Part IA Groups // Example Sheet 4

1. Show that if $H \leq A_{5}$ then $\left|A_{5} / H\right|>4$. [Hint: Consider an action on the set A_{5} / H.]
2. Let $G \subseteq S L_{3}(\mathbb{R})$ be the subset of all matrices of the form

$$
\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]
$$

Prove that G is a subgroup. Let $H \subset G$ be the subset of those matrices with $a=c=0$. Show that H is a normal subgroup of G, and determine the quotient group G / H.
3. Let $G \subseteq S L_{3}(\mathbb{R})$ be the subset of all matrices of the form

$$
\left[\begin{array}{lll}
a & 0 & 0 \\
b & c & d \\
e & f & g
\end{array}\right]
$$

Prove that G is a subgroup. Construct a surjective homomorphism $\phi: G \rightarrow G L_{2}(\mathbb{R})$, and find its kernel.
4. Show that matrices $A, B \in S L_{2}(\mathbb{C})$ are conjugate in $S L_{2}(\mathbb{C})$ if and only if they are conjugate in $G L_{2}(\mathbb{C})$. With a few exceptions-which you should find-show that matrices in $S L_{2}(\mathbb{C})$ are conjugate if and only if they have the same trace.
5. Let $S L_{2}(\mathbb{R})$ act on $\hat{\mathbb{C}}$ by Möbius transformations. Find the orbit and stabiliser of i and ∞. By considering the orbit of i under the action of the stabiliser of ∞, show that every $g \in S L_{2}(\mathbb{R})$ can be written as $g=h k$ with h upper triangular and $k \in S O(2)$. In how many ways can this be done?
6. Suppose that N is a normal subgroup of $O(2)$. Show that if N contains a reflection then $N=O(2)$.
7. Which pairs of elements of $S O(3)$ commute?
8. If $A \in M_{n \times n}(\mathbb{C})$ with entries $A_{i j}$, let $A^{\dagger} \in M_{n \times n}(\mathbb{C})$ have entries $\overline{A_{j i}}$. A matrix is called unitary if $A A^{\dagger}=I_{n}$. Show that the set $U(n)$ of unitary matrices is a subgroup of $G L_{n}(\mathbb{C})$. Show that

$$
S U(n)=\{A \in U(n) \text { s.t. } \operatorname{det} A=1\}
$$

is a normal subgroup of $U(n)$ and that $U(n) / S U(n) \cong S^{1}$. Show that Q_{8} is isomorphic to a subgroup of $S U(2)$.
9. Let K be a normal subgroup of order 2 in a group G. Show that K is a subgroup of the centre $Z(G)$ of G. Show that if n is odd then $O(n) \cong S O(n) \times C_{2}$. Why doesn't a similar argument work if n is even?
10. Let $X=\left\{B \in M_{2 \times 2}(\mathbb{R}) \mid \operatorname{Tr}(B)=0\right\}$. Show that $A * B=A B A^{-1}$ defines an action of $S L_{2}(\mathbb{R})$ on X. Find the orbit and stabiliser of

$$
B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Show that the set of matrices in X with determinant 0 is the union of three orbits.
11. * Prove that S_{n} has a subgroup isomorphic to Q_{8} if and only if $n \geq 8$. Does $G L_{2}(\mathbb{R})$ have a subgroup isomorphic to Q_{8} ?
12. * Let G be a finite non-trivial subgroup of $S O(3)$. Let

$$
X=\left\{v \in \mathbb{R}^{3} \text { s.t. }|v|=1 \text { and there exists a } g \in G \backslash\{e\} \text { with } g * v=v\right\}
$$

Show that G acts on X and that there are either 2 or 3 orbits. What is G if there are 2 orbits?

Comments or corrections to or257@cam.ac.uk

