IB Groups, Rings, and Modules // Example Sheet 4

1. Let M be a module over a ring R, and let N be a submodule of M.
(i) Show that if M is finitely generated then so is M / N.
(ii) Show that if N and M / N are finitely generated then so is M.
(iii) Show that if M / N is free, then $M \cong N \oplus M / N$.
2. We say that an R-module satisfies condition (N) if any submodule is finitely generated. Show that this condition is equivalent to condition (ACC): every increasing chain of submodules terminates.
Let R be a Noetherian ring. Show that the R-module R^{n} satisfies condition (N), and hence that any finitely generated R-module satisfies condition (N).
3. Let M be a module over an integral domain R. An element $m \in M$ is a torsion element if $r m=0$ for some non-zero $r \in R$.
(i) Show that the set T of all torsion elements in M is a submodule of M, and that the quotient M / T is torsion-free - that is, contains no non-zero torsion elements.
(ii) Is the \mathbb{Z}-module \mathbb{Q} torsion-free? Is it free? Is it finitely generated?
(iii) What are the torsion elements in the \mathbb{Z}-module \mathbb{Q} / \mathbb{Z} ? In \mathbb{R} / \mathbb{Z} ? In \mathbb{R} / \mathbb{Q} ?
4. Use elementary operations to put $A=\left(\begin{array}{ccc}-4 & -6 & 7 \\ 2 & 2 & 4 \\ 6 & 6 & 15\end{array}\right) \in M_{3,3}(\mathbb{Z})$ into Smith normal form D.

Check your result using minors. Explain how to find invertible matrices P, Q for which $D=Q A P$.
5. Work out the Smith normal form of the matrices

$$
\left(\begin{array}{cccc}
2 X-1 & X & X-1 & 1 \\
X & 0 & 1 & 0 \\
0 & 1 & X & X \\
1 & X^{2} & 0 & 2 X-2
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccccc}
X^{2}+2 X & 0 & 0 & 0 \\
0 & X^{2}+3 X+2 & 0 & 0 \\
0 & 0 & X^{3}+2 X^{2} & 0 \\
0 & 0 & 0 & X^{4}+X^{3}
\end{array}\right)
$$

over $\mathbb{R}[X]$.
6. Let G be the abelian group with generators a, b, c, and relations $6 a+10 b=0,6 a+15 c=0,10 b+$ $15 c=0$. (That is, G is the free abelian group on generators a, b, c quotiented by the subgroup generated by the elements $6 a+10 b, 6 a+15 c, 10 b+15 c)$. Determine the structure of G as a direct sum of cyclic groups.
7. Prove that a finitely-generated abelian group G is finite if and only if $G / p G=0$ for some prime p. Give a non-trivial abelian group G such that $G / p G=0$ for all primes p.
8. Let A be a complex matrix with characteristic polynomial $(X+1)^{6}(X-2)^{3}$ and minimal polynomial $(X+1)^{3}(X-2)^{2}$. Write down the possible Jordan normal forms for A.
9. Find a 2×2 matrix over $\mathbb{Z}[X]$ that is not equivalent to a diagonal matrix.
10. Let M be a finitely-generated module over a Noetherian ring R, and let f be an R-module homomorphism from M to itself. Does f injective imply f surjective? Does f surjective imply f injective? What happens if R is not Noetherian?

Additional Questions

11. A real $n \times n$ matrix A satisfies the equation $A^{2}+I=0$. Show that n is even and A is similar to a block matrix $\left(\begin{array}{cc}0 & -I \\ I & 0\end{array}\right)$ with each block an $m \times m$ matrix (where $n=2 m$).
12. Show that a complex number α is an algebraic integer if and only if the additive group of the ring $\mathbb{Z}[\alpha]$ is finitely generated (i.e. $\mathbb{Z}[\alpha]$ is a finitely generated \mathbb{Z}-module). Furthermore if α and β are algebraic integers show that the subring $\mathbb{Z}[\alpha, \beta]$ of \mathbb{C} generated by α and β also has a finitely generated additive group and deduce that $\alpha-\beta$ and $\alpha \beta$ are algebraic integers.
Show that the algebraic integers form a subring of \mathbb{C}.
13. What is the rational canonical form of a matrix?

Show that the group $G L_{2}\left(\mathbb{F}_{2}\right)$ of non-singular 2×2 matrices over the field \mathbb{F}_{2} of 2 elements has three conjugacy classes of elements.
Show that the group $G L_{3}\left(\mathbb{F}_{2}\right)$ of non-singular 3×3 matrices over the field \mathbb{F}_{2} has six conjugacy classes of elements, corresponding to minimal polynomials $X+1,(X+1)^{2},(X+1)^{3}, X^{3}+1, X^{3}+$ $X^{2}+1, X^{3}+X+1$, one each of elements of orders $1,2,3$ and 4 , and two of elements of order 7 .
14. Let $\mathbb{F}_{4}=\mathbb{F}_{2}[\omega] /\left(\omega^{2}+\omega+1\right)=\{0,1, \omega, \omega+1\}$, a field with four elements.

Show that the group $S L_{2}\left(\mathbb{F}_{4}\right)$ of 2×2 matrices of determinant 1 over \mathbb{F}_{4} has five conjugacy classes of elements, corresponding to minimal polynomials $x+1,(x+1)^{2},(x+\omega)\left(x+\omega^{2}\right), x^{2}+\omega x+1$ and $x^{2}+\omega^{2} x+1$.
Show that the corresponding elements have orders $1,2,3,5$ and 5 , respectively.

Comments or corrections to or257@cam.ac.uk

