mathring{D}$, the complement of an open disc $\mathring{D} \subset \mathbb{RP}^2$ in \mathbb{RP}^2 .
 (b) Let $\phi : D := \{|z| \leq 1\} \rightarrow \mathbb{R}^2$ be a continuous injection of a closed disc D , with boundary $C = \phi(S^1) \subset \mathbb{R}^2$. Define a map $f : C \times C \rightarrow \mathbb{R}^3$ via

$$(u, v) \mapsto \left(\frac{u+v}{2}, |u-v| \right) \in \mathbb{R}^2 \times \mathbb{R}.$$

Show that f defines a map on X , which extends to a continuous map $\hat{\phi} : \mathbb{RP}^2 \rightarrow \mathbb{R}^3$.

(c) Using without proof that a compact non-orientable topological surface cannot be continuously embedded in \mathbb{R}^3 , deduce that C bounds an *inscribed rectangle*, i.e. there are four pairwise-distinct points on the curve which form the vertices of a rectangle in \mathbb{R}^2 (the rectangle need not be wholly contained in $\phi(D)$, cf. figure below).

