Part IA Groups // Example Sheet 3

1. Show that every group of order 10 is cyclic or dihedral. *Can you extend your proof to groups of order $2 p$, where p is any odd prime number?
2. Let p be a prime, and G be a group of order p^{2}. By considering the orbits of the action of G on itself by conjugation, show that G is abelian. Deduce that there are precisely two groups of order p^{2} up to isomorphism.
3. Show that any subgroup of $D_{2 n}$ consisting of rotations is normal.
4. Show that a subgroup H of a group G is normal if and only if it is a union of conjugacy classes in G.
5. Suppose that G is a group in which every subgroup is normal. Must G be abelian?
6. Suppose that H is a subgroup of C_{n}. What is C_{n} / H ?
7. Show that \mathbb{Q} / \mathbb{Z} is an infinite group in which every element has finite order.
8. Let K be a subgroup of a group G. Show that K is a normal subgroup if and only if it is the kernel of some group homomorphism $\phi: G \rightarrow H$.
9. Consider the subgroup Γ of $(\mathbb{C},+, 0)$ consisting of elements $m+i n$ with $m, n \in \mathbb{Z}$. By considering $x+i y \mapsto\left(e^{2 \pi i x}, e^{2 \pi i y}\right)$, show that the group \mathbb{C} / Γ is isomorphic to $S^{1} \times S^{1}$ (see Sheet 1 Q15).
10. Suppose $a, b \in \mathbb{Z}$ and consider $\phi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ given by $\phi(x, y)=a x+b y$. Show that ϕ is a group homomorphism and describe $\operatorname{Im}(\phi)$ and $\operatorname{Ker}(\phi)$. What characterises the cosets of $\operatorname{Ker}(\phi)$ in \mathbb{Z}^{2} ?
11. Let G be a finite group and H a proper subgroup. Let $k=|G / H|$ and suppose that $|G|$ does not divide $k!$. By considering the action of G on G / H, show that H contains a non-trivial normal subgroup of G. Deduce that a group of order 28 has a normal subgroup of order 7 .
12. Show that if a group G of order 28 has a normal subgroup of order 4 then G is abelian.
13. Write the following permutations as compositions of disjoint cycles and hence compute their order:
(a) $(12)(1234)(12)$,
(b) $(123)(1234)(132)$,
(c) $(123)(235)(345)(45)$.
14. Show that S_{n} is generated by each of the following sets of permutations:
(a) $\{(j, j+1) \mid 1 \leq j<n\}$,
(b) $\{(1, k) \mid 1<k \leq n\}$,
(c) $\{(12),(123 \cdots n)\}$.
15. What is the largest possible order of an element of S_{5} ? Of S_{9} ?
16. Let $X=\mathbb{Z} / 31 \mathbb{Z}$, and $\sigma: X \rightarrow X$ be given by $\sigma(x+31 \mathbb{Z})=2 x+31 \mathbb{Z}$. Show that σ is a permutation, and decompose it as a composition of disjoint cycles.
17. Prove that

$$
\sigma * p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)}\right)
$$

defines an action of the group S_{4} on the set of polynomials in variables $x_{1}, x_{2}, x_{3}, x_{4}$. Show that the stabiliser H of the polynomial $x_{1} x_{2}+x_{3} x_{4}$ has order 8 , and decide which of $C_{8}, C_{4} \times C_{2}$, $C_{2} \times C_{2} \times C_{2}, D_{8}$, or Q_{8} it is isomorphic to.

Comments or corrections to or257@cam.ac.uk

