Michaelmas Term 2018 O. Randal-Williams

Part IA Groups // Example Sheet 2

- 1. Determine under what conditions on $\lambda, \mu \in \mathbb{C}$ the Möbius transformations $f(z) = \lambda z$ and $f(z) = \mu z$ are conjugate in \mathcal{M} .
- 2. What is the order of the Möbius transformation f(z) = iz? What are its fixed points? If h is another Möbius transformation what can you say about the order and the fixed points of hfh^{-1} ? Construct a Möbius transformation of order 4 that fixes 1 and -1.
- 3. Show that $t * (x, y) := (e^t x, e^{-t} y)$ defines an action of the group $(\mathbb{R}, +, 0)$ on the set \mathbb{R}^2 . What are the orbits and stabilisers of this action? There is a differential equation that is satisfied by each of the orbits. What is it?
- 4. Suppose that Q is a quadrilateral in \mathbb{R}^2 . Show that its group of symmetries G(Q) has order at most 8. For which n is there a G(Q) of order n? *Which groups can arise as a G(Q) (up to isomorphism)?
- 5. Let G be the group of all symmetries of a cube. Show that G acts on the set of 4 lines joining diagonally opposite pairs of vertices. Show that if ℓ is one of these lines then $G_{\ell} \cong D_6 \times C_2$.
- 6. Let $S^1 := \{t \in \mathbb{C} \ s.t. \ |t| = 1\}$, which is a group under multiplication, and let

$$S^3 = \{(w_1, w_2) \in \mathbb{C}^2 \text{ s.t. } |w_1|^2 + |w_2|^2 = 1\}.$$

Show that $(t_1, t_2) * (w_1, w_2) := (t_1w_1, t_2w_2)$ defines an action of the group $S^1 \times S^1$ on the set S^3 . Describe the orbits of this action and find all stabilisers.

- 7. Let H be a subgroup of a group G. Show that there is a (natural) bijection between the set of left cosets of H in G and the set of right cosets of H in G.
- 8. If G is a finite group, H is a subgroup of G, and K is a subgroup of H, show that $|G/K| = |G/H| \cdot |H/K|$.
- 9. Show that if a group G contains an element of order 6, and an element of order 10, then G has order at least 30.
- 10. Show that D_{2n} has one conjugacy class of reflections if n is odd and two conjugacy classes of reflections if n is even.
- 11. Let G be a finite group and let Sub(G) be the set of all its subgroups. Show that $g*H := gHg^{-1}$ defines an action of G on Sub(G). Show that for $H \in Sub(G)$ the size of the orbit of H under this action is at most |G/H|. Deduce that if $H \neq G$ then G is not the union of all conjugates of H.
- 12. Suppose that G acts on X and that $y = g \cdot x$ for some $x, y \in X$ and $g \in G$. Show that $G_y = gG_xg^{-1}$.
- 13. Let G be a finite abelian group acting faithfully on a set X. Show that if the action is transitive then |G| = |X|.
- 14. Show that every group of order 10 is cyclic or dihedral. *Can you extend your proof to groups of order 2p, where p is any odd prime number?
- 15. Let p be a prime. By considering the conjugation action show that every group of order p^2 is abelian. Deduce that there are precisely two groups of order p^2 up to isomorphism.
- 16. Show that the set $\{1,3,5,7\}$ forms a group under multiplication modulo 8. Is it isomorphic to $C_2 \times C_2$ or C_4 .

Comments or corrections to or257@cam.ac.uk