Part IA Groups // Example Sheet 2

1. Let G be the group of all symmetries of a cube. Show that G acts on the set of 4 lines joining diagonally opposite pairs of vertices. Show that if ℓ is one of these lines then $G_{\ell} \cong D_{6} \times C_{2}$.
2. Let H be a subgroup of a group G. Show that there is a bijection between the set of left cosets of H in G and the set of right cosets of H in G.
3. If G is a finite group, H is a subgroup of G, and K is a subgroup of H, show that $|G / K|=$ $|G / H| \cdot|H / K|$.
4. Show that if a group G contains an element of order 6 , and an element of order 10 , then G has order at least 30 .
5. Show that $D_{2 n}$ has one conjugacy class of reflections if n is odd and two conjugacy classes of reflections if n is even.
6. Let G be a finite group and let $\operatorname{Sub}(G)$ be the set of all its subgroups. Show that $g * H:=g H g^{-1}$ defines an action of G on $\operatorname{Sub}(G)$. Show that for $H \in \operatorname{Sub}(G)$ the size of the orbit of H under this action is at most $|G / H|$. Deduce that if $H \neq G$ then G is not the union of all conjugates of H.
7. Suppose that G acts on X and that $y=g \cdot x$ for some $x, y \in X$ and $g \in G$. Show that $G_{y}=g G_{x} g^{-1}$.
8. Let G be a finite abelian group acting faithfully on a set X. Show that if the action is transitive then $|G|=|X|$.
9. Consider the Möbius transformations $f(z)=e^{2 \pi i / n} z$ and $g(z)=1 / z$. Show that the subgroup G of the Möbius group \mathcal{M} generated by f and g is isomorphic to $D_{2 n}$.
10. Express the Möbius transformation $f(z)=\frac{2 z+3}{z-4}$ as the composition of tranformations of the form $z \mapsto a z, z \mapsto z+b$ and $z \mapsto 1 / z$. Hence show that f sends the circle described by $|z-2 i|=2$ onto the circle described by $|8 z+(6+11 i)|=11$.
11. Let G be the subgroup of Möbius transformations that send the set $\{0,1, \infty\}$ to itself. What are the elements of G ? Which standard group is isomorphic to G ? What is the group of Möbius transformations that send the set $\{0,2, \infty\}$ to itself.
12. Prove or disprove each of the following statements:
(i) The Möbius group is generated by Möbius transformations of the form $z \mapsto a z$ and $z \mapsto z+b$.
(ii) The Möbius group is generated by Möbius transformations of the form $z \mapsto a z$ and $z \mapsto 1 / z$.
(iii) The Möbius group is generated by Möbius transformations of the form $z \mapsto z+b$ and $z \mapsto 1 / z$.
13. Show that any invertible function $f: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ that preserves the cross-ratio, i.e. such that

$$
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\left[f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f\left(z_{4}\right)\right] \text { for all distinct } z_{1}, z_{2}, z_{3}, z_{4} \in \hat{\mathbb{C}}
$$

is a Möbius transformation.
14. Determine under what conditions on $\lambda, \mu \in \mathbb{C}$ the Möbius transformations $f(z)=\lambda z$ and $g(z)=\mu z$ are conjugate in \mathcal{M}.
15. What is the order of the Möbius transformation $f(z)=i z$? What are its fixed points? If h is another Möbius transformation what can you say about the order and the fixed points of $h f h^{-1}$? Construct a Möbius transformation of order 4 that fixes 1 and -1 .

Comments or corrections to or257@cam.ac.uk

