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Abstract

We determine the density of curves having squarefree discriminant in some families of curves
that arise from Vinberg representations, showing that the global density is the product of the local
densities. We do so using the framework of Thorne and Laga’s PhD theses and Bhargava’s orbit-
counting techniques. This paper generalises a previous result by Bhargava, Shankar and Wang.
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1 Introduction

The aim of this paper is to determine the density of curves in certain families that have squarefree
discriminant. We do so following the techniques in arithmetic statistics developed by Bhargava and his
collaborators. The main idea is that many arithmetic objects of interest can be parametrised by the
rational or integral orbits of a certain representation (G,V): in this situation, Bhargava’s geometry-of-
numbers methods allow to count these integral orbits of V', which consequently provides information on
the desired arithmetic objects that would be otherwise difficult to obtain. This idea has led to many
impressive results in number theory; see [Bhal4a] or [Hol3| for an overview.

The present paper is inspired by the recent paper by Bhargava, Shankar and Wang, in which
they compute the density of monic integral polynomials of a given degree that have squarefree discrim-
inant. The main technical difficulty is to bound the tail estimate of polynomials having discriminant
“weakly divisible” by the square a large prime (this notion will be defined later). They do so using the
representation of G = SO,, on the space V of n X n symmetric matrices. By relating polynomials with
discriminant divisible by p? for a large p to certain integral orbits of the representation (G, V), they get
the desired result using the aforementioned geometry-of-numbers techniques. Similar methods were used
in [BSW22b| in the non-monic case with a different representation, and also in for certain families
of elliptic curves (in particular, their F» case essentially corresponds to our Dy case).

A key observation, which motivates our results, is that the representation studied in [BSW22a] arises as a
particular case of the more general families of representations studied in |Thol3]. Using the framework of



Vinberg theory, Thorne found that given a simply laced Dynkin diagram, we can naturally associate to it
a family of curves and a coregular representation (G, V), where the rational orbits of the representation
are related to the arithmetic of the curves in the family. These results have been used, implicitly and
explicitly, to study the size of 2-Selmer groups of the Jacobians of these curves, see [BG13; |SW18} |Shal8;
Thol5; RT18; [Lag22| for some particular cases. Later, Laga unified, reproved and extended all these
results in |[Lag24] in a uniform way.

Our aim is to compute the density of curves having squarefree discriminant in these families of ADFE
curves. We will do so by reinterpreting the methods in [BSW22a] in the language of [Thol3| and [Lag24].
As a corollary, we will obtain the asymptotics for the number of integral reducible orbits of these repre-
sentations, following [Sha+22].

Let D be a Dynkin diagram of type A, D, E. In Section we will construct a representation (G, V)
associated to D, and in Section [2.3] we will construct a family of curves C' — B. Here, B is isomorphic to
the Geometric Invariant Theory (GIT) quotient V // G := Spec Q[V]“. We see that B can be identified
with an affine space, and we write B = Spec Q[p4,, - - -, pd,]. Given b € B, we define its height to be

he(0) = sup (Ipa, (0)[/ .. pa, (0) /).

Denote by Cj, the preimage of a given b € B under the map C' — B; it will be a curve of the form given
by Table [2l The main result of this paper concerns the density of squarefree values of the discriminant
A(Cy) of the curve (or equivalently, the discriminant A(b) defined in Section 2.1). A definition for the
discriminant of a plane curve can be found in [Sut19} §2], for instance. We remark that in our definition of
discriminant, we assume that it is an integer-valued polynomial in multiple variables, normalised so that
the coefficients have greatest common divisor 1 (for instance, the usual discriminant for elliptic curves
contains a factor of 16: we omit it in our case).

Our result is related to the p-adic density of these squarefree values: we will denote by p(D,) the p-adic
density of curves in the family C — B having discriminant indivisible by p? in Z,; this is obtained by
taking all the (finitely many) elements in b € B(Z/p*Z) and counting the proportion of them that have
non-zero discriminant in Z/p*Z. We note that under our assumptions on the discriminant, none of the
local densities vanish; this can be checked with a case-by-case computation.

Theorem 1.1. We have

. #{be B(Z) | A(b) is squarefree, ht(b) < X}
i #{be B(Z) [ ht(b) < X} - 1;[”@”)'

To prove this theorem, we need to obtain a tail estimate to show that not too many b € B(Z) have
discriminant divisible by m? for large squarefree integers m. A key observation in [BSW22a] is to
separate those b € B(Z) with p?|A(b) for a prime p in two separate cases:

1. If p?|A(b + pe) for all ¢ € B(Z), we say p* strongly divides A(b) (in other words, p? divides A(b)
for “mod p reasons”).

2. If there exists ¢ € B(Z) such that p? { A(b+ pc), we say p* weakly divides A(b) (in other words, p?
divides A(b) for “mod p? reasons”).

Similarly, for a squarefree number m, we say that m? strongly (resp. weakly) divides A(b) if p? strongly
(resp. weakly) divides A(b) for all primes p dividing m. We let W W2 denote the set of b € B(Z)
whose discriminant is strongly (resp. weakly) divisible by m?2. We prove tail estimates for these two sets
separately. The argument in the weakly divisible case will require our squarefree integers m to avoid a
finite number of primes: in Section [2.4] we will consider an integer N which contains all “bad primes”.



Theorem 1.2. There exists a constant § > 0 such that for any positive real number M we have:

Xdim V+e )
Z {be Wfrp | ht(b) < X} = O, (M) +0. (Xdlmv—l—‘,-s) 7
m>M
m squarefree
Xdim V+e )
S {(beW? |hh) < X} =O. <M> 40 (xdmv-s).
m>M
m squarefree
(m,N)=1

The implied constants are independent of X and M.

As in [BSW22aj, Theorem 1.5(a)], the strongly divisible case follows from the use of the Ekedahl sieve;
more precisely, it follows from the results in [Bhaldb, Theorem 3.5, Lemma 3.6] and the fact that
the discriminant polynomial is irreducible by [Lag24, Lemma 4.2]. Therefore, it remains to prove the
(substantially harder) weakly divisible case, which is the content of most of this paper.

We start in Section [2] by giving the necessary background and introducing our objects of interest, most
importantly the representation (G, V') coming from Vinberg theory and the associated family of curves
C — B. The main step in the proof of Theorem is done in Section |3 where given a b € Wy(,f) we
obtain a special integral G(Z)-orbit in V' whose elements have invariants b. We additionally consider a
distinguished subspace Wy(Z) C V(Z), and we define a Q-invariant for the elements of Wy(Z). Then,
we will see that the elements in the constructed orbit have large Q-invariant when they intersect Wy(Z)
(which happens always except for a negligible amount of times by cutting-off-the-cusp arguments). This
construction is the analogue of [BSW22a, §2.2, §3.2]; we give a more detailed comparison at the end of
Section [3l

In view of all that, to prove Theorem it suffices to bound the number of these distinguished G(Z)-
orbits in Wy(Z) having large Q-invariant. However, before doing that, we will need to take a small
detour and estimate the number of all reducible G(Z)-orbits in V(Z). A G(C)-orbit in V(C) can split
into multiple G(Q)-orbits, and among these G(Q)-orbits there is a “distinguished” one (namely, the one
given by the Kostant section, as defined in Section . We say that an element in V(Q) is reducible if
it falls into this special G(Q)-orbit. Using Bhargava’s geometry-of-numbers arguments, and in particular
the techinques in the cusp developed in [Sha+22|, we will obtain the following result:

Theorem 1.3. The number N(V(Z) ", X) of reducible G(Z)-orbits on V(Z) of height at most X is
N(V(Z)%e‘aX) — CXdimV + O(XdimV—é)’

where C,§ are real positive constants. The constant C will be explicitly determined in Section [5.5

The proof of this theorem relies on the construction of a boz-shaped fundamental domain for the action of
G(Z) on G(R), which will be carried out in Section[4.3] Following that, we will mostly follow the steps in
[Sha+22| §4], relying on critical reductions given by [Lag24, §8]; and we will conclude our proof by using
elementary but lengthy case-by-case computations. We remark that our proof implicitly also relies on
other implicit case-by-case computations: namely, the cutting-off-the-cusp result in Proposition [5.3] relies
on an (even more tedious) exhaustive analysis of all cases, sometimes relying on lengthy computations
on a computer (cf. [RT18, Proposition 4.5]).

In Section [6] we will conclude the proof of Theorem from which Theorem will follow using a
squarefree sieve. The sieve is carried out in a general enough setting that allows us to count the density
of subsets in B(Z) defined by infinitely many congruence conditions. In particular, we get an application
of our result to the context of |[Lag24|, which allows us to get an upper bound on the average size of
2-Selmer groups of families defined by infinitely many congruence condtions. For b € B(Z), denote by J,
the Jacobian of the curve Cy.



Theorem 1.4. Let m be the number of marked points of the family C — B, as given in Table[4 Let S
be a k-acceptable subset of B(Z) in the sense of Section . Then, we have

. Zbes, ht(b)< X #Sely Jy
lim sup

m—1
WP s ) <x) o7
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2 Preliminaries

In this section, we introduce our representation (G, V') of interest, together with some of its basic prop-
erties. We do so mostly following [Thol3| §2] and [Lag24, §3].

2.1 Vinberg representations

Let H be a split adjoint simple group of type A, D, E over Q. We assume H is equipped with a pinning
(T, P,{X4}), meaning:

e T C H is a split maximal torus (determining a root system ®g).

o P C H is a Borel subgroup containing T' (determining a root basis Sy C ®g).

e X, is a generator for b, for each o € Sg.

Let W = Ng(T)/T be the Weyl group of @, and let D be the Dynkin diagram of H. Then, we have
the following exact sequences:

0 —— H—— Aut(H) —— Aut(D) —— 0 (1)

0 — W — Aut(®y) —— Aut(D) —— 0 (2)

The subgroup (7, P,{X,}) C Aut(H) of automorphisms of H preserving the pinning determines a split-
ting of (). Then, we can define ¥ € Aut(H) as the unique element in (7', P, {X,}) such that its image
in Aut(D) under coincides with the image of —1 € Aut(®p) under (2). Writing p for the sum of
fundamental coweights with respect to Sg, we define

0 :=90Ad(p(—1)) = Ad(p(—1)) o 9.

The map 6 defines an involution of H, and so df defines an involution of the Lie algebra §. By considering
+1 eigenspaces, we obtain a Z/2Z-grading

b =15(0) (1),

where [h(i), h(5)] C b(i+7). We define G = (H?)° and V = h(1), which means that V is a representation
of G by restriction of the adjoint representation. Moreover, we have Lie(G) = §(0).

We have the following basic result [Pan05, Theorem 1.1] on the GIT quotient B :=V /) G = Spec Q[V]¢.



Theorem 2.1. Let ¢ C V be a Cartan subspace. Then, ¢ is a Cartan subalgebra of by, and the map
Ng(c) = W, := Ng(c¢)/Zg(c) is surjective. Therefore, the canonical inclusions ¢ C V C b induce
isomorphisms

¢/ W=V /)G=h/H.

In particular, all these quotients are isomorphic to a finite-dimensional affine space.

For any field k of characteristic zero, we can define the discriminant polynomial A € k[h]* as the image of
[1.cq, @ under the isomorphism [}V = k[h]*. The discriminant can also be regarded as a polynomial
in k[B] through the isomorphism k[h]* = k[V]¥ = k[B]. We can relate the discriminant to one-parameter
subgroups, which we now introduce. If £/Q is a field and \: G,,, — G}, is a homomorphism, there exists
a decomposition V =Y., V;, where V; := {v € V(k) | \(t)v = t'v Vt € G, (k)}. Every vector v € V (k)
can be written as v = Y v;, where v; € V;; we call the integers ¢ with v; # 0 the weights of v. Finally, we
recall that an element v € b is regular if its centraliser has minimal dimension.

Proposition 2.2. Let k/Q be a field, and let v € V (k). The following are equivalent:
1. v is reqular semisimple.
2. A(v) #0.

3. For every non-trivial homomorphism \: G,, = Ggs, v has a positive weight with respect to .
Proof. The reasoning is the same as in [RT18, Corollary 2.4]. O

We remark that the Vinberg representation (G, V) can be identified explictly. For the reader’s conve-
nience, we reproduce the explicit description written in [Lag24, §3.2] in Table|l] We refer the reader to
loc. cit. for the precise meaning of some of these symbols.

Type G 1%

A2n SO271,+1 Sym2 (2?’2, + 1)0
Agn_;,_l PSOzn+2 Sym2 (2n + 2)0
Dy, (n>2) SOy, x SOgy, /A(u2) 2n X 2n
Doyt (TL > 2) SOQn+1 X SOQn+1 (2TL + 1) X (2n + 1)
FEs PSpsg /\38

Er SLg //.L4 A8

Eg Spinje/ e half spin

Table 1: Explicit description of each representation

2.2 Restricted roots

In the previous section, we considered the root system ® := &y of H, but we will also need to understand
the restricted root system ®(G,T?) and the set of weights @y of the action of 7% on V. This will be
particularly important when defining the distinguished subspace Wy C V and the Q-invariant in Section
The exposition in this section is based on [Thol5| §2.3].

Write @ /4 for the orbits of ¢ on ®, where ¥ is the pinned automorphism defined in the previous section.

Lemma 2.3. 1. The map X*(T) — X*(T?) is surjective, and the group G is adjoint. In particular,
X*(T?) is spanned by ®(G,T?).



2. Let a, 3 € ®. Then, the image of a in X*(T?) is non-zero, and «, 3 have the same image if and
only if either a« = 8 or a = 9(5).

Proof. This is [Thol5| Lemma 2.5]. O
Hence, we can identify ®/9 with its image in X*(7?). We note that 9 = 1 if and only if —1 is an element

of the Weyl group W (H,T); in this case ®/1 coincides with .

We can write the following decomposition:

h:t@ @ haa

acd /Y

with t =t @ Vj and b, = g, ® V,, so that

0=t P . V=Voe P V.

aed/d ac®/9
Given a € ®/9, we can identify g, and V, explicitly according to the value of s = (—1){®#).
1. a={a} and s = 1. Then, V, =0 and g, is spanned by X,.
2. a ={a} and s = —1. Then, V, is spanned by X, and g, = 0.

3. a = {a,9(a)}, with a # ¥(a). Then, V, is spanned by X, — sXy,) and g, is spanned by
Xo + 8X19(a).

We note that ¢ preserves the height of a root a with respect to the basis Sy (recall that the height of
a root « is defined as ), ¢;, where a = 3 5. ci; is the decomposition as the sum of simple roots).
Therefore, it will make sense to define the height of a root a € ® /4 as the height of any element in ¥~ (a).

Remark 2.4. It will be important for us to define the height of a root in ® /¥ relative to its corresponding
height in b and not relative to its height with respect to some choice of basis of the root system ®(G,T?).
As an example, consider the Fg case following the conventions of [Thol5|. Say that a root basis for ® g
is {a1,...,06} and a basis for ®(G,T?) is (a1, as,a3,a4) = (a3 + ag, a1, a3, as + ay). If a root a € Oy
can be expressed as a = Y n;a; = Y m;«; for some integers n;, m; € Z, under our definitions the height
of a root is ht(a) = > m; and not > n,. This is different than the natural notion of height we might
arrive at if we consider the weights of V' as a representation of G abstractly.

2.3 Transverse slices over V' /G
In this section, we present some remarkable properties of the map n: V' — B, where we recall that
B:=V /G is the GIT quotient.
Definition 2.5. An sly-triple of b is a triple (e, h, f) of non-zero elements of § satisfying
[h,e]:2e, [haf]:72f7 [ea.ﬂ:h
Moreover, we say this sly-triple is normal if e, f € h(1) and h € §(0).
Theorem 2.6 (Graded Jacobson-Morozov). Every non-zero nilpotent element e € §(1) is contained in

a normal sly-triple. If e is also regular, then it is contained in a unique normal sla-triple.

Proof. The first part of the statement is [Thol3, Lemma 2.17], and the second part follows from [Thol3,
Lemma 2.14]. O



Type Curve # Marked points

A, T = P o™ T4 F pana 1
A2n+1 y2 — JC2n+2 _|_p2x2n 4. +p2n+1 2
Dop (n>2) | ylay +pan) = 2> +paz® 2 + -+ pan_o 3
Dopt1 (n>2) | y(@y + pont1) = 22" + pox®™ 1+ -+ pyyy 2
Eg y> = a' + (p2a® + psx + ps)y + (Pea? + po + p12) 1
Er y® = 23y + prox® + x(p2y® + psy + p1a) + Pey> + P12y + P18 2
Es y® =25 + (p2x® + psa? + praz + p20)y + (P122> + P15 + P2u + p3o) 1

Table 2: Families of curves

Definition 2.7. Let r be the rank of . We say an element z € § is subregular if dim 3, (z) = r + 2.

Subregular nilpotent elements in V exist by [Thol3|, Proposition 2.27]. Let e € V be such an element,
and fix a normal sly-triple (e, h, f) using Theorem Let C = e+ 3v(f), and consider the natural
morphism ¢: C — B.

Theorem 2.8. 1. The geometric fibres of ¢ are reduced connected curves. For b € B(k), the corre-
sponding curve Cy is smooth if and only if A(b) # 0.

2. The central fibre =1(0) has a unique singular point which is a simple singularity of type A, Dy, By,
coinciding with the type of H.

3. We can choose coordinates pq,,...,pq, tn B, with pg, being homogeneous of degree d;, and coordi-
nates (Z,Y,Pdy, - - -, Pd,) on C such that C — B is given by Table @
Proof. See [Thol3, Theorem 3.8]. O

Our choice of pinning in Section determines a natural choice of a regular nilpotent element, namely
E =3 esy, Xa € V(Q). Let (E,H, F) be its associated normal sl-triple by Theorem We define
the affine linear subspace kg := (E + 35 (F')) NV as the Kostant section associated to E. Whenever E is
understood, we will just denote the Kostant section by k.

Theorem 2.9. The composition kK — V — B is an isomorphism, and every element of k is regular.

Proof. See [Thol3| Lemma 3.5]. O
Definition 2.10. Let k£/Q be a field and let v € V (k). We say v is k-reducible if A(v) = 0 or if v is

G(k)-conjugate to some Kostant section, and k-irreducible otherwise.

We will typically refer to Q-(ir)reducible elements simply as (ir)reducible. We note that if k is algebraically
closed, then all elements of V' are reducible, see |[Lag24| Proposition 2.11].

2.4 Integral structures

So far, we have considered our objects of interest over QQ, but for our purposes it will be crucial to define
integral structures for G and V.

The structure of G over Z comes from the general classification of split reductive groups over any non-
empty scheme S: namely, every root datum is isomorphic to the root datum of a split reductive S-group
(see [Conl4, Theorem 6.1.16]). By considering the root datum ®(G,T?) studied in Section and the



scheme S = SpecZ, we get a split reductive group G defined over Z, such that its base change to Q
coincides with G. By [Ric82, Lemma 5.1], we know that 77, P are a maximal split torus and a Borel
subgroup of G, respectively. We also get integral structures for T° ? and P? inside of G.

Proposition 2.11. G and P’ have class number 1: G(A®) = G(Q)G(Z) and P°(A>) = P*(Q)P°(Z).

Proof. Note that cl(G) < cl(P’) < cI(T?) by [PR94, Theorem 8.11, Corollary 1]. We see that T has
class number 1 using [PR94, Theorem 8.11, Corollary 2], since G contains a Q-split torus consisting of
diagonal matrices in GL(V) and Q has class number 1. O

To obtain the Z-structure for V', we consider § as a semisimple G-module over Q via the restriction of
the adjoint representation. This G-module splits into a sum of simple G-modules:

h= (@2 Vi) © (Bi=18:)

where ®V; = V and ®g; = g, since both subspaces are G-invariant. For each of these irreducible
representations, we can choose highest weight vectors v; € V; and w; € g;, and we then consider

V., := Dist(G)v;, g, = Dist(G)w;,

where Dist(G) the algebra of distributions of G (see [Jan07), 1.7.7]). By the results in |[Jan07, I1.8.3], we
have that V; =Q®z V;, g: = Q ®z g, and that V := @V, is a G-stable lattice inside V. By scaling the
highest weight vectors if necessary, we will assume that F € V(Z).

We can also consider an integral structure B on B. We can take the polynomials pg,, ..., p4, € Q[V]¢
determined in Section and rescale them using the G,,-action ¢ - pg, = tdipdi to make them lie in
Z[V]E. We let B := SpecZ[pq, , . ..,pa,] and write 7: V. — B for the corresponding morphism. We may
additionally assume that the discriminant A defined in Section lies in Z[V]<, where the coefficients
of A in Z[pg,, .. .,p4,] may be assumed to not have a common divisor.

A crucial step in our argument will be to make our constructions in Z, for all p and then glue it all
together using the class number one property in Proposition [2.11] For this, we will need the following
lemma, which records the existence of orbits in V(Z,) (cf. [Thol5, Lemma 2.8]):

Lemma 2.12. There exists an integer No > 1 such that for all primes p and for all b € B(Z,) we have
Ny - kp € K(Zp)

Our arguments in Section [3] will implicitly rely on integral geometric properties of the representation
(G,V). In there, we will need to avoid finitely many primes, or more precisely to work over S =
SpecZ[1/N] for a suitable N > 1. By combining the previous lemma and the spreading out properties
in |[Lag24, §7.2], we get:

Proposition 2.13. There exists a positive integer N > 1 such that:

1. For every b € B(Z), the corresponding Kostant section kp is G(Q)-conjugate to an element in
1
V(7).
Ni

2. N is admissible in the sense of [Lag24, §7.2].
In particular, we will always assume that N is even. We fix the integer N in Proposition throughout

the rest of the paper. We will also drop the underline notation for the objects defined over Z, and just
refer to G,V ... as G,V ... by abuse of notation.

To end this section, we consider some further integral properties of the Kostant section. In Section [2.3]
we considered x defined over Q, and now we will consider some of its properties over Z,. Consider the

decomposition
h= @ h;

JEZL



according to the height of the roots. If P~ is the negative Borel subgroup of H, N~ is its unipotent
radical and p~ and n~ are their respective Lie algebras, we have p~ = @, h;, = = @, b; and
[E,b;] Cbjgr.

Theorem 2.14. Let R be a ring in which N is invertible. Then:

1. [E,nyg] has a complement in py, of rank rkrpy — rkrng; call it =.
2. The action map N~ X (E+Z) — E +p~ is an isomorphism over R.
3. Both maps in the composition E+Z — (E+p~) ) N~ — b J H are isomorphisms over R.

Proof. See [AFV18| §2.3]. O

Remark 2.15. If R is a field of characteristic not dividing N, then E can be taken to be 34(F') and
FE + Z is the same as the Kostant section considered in Section [2.3] We will abuse notation by referring
to both the Kostant section defined in Section [2.3] and the section in Theorem by k.

Theorem will be an important improvement from Theorem [2.9] since in the sequel we will need
the Kostant section to maintain certain integrality properties. In particular, it will be helpful to apply
Theorem 2.14] over Z,, a feature that would not be present if we only had Theorem [2.9]

3 Constructing orbits

Given an element b € B(Z) with discriminant weakly divisible by m? for a large squarefree number m
coprime to N, we will show how to construct a special g € G(Z[1/m]) \ G(Z) such that gr, € +V(Z) in
a way that “remembers m”.

We start by defining the distinguished subspace Wy C V' as

Wo:= B Va,

aced /Y
ht(a)<1

where the notation is as in Section We write an element v € Wy(Q) as v = th(a):l Vo Xa +
th(ﬁ)<0 v3 X3, where each X,, X3 generates each root space V,, Vs and v,,v3 € Q. Then, we can

define the Q-invariant of v € Wy as Q(v) = ’Hht(a):l Vo |. Now, define:

W = {v € %V(Z) v = gkyp for a squarefree m > M, (m,N) =1, g € G(Z[1/m]) \ G(Z), b € B(Z), A(b) # 0} .

The main result of the section is the following:

Proposition 3.1. Let b € B(Z), and assume that Stabg(g) ky = {e}.

1. Let m > M be a squarefree integer, coprime to N. If m? weakly divides A(b), then Wy N w=1(b) is
non-empty.

2. If v e Wy N Wy, then Q(v) > M.
The proof of Proposition [3.1] will rely on a reduction to sly, inspired by the techniques in the proofs of
[Lag22, Lemma 4.19] and [RT21} Proposition 5.4], which we now explain.

Assume we have a connected reductive group L over a field k, together with an involution £. As in Section
the Lie algebra I decomposes as [ = [(0) & [(1), according to the £1 eigenspaces of d§. We also write
Ly for the connected component of the fixed group Lt.

10



Definition 3.2. Let k be algebraically closed. We say a vector v € [(1) is stable if the Lg-orbit of v is
closed and its stabiliser Zr,,(v) is finite. We say (Lo, [(1)) is stable if it contains stable vectors. If k is not
necessarily algebraically closed, we say (Lo, (1)) is stable if (Lo ks, (1)) is.

By [Thol6, Proposition 1.9], the 6 defined in Section is a stable involution, i.e. (G,V) is stable.

We now prove the analogue of |[RT21, Lemma 2.3]: the proof is very similar and is reproduced for
convenience.

Lemma 3.3. Let S be a Z[1/N]-scheme. Let (L,€), (L',£') be two pairs, each consisting of a reductive
group over S whose geometric fibres are adjoint semisimple of type A1, together with a stable involution.
Then for any s € S there exists an étale morphism S’ — S with image containing s and an isomorphism
Lg — Lg intertwining &/ and &5, .

Proof. We are working étale locally on S, so we can assume that L = L’ and that they are both split
reductive groups. Let T denote the scheme of elements | € L such that Ad(l) o & = ¢: by [Conl4l
Proposition 2.1.2], T is a closed subscheme of L that is smooth over S. Since a surjective smooth
morphism has sections étale locally, it is sufficient to show that T — S is surjective. Moreover, we can
assume that S = Speck for an algebraically closed field k, since the formation of T' commutes with base
change.

Let A, A’ C L be maximal tori on which &, & act as an automorphism of order 2. By the conjugacy
of maximal tori, we can assume that A = A’ and that £, ¢’ define the (unique) element of order 2 in
the Weyl group. Write ¢ = a¢’ for some a € A(k). Writing a = b? for some b € A(k), we have
E=b-b-& =b-¢& bt The conclusion is that ¢ and & are L(k)-conjugate (in fact, A(k)-conjugate),
which completes the proof. O

The following lemma is the key technical part in our proof. We remark the the first part was already
implicitly proven in the proof of [Lag24, Theorem 7.17].

Lemma 3.4. Let p be a prime that does not divide N .

1. Let b € B(Zy) be an element with ord, A(b) = 1, where ordy,: Q; — Z is the usual normalized
valuation. Let v € V(Z,) with w(v) = b. Then, the reduction mod p of v in V(F,) is regular.

2. Let b € B(Z,) be an element with discriminant weakly divisible by p*. Then, there exists gy, €
G(Qp) \ G(Zy) such that gy, p - ky € V(Zy).

Proof. Let vg, = w5 + z,, be the Jordan decomposition of the reduction of v in IF,,. Then, we have a
decomposition hr, = hor, ® b1F,, Where hor, = 35(z,) and by p, = image(Ad(z;)). By Hensel’s lemma,
this decomposition lifts to bz, = boz, ® b1,z,, with ad(v) acting topologically nilpotently in bz, and
invertibly in by7,. As explained in the proof of |[Lag22, Lemma 4.19], there is a unique closed subgroup
L C Hy, which is smooth over Z, with connected fibres and with Lie algebra Bo,z,-

For the first part of the lemma, we are free to replace Z, for a complete discrete valuation ring R with
uniformiser p, containing Z, and with algebraically closed residue field k. In this case, the spreading out
properties in |Lag24, §7.2] guarantee that the derived group of L is of type A;. Since the restriction of 6
restricts to a stable involution in L by [Thol3| Lemma 2.5], Lemma guarantees that there exists an
isomorphism hge{? & sly p intertwining the action of 6 on hge}? with the action of £ = Ad(diag(1,—1)) on

sly g. To show that vy is regular is equivalent to showing that the nilpotent part z,, is regular in hgfkr .

The elements v, and z,, have the same projection in f)ge,: , and given that v € hgfg’d9:717 its image in

sly g is of the form
0 a
b 0)°

11



We claim that ordr(ab) = 1. This can be seen from an argument similar to the end of [Lag24, Lemma
7.15], i.e. using |Lag24, Lemma 2.3]ﬂ it follows that the discriminant of v in h coincides with the
discriminant of its image in sly up to a unit in R, as wanted. In particular, exactly one of a, b is non-zero
when reduced to k, and hence z,, is regular in bgf,: , as wanted.

For the second part, we return to the case R = Z,. If b € B(Z,) has discriminant weakly divisible by p?,
there exists b’ € B(Z,) such that ord, A(b+ pb’) = 1. Since the Kostant section & is algebraic, we know
that Ky — Kptpty € pV(Zy). By the first part of the lemma, we know that kp1 e is regular mod p, and so
Kp is also regular mod p. In particular, writing sy F, = s + =, as before, this means that the nilpotent

part x,, is a regular nilpotent in bg%'p. We now claim that:

(i) We have an isomorphism hg’egp Sslyz,;
(ii) The isomorphism intertwines the actions of § and the previously defined &;

(iii) Over F,, the isomorphism sends the regular nilpotent z,, to the matrix
(01
~\0 O

We note that this does not follow immediately from Lemma [3.3] as the isomorphism a priori does not
need to be defined over Z,,.

of 5[2’[&7.

We prove our claim as follows: Consider the Z,-scheme X = Isom((L/Z(L),0), (PGLq,£)), consisting of
isomorphisms between L/Z(L) and PGLs that intertwine the 6 and &-actions. Using Lemma we see
that étale-locally, X is isomorphic to Aut(PGLg,&); in particular, it is a smooth scheme over Z,. By
Hensel’s lemma [Gro67, Théoreme 18.5.17], to show that X has a Z,-point it is sufficient to show that it
has an F,-point.

We now consider the Fj-scheme Y = Isom((L/Z(L)r,,0,x,), (PGL2,&,¢e)) of isomorphisms preserving
the § and &-actions which send z,, to e: it is a subscheme of X . If Y (IF,) is non-empty, then by Hensel’s
lemma it can be lifted to an isomorphism of X(Z,) satisfying all three points of the claim. Therefore,
the claim will follow from seeing that Y (IF,) # 0.

Again by Lemma Y is étale locally of the form Aut(PGLo,&,e), since PGLg acts transitively on
the regular nilpotents of 5[352_1 for any field of characteristic p > N. In particular, we see that Y is
an Aut(PGLg, &, e)-torsor. In this situation, to see that Y (F,) is non-empty it will suffice to see that
Aut(PGL3, &, e) = SpecF,. This follows from the elementary computation of the stabiliser of e under

PGLS, which can be seen to be trivial over any field.

In conclusion, Y (F,) is non-empty, meaning that there is an isomorphism hgfzrp = 5y 7, respecting 6 and
¢, and we can make it so that the projection of sy in sly 7, is an element of the form

0 a
bp> 0)°

with a,b € Z, and a € 14 pZ,. Moreover, there exists a morphism ¢: SLy — L?QZT inducing the

given isomorphism bgfép = slp g, since SLg is simply connected. The morphism ¢ necessarily respects

the grading, and induces a map SL»(Q,) — L%"(Q,) on the Q,-points. Consider the matrix g, =
o(diag(p, p~1)): it satisfies the conditions of the lemma, and so we are done. O

IThe cited result is only stated in |[Lag24| for fields of characteristic zero, but it is still valid in our situation for k: the
only results that are invoked in that proof are those in [Ste75} §3], which hold as long as char k is not a torsion prime for
H, which we may assume.
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Remark 3.5. A natural follow-up question to Lemma [3.4)is to ask how many g, , € G(Q,) \ G(Z,) are
there (up to a G(Z,)-action) such that g, ,,-ky € V(Z,). The proof of the lemma implies that if p* | A(b),

0
bk 0
of Lg] times. It is natural to expect that all the possible choices of g , arise in this fashion; however, we
do not know if that is true.

then the projection of ky in slp 7, is of the form < a>’ so we can conjugate by diag(p,p~!) a total

Remark 3.6. It would be very convenient if in the proof of Lemma we could obtain a g € SLy(Q))

such that
0 a\ -1 (0 ap
g(bp2 0>g _(bp 0)’

in order to transform the “mod p?” divisibility into “mod p” divisibility, but unfortunately that doesn’t
appear to be possible in general. If that were the case, the element v’ € V(Z,) corresponding to the

ap
bp O
orbits using |Bhal4b| (without needing geometry-of-numbers!). We note that this strategy is used in
[RT21}, Proof of Theorem 6.10], which works in their case because they are working over a Z/3Z-grading
instead of a Z/2Z-grading.

matrix would not be regular modulo p, and in this situation we would be able to count such

Proof of Proposition[3.1. We start by proving the first item. Since G has class number 1 by Proposition
the natural map G(Z)\G(Z[1/m]) = [I,,, G(Zp)\G(Qy) is a bijection. In Lemma for each

prime p | m, we constructed an element gy, , € G(Z,)\G(Q,), so all these elements together correspond to
some element g, € G(Z[1/m])\G(Z). By construction, gy-rp belongs to (N V (Zy)) NV (Z[1/m]) = V(Z).

We now prove the second item. Specifically, if v € W NW, is given by gk, for some g € G(Z[1/m])\G(Z),
we will prove that m | @Q(v). It suffices to consider each prime p | m separately, so assume that g €
G(Z[1/p]) \ G(Z). Since the group H is adjoint, there exists a t € T(Q) that makes all the height-one
coefficients of tr; be equal to one, and in this case we see that ¢ € T%(Q). By Theorem there
exists a unique v € N~ (Q) such that ytk, = v; by taking f-invariants in the isomorphisms of Theorem
we see that v € N~(Q). Since the stabiliser is trivial, we see that g = ¢, or in other words that

g € P=Y(Z[1/p) \ P~(Z).

Assume that Q(v) is invertible in Z,, so that all the height-one coefficients of v are invertible. Then,
there exists a t' € T(Z,) making all the height-one coefficients of t'v be equal to one, and by Theorem
there exists at most one element v in N~ (Z,) such that v'#'k; = v. Consequently, g € P™%(Z,) N
P=%(z[1/p]) = P~%(Z), a contradiction. In summary, we have that p | Q(v) for all primes p | m, as
wanted. O

Example 3.7. Our construction is inspired by the construction in [BSW22a| Sections 2.2 and 3.2] for
the case A,. In that case, C — B corresponds to the family of hyperelliptic curves y? = f(x), where
f(z) has degree n + 1 (there is a slight difference between this paper and [BSW22a], in that we consider
f(x) without an ™ term while they consider polynomials with a possibly non-zero linear term; we ignore
this difference for now). The main goal of [BSW22al Sections 2.2 and 3.2] is to construct an embedding

1 1
Om " WQ( N ZWO(Z) C ZV(Z)’

where o,,,(f) has characteristic polynomial f and Q(o,,(f)) = mE| By taking the usual pinning in SL,, 1,
we see that V' corresponds to the space of matrices in sl, 41 which are symmetric across the antidiagonal,
Wy corresponds to the subspace of V' where the entries above the superdiagonal are zero, and the height-
one entries are precisely those in the superdiagonal (in [BSW22a], everything is “reflected vertically”, so

2In [BSW22al, the space that we denote as Wy is denoted there by Woo.
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for instance V is the space of symmetric matrices across the diagonal; this makes no difference in the
results). An explicit section of B can be taken to lie in $Wy(Z): namely, if n is odd, the matrix

0 1
0
1
0
=by _
B(bi,...,bny1) = 2 b1
~bs =22 0 1
_bn72 . .
=bn —b2 —bn—2 0 1
2 kal 2
—bn+1 T" 0

can be seen to have characteristic polynomial f(z) = 2"*! + bya™ + -+ + b,z + b, y1; if n is even, a
similar matrix can be given. The main observation in this case is that if m? weakly divides A(f), then
there exists an [ € Z such that f(z+1) = 2" +p1a™ +- - +mp,x +m?p,.1 (cf. [BSW22al Proposition
2.2]). Then, if D = diag(m, 1,...,1,m™1), we observe that the matrix

D(B(plﬂ R apn—lympn,mQPn—o—l) + lIn+1)D71

is integral, has characteristic polynomial f(x) and the entries in the superdiagonal are (m,1,...,1,m).
Thus, this matrix has @-invariant m, as desired.

Remark 3.8. Our @Q-invariant is slightly different to the @Q-invariant defined in [BSW22a], which is
defined in a slightly more general subspace of V. When restricting to Wy(Q), their Q-invariant turns out
to be a product of powers of the elements of the superdiagonal, whereas in our case we simply take the
product of these elements. This difference does not affect the proof of Theorem [I.2] and we can also see
that for both definitions the @-invariant in the previous example is m.

4 Reduction theory

In light of the results in Section [3] to bound families of curves with non-squarefree discriminant it is
sufficient to estimate the size of the G(Z)-invariant set Wjs. Before we are able to obtain such an
estimate, we will need to obtain a precise count of the number of reducible G(Z)-orbits in V(Z). To
do so, we will first need some results about reduction theory: most importantly, we will construct a
box-shaped domain for the action of G(Z) on G(R), in the style of [Sha+22, §2.2].

4.1 Heights

Recall that B = SpecZ[pg,, - - . ,pa,]. For any b € B(R), we define the height of b to be
ht(b) = sup |pg, (b)["/.
1 T
Similarly, for every v € V(R) we define ht(v) := ht(n(v)). We record the following fact from [Lag24]

Lemma 8.1], which in particular means that the number of elements of B(Z)<x := {b € B(Z) | ht(b) < X'}
is of order XdimV:

Lemma 4.1. We have dy +---+d, = dimg V.
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4.2 Measures on (¢

Let ®¢ = ®(G,T?) be the set of roots of G. The Borel subgroup P? of G determines a root basis Sg
and a set of positive/negative roots @g, compatible with the choice of positive roots in H determined by
the pinning of Section Let N be the unipotent radical of the negative Borel subgroup P~¢. Then,
there exists a maximal compact subgroup K C G(R) such that

NR) x T°(R)° x K — G(R)

given by (n,t,k) — ntk is a diffeomorphism; see [Lan75, Chapter 3, §1]. We can choose K to be
“compatible” with T'; that is, we can choose a Cartan involution 7 such that the fixed points of G with
respect to 7 is exactly K, and satisfying that 7|7 is just the inversion map. The following result is a
well-known property of the Iwasawa decomposition:

Lemma 4.2. Let dn,dt,dk be Haar measures on N(R),T?(R)°, K, respectively. Then, the assignment

fH/ / F(ntk)S(8) = dn dt dk
neN(R) JteT®(R)° JkcK

defines a Haar measure on G(R). Here, 6(t) = ]_[ﬁeq>5 B(t) = det Ad(t)|LieN(R)~

We get the measure on T%(R)° by pulling it back from the isomorphism [, 8: T?(R)° — Rf{? ,
where R is given the standard Haar measure d*X = dA/X. We will choose the normalizations for dn
and dk in Section [5.1]in a way that will be convenient for us.

4.3 Fundamental domains

In this section, we construct a fundamental domain for the action of G(Z) on G(R). In view of [Sha+22|,
it will be useful to construct a “box-shaped” fundamental domain F, which we will now define. For any
¢ > 0, define T, = {t € T?(R)° | Ya € Sg, a(t) > c}. We define a Siegel set to be a set of the form
S=w-T. K, where w C N(R) is a compact subset, ¢ is a positive real constant and K is the maximal
compact subset fixed in Section Then, we say that a fundamental domain F for the action of G(Z)
on G(R) is boz-shaped at infinity if there exist two Siegel sets S; C F C So satisfying that:

1. There exists an open subset U; C S of full measure such that every G(Z)-orbit in G(R) intersects
U, at most once.

2. Every G(Z)-orbit in G(R) intersects Sy at least once.
3. For sufficiently large ¢, we have S; N NT.K = Ss " NT,.K.

To construct F, we will see that it is sufficient to construct S; and S;. More precisely, we have as in
[Sha+22, Lemma 7]:

Lemma 4.3. Let A be a discrete subgroup of a Lie group G and denote by B(G) the Borel o-algebra of
G. Assume there exist sets S1,Ss in B(G) such that the natural maps S1 — G/A and S; — G/A are
injective and surjective, respectively. Then, there exists a set F in B(G) which is a fundamental domain
for the action of A on G satisfying Sy C F C Sa.

We will construct §; and Ss in the following subsections.

Remark 4.4. The constructed S; and S will not strictly be Siegel sets of the form wT.K, but rather
of the form wT,.K' for some subset K’ of K. We will call them Siegel sets regardless.
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4.3.1 Constructing S

To obtain the domain &7, we will use general properties of the Borel-Serre compactification following
[BS73]. The construction below holds for a general connected semisimple algebraic group G over Q,
unless otherwise specified (note that our group G is always semisimple by [Lag24, Proposition 3.7]).

Consider the symmetric space X = G(R)/K, where K is a maximal compact subgroup of G(R). For each
parabolic Q-subgroup P of G, let Sp := (R4P/(R.P - Rq4G)), where R, denotes the unipotent radical
and Ry denotes the Q-split part. Then, Sp is a Q-split torus, and we let Ap := Sp(R)°. There is a
natural action of Ap on X called the geodesic action (see |[BS73, (3.2)]). Set e(P) = Ap\X, and consider

X= [ e,

P parabolic

which by [BS73, (7.1)] naturally has a structure of a manifold with corners. The topology of X is studied
in [BS73, §5, §6]; in particular, it is shown that for any parabolic group P, the subset X (P) = [[5-p e(Q)
is an open subset of X. Taking P = G, we see that e(G) = X is an open submanifold of X.

Assume for simplicity that G is split over Q with split maximal torus 7. Let P = NT be a Borel subgroup
of G. For z € X and a real constant ¢ > 0, we can consider the set

Uppe=NR)(T, - ).

Its closure U, p. in X is a neighbourhood of the closure of e(P) in X. Then, we have the following result
(see [BS73|, Proposition 10.3]):

Proposition 4.5. There exists ¢ > 0 satisfying that for any g1, 92 € Uy p.c, if there exists v € G(Z) such
that g1 = g2, then v € P(Z).

To obtain a suitable Siegel set S;, we need to carefully choose a compact subset w C N(R). Let
(a1, ..., ) be an ordering of the positive roots of G satisfying that ht(«;) < ht(a;41) forall1l <i < k—1.
For each root «; we consider the isomorphism u,,: G, — U,,, where U,, C N. By [Conl4, Theorem
5.1.13], there is an isomorphism of varieties over Z:

which is just the multiplication map. In other words, we can express any element of N'(R) as q, (1) - - - Uq,, (Tx)
for some 1, ...,z € R. Moreover, a set of 1, ...,z will correspond to an element of N(Z) if and only
if x1,..., 2, € Z. We now recall the following result (see e.g. |Conl4l Proposition 5.1.14]):

Lemma 4.6. Let x,y € R, and let o, B be positive roots. Then,

Ua(T)ug(y)ua(—2)us(—y) = H Uia+j,3(ci,a,j,ﬁmiyj)'
4,>0

Here ¢; o5, s a constant, and the product is taken over all i,j > 0 such that i + j3 is a positive root.
Consider the set @ = {uq, (71) - Uny (z) € N(R) | z; € [-1/2,1/2]Vi} C N(R).
Proposition 4.7. We have that

1. N(Z)w = N(R).

2. Except for a set of zero measure, no two distinct elements of W are N(Z)-translates of each other.
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Proof. For the first point, let 41, ..., yr € R. We will show that there exist ny,...,ny € Zand x1,...,xx €
R such that

Uy (11) -+ ey, (1 YUy (1) -+ - Uy () = ey (Y1) -+ - Uy (Yk)- 3)

Using the commutator relations of Lemma we can reorder the terms in the left hand side to get
equations of the form

Ym = N + T, + D (N1, - o, Mg, T1,y oo, Tk, (4)

where p,, are polynomials. By examining the commutator relations, we see that p,, only depends on
the variables corresponding to lower height coefficients. In particular, if «,, is a height-one root, we can
choose n,, € Z and z,, € [—1/2,1/2] such that y,, = Ny + . We can then find coefficients n,,, ., for
the larger height roots inductively using .

For the second point, choose two elements of w with coefficients x1,...,z; and yi1,...,yx lying in
(—1/2,1/2). Assume there exist nq,...,n, € Z satisfying . By induction, we will show that n; = 0
for all 4. This is clear for the height-one coefficients, since n; + z; = y;. Assume by induction that all
the coefficients n; are zero up to some height h. We note that by Lemma [£.6]all terms in the polynomial
Pm(n1, ..., g, 21, ..., 2k) are multiple of at least one n; of lower height. Hence, by induction we get that
Pm(n1, ... N, 21, ..., 2%) = 0 and thus that n,, = 0, as wanted. O

Assume from now on that our group G is one of the groups constructed in Section 2.I] We note that
TY(Z) acts by conjugation on @: recall that Ad(t) - ua(7) = ua(a(t) - z), and for any t € T9(Z) we
have that a(t) = 1. Alternatively, we can say that there is a mapping 7%(Z) — {£1}#9¢ given by
t — (a(t))aese; however, it needs not be surjective: denote by A = {a1,...,a;} a set of representatives
of the cokernel of this map. For any element a; € A, write it as a; = (a;1,...,a; ), where a; ; = £1
correspondingly. Consider the set w; inside @ consisting of those elements u = uq, (1) - - - Uq, (%) such
that for all height-one coefficients «j, we have z; € a; ; - [0,1/2]. Finally, define w to be the union of the
sets w;. Then, each element in w is conjugate to a unique element in w.

Additionally, we note that T%(Z) C K, since T%(Z) is fixed by the Cartan involution 7 chosen in Section
and 7|pe is just the inverse map.

Take S; = wT, K, where ¢ > 0 satisfies the conclusions of Proposition and K is a fundamental set
for the action of Z(G)(Z) on K. Let g1 = nit1k; and go = natoks be two elements of 1, and moreover
we assume that n; and ns lie in the interior of w (this interior is a set of full measure). Assume that ¢;
and go are equivalent under the G(Z)-action. By Proposition it follows that ¢g; and g, have to be
P?(Z)-conjugate, say by an element py = noto for ng € N(Z) and to € T?(Z). Then, we can write

no(tonltal)tl(tokl) = n2t2k2.

By uniqueness in the Iwasawa decomposition, we have that ng(tonity') = na, t1 = to and tok; =
ko. If we look at the first equation in terms of height-one roots «;, we get equalities of the form
Ua; (T0)Ua,; (i (to)T1) = Uq, (x2), where x9 € Z and z1, 22 € [—1/2,1/2] (or a subinterval if appropriate).
This can only happen if 2o = 0 for all coefficients, meaning that ng = 1, and also by construction of w it
must also happen that a;(tg) =1 for all 4, or in other words that ¢to € Z(G)(Z). Then, the last equation
tok1 = ko can only happen if tg = 1 by construction. Therefore, g; = go as wanted.

4.3.2 Constructing S,

We can construct S; compatibly with §; thanks to the following proposition:

Proposition 4.8. There exists a real constant ¢ > 0 such that G(R) = G(Z)wT.K, where w and K are

as in Section m
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Proof. We can show that G(R) = G(Z)w'T. K for some compact subset w’ C N(R) and some ¢ > 0 using
[PR94, Theorem 4.15], the first statement is reduced to showing that G(Q) = P?(Q)G(Z), which follows
from [Bor66, §6, Lemma 1(b)].

It is clear that K can be substituted by K, since we can multiply by an appropriate element of Z(G)(Z)
in G(Z). Now, let g = gontk be an element of G(R) = G(Z)w'T.K: we will show that g € G(Z)wT.K.
We know that there exists ng € N(Z) and to € T?(Z) such that tononty ' € w. Let z € Z(G)(Z) be such
that ztok € K. Then, g = (z_lgono_lto_l)(tononto_l)t(ztoki) € G(Z)wT.K, as wanted. O

We fix Sy = wT.K, for some ¢ > 0 satisfying the above proposition. It is clear then that S; and S, satisfy
the required properties, and hence that by Lemma we obtain a box-shaped fundamental domain F
for the action of G(Z) over G(R).

5 Counting reducible orbits

In light of the results of Section [3] to estimate the elements of B(Z) having discriminant divisible by
the square of a large prime, it suffices to count certain special reducible G(Z)-orbits in V(Z). In this
section, we develop much of what we will need in this regard, following Bhargava’s geometry-of-numbers
techinques, and in particular using the ideas in [Sha+22].

5.1 Averaging

Let S C V(Z) be a G(Z)-invariant subset. Define

1
N(S,X) = Z —_— .
ea@NS # Stabg (v)(Z)
ht(v)<X

We will prove the following:

Theorem 5.1. There exist real positive constants C,d such that

N(V(Z)Ted7X) — deimv 4 O(XdimVﬂ;).

By analogous arguments to |[Thol5, §2.9], there exist open subsets Li,..., Ly covering {b € B(R) |
ht(b) = 1, A(b) # 0} such that for a fixed i, the quantity r; = # Stabg(r)(v) remains constant for any
choice of v € m~1(L;). We will denote A = Ry and V; := V(Z)"*? N G(R)k(AL;). Fix a compact left
and right K-invariant set Gy C G(R) which is the closure of a non-empty open set, for which we assume
that Go = G5'. An averaging argument just as in [BS15, §2.3] yields

N(Vvﬂ X) =

1 re
vol(Go) /gef#{v € V(Z)"* N (gGok(AL;)) < x Hg. (5)

To obtain the estimate for N(V(Z)"¢?, X), it will suffice to obtain the appropriate estimates for N (V;, X).
For any subset S inside V(Z)"*¢ N G(R)x(AL;), we can use the expression (5) to define N(S, X) as

1

N(S,X) = r; vol(Gp)

/ #{v € 5N (gGor(AL))<x }dg.
geEF

For the argument, it will be crucial to use Davenport’s lemma (see [Dav51]), as stated in [BS15, Propo-
sition 2.6]. We record it here for convenience.
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Proposition 5.2. Let R be a bounded, semialgebraic multiset in R™ having maximum multiplicity m
and that is defined by at most k polynomial inequalities, each having degree at most l. Then,

(R NZ") = vol(R) + O(max({vol(R),1})),

where vol(R) denotes the greatest d-dimensional volume of any projection of R onto a coordinate subspace
obtained by equating n — d coordinates to zero, and where d takes any value between 1 and n — 1. The
implied constant in the second summand depends only on n,m,k and l.

5.2 Applying the Selberg sieve

Another important step in our argument will be the use of the Selberg sieve. Notably, in the statement
of Theorem [5.1] we require a power saving estimate in the error term, which we will obtain by applying
the Selberg sieve as in [ST14]. In this section, we describe exactly how the Selberg sieve is used, and
which hypothesis are needed.

The general situation is the following: suppose we have a finite sequence of non-negative numbers A =
(an)n, and let P be a finite product of distinct primes. For all d|P, assume the following holds:

S 4= g(dX 1 (6)

n=0 mod d

where X > 0 and g(d) is a multiplicative function satisfying 0 < g(p) < 1 for all primes p|P. Define the

9(p)

multiplicative function h by h(p) = £ 0 0)

at primes p. For some choice of Dy > 1, write

H= > h(d).

d<+/Dg
d| P

Then, [IK04, Theorem 6.4] says that

Y an<XH 40| Y m(dra|. (7)
(n,P)=1 d<Do
d|p

We now explain how to apply in our context of orbit-counting. We will typically work in a subset
W C V(Z) (e.g. the main body, the cusp...), and we will suppose we have a set S C W which satisfies
S = NpSy, where for each prime p, the set S, is defined by congruence conditions modulo p. We wish
to estimate N (S, X), which will generally be some orbit-counting function of S inside W (to be made
precise in future applications). Let T, be the complement of S, in W, and fix a number z < X. Let
P(z) =], p, and for a number d|P(z) set

aa=N [T, [ %X

pld  p PG

If d1 P(z), set ag = 0. To apply the Selberg sieve, we need an estimate like @ Let L be a translate of
mW , for some squarefree m € Z, and assume that we have an estimate of the form

N(L,X) = km™*XP + O(m=ATCXB-D), (8)
for some non-negative constants A, B, C, D and k. Then, it follows that

Z an = N(Npjalp, X) = kgaX? +rq,
n=0 mod d
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where for a prime p, the quantity g, is the density of T}, for d squarefree we set g4 = le 4 9p, and we
have rg = O(d9g4XP~P). Then, by (7), we have

a= Y an<kXPH 40| S mdrg

(n,P(2))=1 d<Dq
P

Assume now that as p — oo, the density g, converges to some constant A € (0,1). Then, we are able to
obtain bounds for H and r4; depending only on X and the choice of D. Given that d™° <. g4 <. d°, we
get that H = Dé/%‘)(l). For the error term, we get that

Z Ts(d)rd <e XB_DDS Z dC <. XB_DD(?""I""E.

d<Dy d<Dy
d|p

The end result is that a; <. XBDO_l/Q'*_E + XB*DDOCH'*'E. By making an appropriate choice of D as a

power of X, we can optimize this expression to yield a; = O(XZ~?) for some § > 0.

So, in summary, to use the Selberg sieve in the same way that is used in [ST14], it will suffice to have
an expression of the form , and a proof that the densities of our sets .S, converge to some constant in
(0,1) as p goes to infinity.

5.3 Reductions

We return to the setting of Section [5.1} where we had
1

NV X) = ——
(v, X) 7 vol(Go) Jyer

#{v € V(Z)"" N (9Gok(AL;))<x }dg.
To estimate this quantity, we will make some necessary reductions. We will begin with a “cutting-off-
the-cusp” result, which amounts to saying that not too many points in the cusp are irreducible.

Proposition 5.3. Let vy be the coefficient of the highest weight in V. Then, there exists a constant
61 > 0 such that

/ - #{'U S (V(Z) \ W()(Z)) n gBX | vy = O}dg — O(Xdim V—él).

Proof. This is the content of [Lag24, Proposition 8.12]. O

In a similar spirit, we also show that most of the elements in the main body are irreducible:

Proposition 5.4. Let vy be the coefficient of the highest weight in V. Then, there exists a constant
0o > 0 such that

/ #{7] c V(z)red ﬁng | 0 7& O}dg — O(Xdimv—éz)
geEF

Proof. We will prove this statement by using the Selberg sieve, as explained in Section [5.2] First of all,
if v € V(Z) is reducible, then for all primes p not dividing the N fixed in Proposition the reduction
of v mod p is reducible, since by Theorem v is G(Z,) conjugate to kp. By |[Lag24, Proof of Lemma
8.22], the density of elements in V(F,) which are F,-reducible converges to some constant A € (0,1).
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To apply the Selberg sieve, we need some result in the style of . This is essentially the content of
[Lag24, Proposition 8.15 and Theorem 8.17]; a power saving estimate can be obtained similarly to [BG13,
Proposition 10.5], and the contribution from the congruence conditions can be done similarly to our proof
of Theorem we do not repeat it here for the sake of concision. O

5.4 Counting reducible orbits

The previous reductions show that when trying to estimate

1

NV, X) = 7 vol(Go) Jyer

#{v e V(2)"" N (9Gor(ALi))<x }dy,

it is sufficient to work over the cusp Wy(Z) up to a power-saving error term. Given that F is a box-shaped
fundamental domain, we can write it as a disjoint union 7' UwT.K, where w, ¢ and K are as in Section
43 1land F’ is a subset of

w-{te T“)(JR)O | a(t) < c for some a € Sg} - K.

An explicit computation (e.g. following the reasoning in this section and in Section [5.6]) shows that the
integral in is negligible when F is substituted by F'. Hence, it suffices to integrate over wT. K. Given
that Gy is K-invariant and that dk can be normalised so that K has volume 1, we get:

1

NV, X) = r; vol(Go)

/ #{v € Wo(Z) NntBx }6~  (t)dnd*t + O (XImV~9)

new JteT,

for some & > 0. It would be desirable to estimate the lattice points in the region using Davenport’s
lemma; however, as noted in [Sha+22], the cuspidal region is too skewed to apply the lemma directly: in
particular, some of volumes of the projections can be of the order of the main term. To circumvent this,
we will “slice” the region Wy(Z) according to the values of the height-one coefficients. For v € Wy(Z),
denote by (o1(v),...,0.(v)) its height-one coefficients. Then, for any b = (b1,...,b,) € R” and any
subset S C Wy(R), we will denote

Sh={ves|(o1(v),...,0.(v)) =b}.

Then, we can express

#Wo(Z) N (ntBx)) = Z H#Wo(Z) N (ntBx)]p)-

bezr

Actually, we can assume that in the sum over b = (by,...,b,) € Z", none of the components b; are equal
to zero due to the following:

Lemma 5.5. Let v € Wy(R). If 0;(v) = 0 for some i, then A(v) = 0.

Proof. Let {aq,...,ax} be the height-one weights, and assume that the coefficient of «; of v is zero. Let
Ai: G, — Gc be the one-parameter subgroup such that (a; o A\;)(t) = t%. Then, v has no positive
weights with respect to \;, and so by Proposition we get the result. O

When applying Proposition to (ntBx)l|p, we get
#(Wo(Z) N (ntBx)|s) = vol((ntBx)[y)(1 + O(X ™). 9)

The term O(X ~!) can be obtained as follows: each coefficient v in Wy(R) has a weight under the action
of T', which we will denote w(vg). When performing the slicing, that is, fixing the values of the height-one
coefficients, all the weights turn out to be > X, and given that the volume of the region is the product
of the weights of the different coordinates, we obtain the saving of size X.

21



Given that unipotent transformations preserve the volume, and that we can normalise dn so that vol(w) =
1, we can write the following:
1

NV X) = oGy

/ Vol((£Bx )[o)8 1 (£)dt + O(XHm V=0, (10)
be(z\{op)r " *ET

For each height-one coefficient v;, we will denote 3; := (Xw(v;)b;)~t, and 8 = (3;);. Denote by W, the
set of coordinates of Wy of non-positive height. It follows that

vol((tBx)|y) = vol(tX - B|g) = XdimWs H w(v) vol(B|g).
veW,

We will make the change of variables t — 3 = (f1,...,3;), under which d*t = d*p =[], dﬂﬁl In Section
[6.6] we will explicitly compute the volume of the cuspidal region for each of the possible cases. We will
obtain a polynomial Z(3) =[], ;" with integer exponents e; > 2, and we will see that

im W, —1 _ im Z(B)
x4 Wvg[ww(v)é (t) = x4 VW' (11)

It follows that
Xdim \%4

/tET vol((EBx)[)5~ (1)d*t = Z(8) vol(B|)d* 5,

Z0 Jyese, v
where T” is the region corresponding to T'(R) \ T.. It is not difficult to see that the integral over T” is
O(X 1), and hence can be added to the error term. For an element v € Wy(Z), define Z(v) := Z(0;(v)) =
[1;0:(v)% and Z*(v) := [, oi(v)®~'. Then,

| voleBls it = X Z(8) vol(Bls)d* f + O(XdmV-1)
ter. 1200 Jyese,
XdlmV (12)

ZX(’U)dU—I—O(XdimV_l).

—1Z0) Jueowom),
Here, Wy(R);+ = {v € Wy(R) | 0;(v) > 0, Vi}. Combining and (12), and summing over all b, we
obtain that

. __ 9T - AW 1 X dim V' dim X —§
NV, X) =2 EC(@) (n— vol(Go) /vEBﬂWQ(R)+ g (v)dv) * ToX - (13)

To obtain the desired asymptotic for N(V(Z)"¢¢, X), it suffices to use the inclusion-exclusion principle.
For any subset I C {1,...,r}, the same procedure as above obtains for the the set Vi = NV,
with the appropriate constants substituted. This concludes the proof of Theorem

5.5 Computing the constant

As promised, we will compute the constant of the main term of Theorem We will do so using a
Jacobian change-of-variables formula, whose statement and proof are completely analogous to [Sha+22]
Proposition 14]: we include the proof in our case for convenience.

Proposition 5.6. Let ¢: Wy(R) — R be a measurable function. Then, there exists a non-zero rational
constant J € Q* such that

/UGWO(R) Ho)|2” e)ldv =11 /EB(R

AO70 | ve :19(&3)

/ ¢(h - v)dh | db.
heP—:9(

Here, dv and db are Euclidean measures, and dh = 61 (t)dnd*t is a right Haar measure for P~%(R).
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Proof. Let U C B(R) be an open subset, and let o: U — Wy(R) be a continuous section of the GIT
quotient map 7: V — B. We first claim that we have

/ o(v)| 27 (v)|dv = IJI/ / ¢(h - o(b))dhdb (14)
veEP—9(R)o(U) beU Jhe P~ 0 (R)

for some non-zero rational constant J. By the Stone-Weierstrass theorem, we can assume that o is
piecewise analytic, in which case we have

/ B(0)) 2% (v)|dv = / / (T (h,B)| (0 - o (6)) e,
veP—0(R)o (U) beU JheP—9(R)

where J,(h,b) denotes the determinant of the Jacobian matrix arising from the change of variables that
takes the measure Z* (v)dv to dhdb. We will now show that J,(h,b) is independent of o, h and b.

To show that 7, (h, b) is independent of h, we fix v € P™%(R) and consider the change of variables v + ~-v
in Wo(R). We have that Z*(y-v)d(y - v) = x(7)Z*(v)dv for some character x: P7%(R) — R+, which
we now determine explicitly. If v € N(R), then x(y) = 1, since neither Z* or the volume of Wy(R) are
changed by the action of N(R). Now, assume that v € T?(R). On one hand, we have that

- ( 1 aimei-l) 2 (v).

a; €ESa

On the other hand, we have that

-1

dy-v)y=| J[ eatn]| do

acd(a, 1)
ht(a)<1

In view of (1)), we conclude that x(y) = é~*(y). On the other hand, for v = nt € P?(R) we also have
that
T (vh, b)d(vR)db = 6 (t) T (vh, b)dhdb

because dh is a right Haar measure of H, and §~1(¢) is the corresponding modular function (cf. [Kna96,
(8.26)]). We then have that

T (vh,b)d(yh)db = Z* (yv)dv = 61 (t) Z* (v)dv = 6~ (t) T, (h, b)dhdb,
and hence that J,(h,b) = J,(vh,b) is independent of h, as wanted.

The rest of the proof now follows analogously to [BS15, Proof of Proposition 3.10]. More precisely, that
Js(h,b) is independent of ¢ is analogous to Step 2 in [BS15, Proof of Proposition 3.10]; in particular,
we can take o to be the Kostant section. Then, independence of b follows from steps 3 and 4 in [BS15,
Proof of Proposition 3.10].

Thus, we have shown . The proposition now follows from from in a similar way as how [BS15,
Proposition 3.7] follows from [BS15, Proposition 3.10]. O

The proof of Theorem shows that the leading constant in the asymptotic for N(V;, X) is

1
or () 7" (v)dv.
HC Z r; vol(Gyo) /veBmWo(R)+ .

Here, 7 is the amount of height-one coefficients, ¢ is the Riemann zeta function, and e; are the exponents
corresponding to Z(B8) = [[, #;*. We will now give a more succint description of the above integral,
following [Sha+22| §4.3].
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Given that G is K-invariant, we can write it as Go = S - K, for some set S C P7?(R). We have the
following lemma:

Lemma 5.7. The map m: Kx(AL;) N Wo(R)y — L; isr; to 1.

Proof. The result follows from the fact that every element v € Kx(AL;) satisfies # Stabg gy v = 74, and
that if g € Stabgg) v, then writing g = pk for p € P=%R) and k € K, we get that kv = p~lv, so
kv belongs to Kr(AL;) N Wo(R) .. Conversely, given that P~¢ acts simply transitively on Wy(R), any
element in Kr(L;) N Wy(R)4 that is conjugate to v has to be of the form kv = p'v for some k € K and
p e P9, O

Now, setting ¢ to be the indicator function of BN Wy (R)4 in Proposition we obtain

_ |T|rivol(KS) vol({b € AL; | ht(b) < 1})
B r; vol(SK)

)
T VOI(GO) ’UEB<XOWO(R)+

However, we observe that:

Lemma 5.8. We have SK = KS.

Z* (v)dv

Proof. Recall that G is left and right K-invariant and satisfies G, ' = Gy. Then,
KSCKSK =SK =Gy =G;'=KS™'.

By uniqueness in the Iwasawa decompsition, we must have that S C S~', and symmetrically that
S = 87!, Therefore, SK = KS™! = KS, as wanted. O

We are left to deal with the volumes of the corresponding L; terms, which we do using the inclusion-
exclusion principle. The end result is

N(V(Z)7*4, X) ~ 2" ﬁg(ei)|j|vol({b € B(R) | ht(b) < 1})Xdimv.

i=1

We can compare this result with the asymptotics for N(V(Z)""? X), which can be read off |Lag24l
Theorem 8.8]. In there, one of the factors of the constant is related to the volume of G(Z)\G(R) with
respect to a suitably normalised Haar measure, and can be done following [Lan66] and [Col58], for
instance. Surprisingly, we get that

vol(G(Z)\G(R)) = CHC(ei)a

where c is the order of the fundamental group of G¢ and e; turn out to be the same exponents as above; in
particular, the constants for the reducible and irreducible case appear to be the same up to some rational
factor, thus answering Question 2 of [Sha+22| affirmatively for our representations (G, V). However, the
two methods of obtaining the constants appear to be fundamentally different, and we wonder if there is
any “natural” explanation as to why they should give the same result.

5.6 Case-by-case analysis

In this section, we complete the proof of Theorem by performing a case-by-case analysis. For the

D,, and E,, cases, we will explicitly compute the dimension and volume of W, (which was defined to

be the set of coefficients of Wy of non-positive height), and the modular function 6(t) = [[5c4- B(t) =
G

det Ad(t)] . 57z
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5.6.1 Dypy
The exposition in the D,, cases is inspired by [Lag24, Appendix A] and [Shal8, §7.2.1]. We start by
describing explicitly the representation (G, V') of Day,41 in the form given by Table

Let n > 2 be an integer. Let U; be a Q-vector space with basis {e1,...,en,u1, ek, ..., ej}, endowed
with the symmetric bilinear form b, satisfying bi(e;, e;) = bi(e;,u1) = bl(ef,e;) = bi(ef,u1) = 0,
bl(ei7e;f) = 0;; and bi(u1,u1) = 1 for all 1 < 4,5 < n. In this case, given a linear map A: U — U we
can define its adjoint as the unique map A*: U — U satisfying b1 (Av, w) = by (v, A*w) for all v,w € U.
In terms of matrices, A* corresponds to taking the reflection of A along its antidiagonal when working
with the fixed basis. We can define SO(Uy,b1) := {g € SL(U;) | gg* = id}, with a Lie algebra that can
be identified with {4 € End(U) | A = —A*}.

Let U be a Q-vector space with basis {f1,..., fn,u2, fr, ..., fi'}, with a similarly defined bilinear form
by. Let (U,b) = (U1,b1) ® (Ua, b2). Let H = SO(U, b), and consider b := Lie H. With respect to the basis

{617'"76n7u176;7"'76T7f13"'7fnau23f;:a-"aff}a

the adjoint of a block matrix according to the bilinear form b is given by

A B\"_ (A ©*
c D) ~\B* D*)’

where A*, B*, C*, D* denote reflection by the antidiagonal. An element of h is given by

B A * o *
(2% &)la--me--c}

The stable involution 6 is given by conjugation by diag(1,...,1,—1,...,—1), where the first 2n+1 entries
are 1 and the last 2n + 1 entries are given by —1. Under this description, we see that

0 A
V= {<—A* 0> ’ Ac Mat(2n+1)><(2n+1)} .

Moreover, G = (H?)° is isomorphic to SO(U;) x SO(Us). We will use the map

(21* 61) — A
to establish a bijection between V' and Hom(Usz, Uy), where (g, h) € SO(Uy) x SO(Uz) acts on A € V as

(9,h) - A=gAh~".

Let T be the maximal torus diag(ti,...,tn, 1,15, ... ,tfl, S1yenns8n, Lsn sfl) of G. A basis of
simple roots for G is

Sa = {tl —to, ... tp_1 —tn}U{Sl — 89,...,8,—1 —Sn}.
A positive root basis for V' can be taken to be
SV = {tl — 81,51 — t27' .. 7t71 - Snasn}'

For convenience, we now switch to multiplicative notation for the roots. We make the change of variables
o = tiftigg fori=1,...,n—1 and o, = t,; similarly v; = s;/s;41 for i =1,...,n— 1 and 7, = sp.
The estimate for the volume of W, becomes:

n

2 Y 2 5. o -2

I | X’U)(’U) — X2n +2n+1 I I ai 2in—+1i 2171. 2in+1 )
veW, i=1
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The modular function in our case is
n
57L(t) = Haizm—i?%zm—iz_
i=1
Changing variables to 3; = (Xw(v;)b;), where v; are the height-one coefficients, we obtain

-1 _ v4n?44n 1Z(5)
Ul_VIVwa(v)é (t) = xAn Fant 70"

where Z(3) =[]\, (B2i—152:)*".

5.6.2 Dy,

The analysis in this case is very similar to the Das, 1 case. Now, we consider the Q-vector space U
with basis {e1,...,en,€5,...,€7}, endowed with a symmetric bilinear form by(e;,e;) = bi(ej,ej) =
0, bi(ei,ej) = dij. We also consider a Q-vector space Us with basis {f1,..., fu, fi,. .., fi'}, with an
analogous symmetric bilinear form b,.

Let (U,b) = (Uy,b1) ® (Ua, b2), let H = SO(U,b) and define H to be the quotient of H' by its centre of
order 2. Under the basis

{e1,...,en el f1yee s s foyo oy f1 1

the stable involution is given by conjugation with diag(1,...,1,—1,...,—1). Similarly to the Dy, case,

we have "
0
v={(% )

where A* denotes reflection by the antidiagonal. In this case, the group G = (H?)° is isomorphic to
SO(U;) x SO(Usz)/A(p2), where A(uz) denotes the diagonal inclusion of ug into the centre pg X po of
SO(U1) x SO(Uz). As before, we can identify V' with the space of 2n x 2n matrices using the map

0 A
(_A* O>HA,

where (g,h) € G acts by (g,h) - A= gAh~1.

Ac Mat2n><2n} )

We consider the maximal torus T of H given by diag(t1,...,tn,t, 1. .. ,tfl, S1yeeySmy Sty s ) A
basis of simple roots for H and G are given by

SH = '{tl — 81,81 — t27 ey Sp—1 — tn;tn — Sn,Sn + tn}7

SG = {tl —to, .oty —tp,tpo1 + tn} U {51 —82,...,8,-1 — Sn,Sn—1 + 5n}~

Let a; = t;/t;x1 and v; = s;/s;41 for i = 1,...,n, and let o, = t,—1t, and v, = $,—158,. Under this
change of variables, the volume of W, is:

n—2 n—2
Lo 2 Y
| I X’U)(U) _ X2n2 (l | ai—an—Hz—zag;_’ri 7n+4)/2a£l—n2—n)/2 | I ,Yi—2zn+z2+z(,yn_l,yn)(—nz—&-n)/Q) )
veW, i=1 i=1

The modular function is

n—2

§7H(t) = H (O‘i%)i272in+i(t)(an—17n—104n7n)7(n71)n/2(t)~
i=1

As before, we can compute:

—1/4\ _ 4n2@
vg[w Xw)d () =X Z0)

where Z(8) = H?:_ll(ﬁ%—lﬁ%)% “(Ban—1B2n)"
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5.6.3 Eg

For the Eg case, we use the conventions and computations in [Thol5| §2.3, §5].

Let Sy = {a1,...,as}, where the Dynkin diagram of H is:

aq a3 (7 Qs (673}
O O O O O

Qg

The pinned automorphism ¥ consists of a reflection around the vertical axis. We can define a root basis
Se =1{71,72,73,74} of G as 71 = as + a4, 72 = a1, y3 = ag and 4 = ag + ay. Under this basis, we have

H X(JJ(U) :X22(71_12’YQ_18’Y;3_2274_12)
veW,

The modular function is
51 (t) = (') (@)
The weights of the height-one coefficients are {2, —v1 + v3 + 74,73, 71 — 73}. In light of this, we obtain

—1 422 ﬁ
I Xww)s ') =x Z((b))

veW,

where Z(8) = 31858555

5.6.4 FEy

For the E; and Ejg cases, we follow the conventions in [RT18]. Let Sy = {a1,..., a7}, where the Dynkin
diagram of H is:

aq a3 o1 Q7
O ) )
N

o
O O

O&

Qa2

The root basis Sg = {71,...,77} can be described as

71 =03+ oy
Y2 = a5 + Qg
V3 =02+ g
Y4 =01+ o3
Vs =04+ o5
Yo = a6 + Q7
Y7 =02+ a3+ ag+os
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The volume of W, can be computed to be

—15/2 — 33/2 — 35/2 — —21/2
[T Xw(v) = X35(qy 15/ 180y 332 18,030 2 515, 220/

veW,

The modular function for G can be computed to be

§7HE) = (17373 208 6 2 ) (8).

We can compute the weights 5; corresponding to the height-one coefficients, with the end result being

I Xw@)s @) = x10Z0)

Ve, 20)°
for Z(B) = B35 8553 52 85 53
5.6.5 Fs
Let Sy = {a1,...,as}, where the Dynkin diagram of H is:
aq Qa3 ay s (o7 Q7 asg
O—0O—=0 O O—O0—=0

Qa2

The root basis S¢ = {71,...,7s} can be described as

=02 toz+ast+os
Y2 = ag +
V3 =04+ 05
Y4 =01+ o3
Vs =2+ oy
Y6 = a5 + Q6
V7 =oar+og

Y8 = a3+ Qg

The volume of W, can be computed to be
IT Xw(®) = X (3775 %095 %071 95 *476 27 %09 ).
wew,
The modular function for G can be computed to be

57H(t) = (M 35938 80 e v 2BE8) (¢).

We get
I Xw)s @) =x*** l{i)

veEW, (

with Z(B) = B35 530814 8L B8 BE 33
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6 Proof of the main results

We are finally in a position to prove Theorems and Before that, we present an auxiliary result
bounding the elements in V(Z) with big stabiliser.

6.1 Congruence conditions

We want to bound the number of elements in V(Z) having a big stabiliser in the cusp. To do that, we
will apply the Selberg sieve, which in turn requires a power saving estimate in the count of the elements
in the cusp when applying finitely many congruence conditions.

Let S C V(Z) be a subset which is not necessarily G(Z)-invariant. Analogously to Section [5.1] we define

k

NP8, X) =)

i=1

1

— SNWoN (9Gok(AL; dg.

rvol(Go) Jyer #{ve 0N (9Gor(AL;))<x }dg

This is the analogue of the definition of N(S, X) but substituting V(Z)"*? for the cusp Wy(Z). In the
proof of Theorem [5.1| we saw that

NCHSP(WO(Z), X) — CXdimV 4 O(Xdim V*l)
for some constant C'. The main theorem of this section is the following:

Theorem 6.1. Let S be a translate of mV (Z), for some integer m > 1. Then, for a fized m, we have
that
NcuSp(S,X) =OCm™ dim VXdimV + O(mlfdimVXdimel),

where the implied constant is independent of m and the choice of translate S, as long as m = O(X).

Proof. The computation is almost exactly the same as in Section [5.1] with the only major difference
being in the application of Davenport’s lemma. In our situation, given a bounded region R as in the
statement of Proposition we have that

#(RNZ") = vol(R) + O(max{vol(R), 1}).

If we now replace Z" by a translate L of mZ", we can translate and shrink the region R appropriately
so that L gets identified with Z", so that Davenport’s lemma yields

#(RNL)=m""vol(R) + O(max{vol(m~1-R),1}).
In our situation, what we get now instead of @ is
#(S N (ntBx)|p) = m™ IV vol((ntBx)|p) + O(m!~dimV xdimV=1)

where the implied constant does not change with respect to m or S. The hypothesis that m = O(X)
guarantees that none of the lower-dimensional terms dominate. Now, the rest of the argument of Section
goes through in an analogous way to obtain the desired result. O

Remark 6.2. The added hypothesis of m = O(X) is added here for convenience, and does not affect
the use of the Selberg sieve. In the notation of Section [5.2] we are really only adding the error terms
for d < Dg, where Dy is later chosen to be a suitable power of X. We can always impose the additional
restriction that Dy = O(X), and the argument would go through as usual just with a possibly worse

error term. We do not do the explicit computations of Dy in this paper, but they always turn out to be
O(X).
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6.2 Elements with big stabiliser

Let V%$(Z) be the set of elements v € V(Z) with # Stabg(g)(v) > 1. Then, we are in a position to prove
the following:

Proposition 6.3. There exists a constant dps > 0 such that

NcuSp(Vbs(Z),X) _ O(Xdim V—ébs).

Proof. By [Lag24), Proof of Lemma 8.22], the density of elements in V' (F,) having big stabiliser converges
to a constant ¢ € (0,1) as p — oo. The proof can be easily modified to show this is also true when
substituting V (IF,) by Wy(F,). Then, we can apply the Selberg sieve as explained Section combined
with Theorem O

Remark 6.4. We remark that this result depends on Theorem Namely, to apply the Selberg sieve
in that way we need a power saving estimate on the count of reducible G(Z)-orbits in B(Z), so we could
not have proven Proposition at the same time as Proposition [5.3

6.3 Elements with large ()-invariant

In this section, we conclude the proof of Theorem[I.2]about bounding elements with discriminant divisible
by the square of a large squarefree number. For WT(,%), the strongly divisible case, it suffices to use the
Ekedahl sieve as in [Bhaldb, Theorem 3.5, Lemma 3.6], knowing that the discriminant polynomial is
irreducible by |[Lag24, Lemma 4.2]. Thus, to conclude the proof of Theorem 1.2} it suffices to consider
the weakly divisible case.

Recall that by the results in Section[3] to prove Theorem[I.2]it is enough to bound the number of elements
in

Wy ={ve %V(Z) | v = gky for a squarefree m > M, (m,N) =1, g € G(Z[1/m])\G(Z), b € B(Z), A(b) # 0}.

It suffices to prove that:
Theorem 6.5. There exists a constant 6 > 0 such that
dim V'

M

NWy, X) =0 < > + O(XxdimV =9

Proof. We can apply the same averaging argument as in Section [5.1} up to the point where

1

N W ) =5 Solicy

/ #{v € Wy N Wo(Z) N (ntGok(AL;))}o(t)dnd*t + O (X V=0 |

new JteT,

where Way,; := WyNG(R)x(AL;). Inlight of Proposition[6.3] it suffices to count elements in Wy ;"\Wo(Z)
with trivial stabilizer. For each of these elements v, Proposition [3.1] guarantees that Q(v) > M, and in
particular that |Z(v)| > M?. Then, by following the same proof as in Theorem there is some constant
C; such that

i 1 )
]\T(I/V]\/[J7 X) = CiXdlmV Z 4 O(Xdlm V—é).
2z
1Z(b)|>M?

But the written sum is O(;), so that concludes the proof. O
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Therefore, we have proven Theorem With the same proof as [BSW22a), Theorem 4.4], combining the
estimates for the strongly divisible primes and the weakly divisible primes, we get:

Theorem 6.6. For a squarefree integer m, let W,, denote the elements of B(Z) with discriminant
divisible by m?. There is a constant § > 0 such that

S #{beWn | ht(h) < X} =0 (W)+O(XdimV§)
m>M \/M

m squarefree
(m,N)=1

6.4 A squarefree sieve

Theorem follows from the previous tail estimates by performing a squarefree sieve, following the
methods in [BSW22a), §4]. In fact, we will prove a slightly more general result about counting elements
in B(Z) imposing infinitely many congruence conditions.

Let £ be a positive integer. We say a subset S C B(Z) is k-acceptable if S = B(Z) N[, Sp, where
Sp C B(Z,,) satisfy the following:

1. &, is defined by congruence conditions modulo p*.

2. For all sufficiently large primes p, the set S, contains all b € B(Z,) such that p* { A(b).

For any subset A C B(Z), denote by N(A, X) the number of elements of A having height less than X.
For any prime p and any subset A, C B(Z,), we denote by p(4,) the density of elements of A, inside
B(Zy).

Theorem 6.7. Let k be a positive integer, and let S C B(Z) be a k-acceptable subset. Then, there exists
a constant 6 > 0 such that

N(S,X) = <H p(sp)> N(B(Z), X) + O(X4mV =2y,

Proof. Recall that B = Spec Z[p4,, - - ., P4, ]- For an element b € B(Z) of height at most X, it holds that
Ipa, (b)| < X%, where by Table 2| we see that d; > 2 for all i. For a positive squarefree integer m coprime
to N, denote by S/, the big family defined for each prime p as:

o Ifp| N, wesetS, =35,
o Ifp|m, weset S, = B(Z,)\ S,
o Otherwise, we set S, = B(Zy).

By the inclusion-exclusion principle, we get that

NS, X)= Y pm)N(S,,X),
(mTTlJ\%lzl

where p(m) is the Mobius function. We can estimate N(S,,, X) as follows: in B(Z), the set S, is
the union of Tj, translates of a congruence class modulo (mN)”, and we have that T,, = Hp‘m(l —

p(Sp)) L 1n P(Sp) - (mN)k®. Each of these congruence classes contributes Hle ((fn)ﬁ)ﬁ + O(l)) to the

sum N (S, X). In summary, we get

N (S, X) = [J(1 = p(8p) [T p(Sp)N(B(Z). X) + O(m" X 4™V =2),

plm p|N
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By Theorem we also have that for large enough M:

Xdim V+4e

3 MmN, 3) =0, <m

Combining the previous identities, we get

> + O(XdimV=9)

M .
. XdlmVJrE .
N(S.X) = [ o(8,) 3 ulm) [T (1 = p(S,)IN(B(Z), X) + O (wadlm e X Xdlm”)
p|N m=1 plm M
XdimV +1 vdim V—2 XdimV+5 dim Vs
= SNBZ,X +OE —‘,—M'V” le__i_i_i_le— ,
[Tnson e, )+ o — )

where the last estimate follows from the observation that p(S,) > 1 — p% by [Poo03}, Proof of Theorem
3.2]. Now, optimizing we choose M = X*4/(2643) wwhich is enough for the result. O
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