Michaelmas Term 2019

Part IA Groups // Example Sheet 3

- 1. Show that every group of order 10 is cyclic or dihedral. *Can you extend your proof to groups of order 2p, where p is any odd prime number?
- 2. Let p be a prime, and G be a group of order p^2 . By considering the orbits of the action of G on itself by conjugation, show that G is abelian. Deduce that there are precisely two groups of order p^2 up to isomorphism.
- 3. Show that any subgroup of D_{2n} consisting of rotations is normal.
- 4. Show that a subgroup H of a group G is normal if and only if it is a union of conjugacy classes in G.
- 5. Suppose that G is a group in which every subgroup is normal. Must G be abelian?
- 6. Suppose that H is a subgroup of C_n . What is C_n/H ?
- 7. Show that \mathbb{Q}/\mathbb{Z} is an infinite group in which every element has finite order.
- 8. Let K be a subgroup of a group G. Show that K is a normal subgroup if and only if it is the kernel of some group homomorphism $\phi: G \to H$.
- 9. Consider the subgroup Γ of $(\mathbb{C}, +, 0)$ consisting of elements m + in with $m, n \in \mathbb{Z}$. By considering $x + iy \mapsto (e^{2\pi ix}, e^{2\pi iy})$, show that the group \mathbb{C}/Γ is isomorphic to $S^1 \times S^1$ (see Sheet 1 Q15).
- 10. Suppose $a, b \in \mathbb{Z}$ and consider $\phi : \mathbb{Z}^2 \to \mathbb{Z}$ given by $\phi(x, y) = ax + by$. Show that ϕ is a group homomorphism and describe $\operatorname{Im}(\phi)$ and $\operatorname{Ker}(\phi)$. What characterises the cosets of $\operatorname{Ker}(\phi)$ in \mathbb{Z}^2 ?
- 11. Let G be a finite group and H a proper subgroup. Let k = |G/H| and suppose that |G| does not divide k!. By considering the action of G on G/H, show that H contains a non-trivial normal subgroup of G. Deduce that a group of order 28 has a normal subgroup of order 7.
- 12. Show that if a group G of order 28 has a normal subgroup of order 4 then G is abelian.
- 13. Write the following permutations as compositions of disjoint cycles and hence compute their order:
 - (a) (12)(1234)(12),
 - (b) (123)(1234)(132),
 - (c) (123)(235)(345)(45).

14. Show that S_n is generated by each of the following sets of permutations:

- (a) $\{(j, j+1) \mid 1 \le j < n\},\$
- (b) $\{(1,k) \mid 1 < k \le n\},\$
- (c) $\{(12), (123 \cdots n)\}.$
- 15. What is the largest possible order of an element of S_5 ? Of S_9 ?
- 16. Let $X = \mathbb{Z}/31\mathbb{Z}$, and $\sigma : X \to X$ be given by $\sigma(x+31\mathbb{Z}) = 2x+31\mathbb{Z}$. Show that σ is a permutation, and decompose it as a composition of disjoint cycles.
- 17. Prove that

$$\sigma * p(x_1, x_2, x_3, x_4) = p(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)})$$

defines an action of the group S_4 on the set of polynomials in variables x_1, x_2, x_3, x_4 . Show that the stabiliser H of the polynomial $x_1x_2 + x_3x_4$ has order 8, and decide which of C_8 , $C_4 \times C_2$, $C_2 \times C_2 \times C_2$, D_8 , or Q_8 it is isomorphic to.

Comments or corrections to or257@cam.ac.uk