
The density of ADE families of curves having squarefree
discriminant

Martí Oller

University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Centre for
Mathematical Sciences, Wilberforce Road,Cambridge CB3 0WB

email: mo512@cam.ac.uk

March 3, 2025

Abstract

We determine the density of curves having squarefree discriminant in some families of curves
that arise from Vinberg representations, showing that the global density is the product of the local
densities. We do so using the framework of Thorne and Laga’s PhD theses and Bhargava’s orbit-
counting techniques. This paper generalises a previous result by Bhargava, Shankar and Wang.
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1 Introduction

The aim of this paper is to determine the density of curves in certain families that have squarefree
discriminant. We do so following the techniques in arithmetic statistics developed by Bhargava and his
collaborators. The main idea is that many arithmetic objects of interest can be parametrised by the
rational or integral orbits of a certain representation (G, V ): in this situation, Bhargava’s geometry-of-
numbers methods allow to count these integral orbits of V , which consequently provides information on
the desired arithmetic objects that would be otherwise difficult to obtain. This idea has led to many
impressive results in number theory; see [Bha14a] or [Ho13] for an overview.

The present paper is inspired by the recent paper [BSW22a] by Bhargava, Shankar and Wang, in which
they compute the density of monic integral polynomials of a given degree that have squarefree discrim-
inant. The main technical difficulty is to bound the tail estimate of polynomials having discriminant
“weakly divisible” by the square a large prime (this notion will be defined later). They do so using the
representation of G = SOn on the space V of n × n symmetric matrices. By relating polynomials with
discriminant divisible by p2 for a large p to certain integral orbits of the representation (G, V ), they get
the desired result using the aforementioned geometry-of-numbers techniques. Similar methods were used
in [BSW22b] in the non-monic case with a different representation, and also in [BH22] for certain families
of elliptic curves (in particular, their F2 case essentially corresponds to our D4 case).

A key observation, which motivates our results, is that the representation studied in [BSW22a] arises as a
particular case of the more general families of representations studied in [Tho13]. Using the framework of
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Vinberg theory, Thorne found that given a simply laced Dynkin diagram, we can naturally associate to it
a family of curves and a coregular representation (G, V ), where the rational orbits of the representation
are related to the arithmetic of the curves in the family. These results have been used, implicitly and
explicitly, to study the size of 2-Selmer groups of the Jacobians of these curves, see [BG13; SW18; Sha18;
Tho15; RT18; Lag22] for some particular cases. Later, Laga unified, reproved and extended all these
results in [Lag24] in a uniform way.

Our aim is to compute the density of curves having squarefree discriminant in these families of ADE
curves. We will do so by reinterpreting the methods in [BSW22a] in the language of [Tho13] and [Lag24].
As a corollary, we will obtain the asymptotics for the number of integral reducible orbits of these repre-
sentations, following [Sha+22].

Let D be a Dynkin diagram of type A, D, E. In Section 2.1, we will construct a representation (G, V )
associated to D, and in Section 2.3 we will construct a family of curves C → B. Here, B is isomorphic to
the Geometric Invariant Theory (GIT) quotient V // G := SpecQ[V ]G. We see that B can be identified
with an affine space, and we write B = SpecQ[pd1 , . . . , pdr

]. Given b ∈ B, we define its height to be

ht(b) := sup
(

|pd1(b)|1/d1 , . . . , |pdr
(b)|1/dr

)
.

Denote by Cb the preimage of a given b ∈ B under the map C → B; it will be a curve of the form given
by Table 2. The main result of this paper concerns the density of squarefree values of the discriminant
∆(Cb) of the curve (or equivalently, the discriminant ∆(b) defined in Section 2.1). A definition for the
discriminant of a plane curve can be found in [Sut19, §2], for instance. We remark that in our definition of
discriminant, we assume that it is an integer-valued polynomial in multiple variables, normalised so that
the coefficients have greatest common divisor 1 (for instance, the usual discriminant for elliptic curves
contains a factor of 16: we omit it in our case).

Our result is related to the p-adic density of these squarefree values: we will denote by ρ(Dp) the p-adic
density of curves in the family C → B having discriminant indivisible by p2 in Zp; this is obtained by
taking all the (finitely many) elements in b ∈ B(Z/p2Z) and counting the proportion of them that have
non-zero discriminant in Z/p2Z. We note that under our assumptions on the discriminant, none of the
local densities vanish; this can be checked with a case-by-case computation.

Theorem 1.1. We have

lim
X→∞

#{b ∈ B(Z) | ∆(b) is squarefree, ht(b) < X}
#{b ∈ B(Z) | ht(b) < X}

=
∏

p

ρ(Dp).

To prove this theorem, we need to obtain a tail estimate to show that not too many b ∈ B(Z) have
discriminant divisible by m2 for large squarefree integers m. A key observation in [BSW22a] is to
separate those b ∈ B(Z) with p2|∆(b) for a prime p in two separate cases:

1. If p2|∆(b + pc) for all c ∈ B(Z), we say p2 strongly divides ∆(b) (in other words, p2 divides ∆(b)
for “mod p reasons”).

2. If there exists c ∈ B(Z) such that p2 ∤ ∆(b + pc), we say p2 weakly divides ∆(b) (in other words, p2

divides ∆(b) for “mod p2 reasons”).

Similarly, for a squarefree number m, we say that m2 strongly (resp. weakly) divides ∆(b) if p2 strongly
(resp. weakly) divides ∆(b) for all primes p dividing m. We let W(1)

m , W(2)
m denote the set of b ∈ B(Z)

whose discriminant is strongly (resp. weakly) divisible by m2. We prove tail estimates for these two sets
separately. The argument in the weakly divisible case will require our squarefree integers m to avoid a
finite number of primes: in Section 2.4, we will consider an integer N which contains all “bad primes”.
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Theorem 1.2. There exists a constant δ > 0 such that for any positive real number M we have:∑
m>M

m squarefree

{b ∈ W(1)
m | ht(b) < X} = Oε

(
Xdim V +ε

M

)
+ Oε

(
Xdim V −1+ε

)
,

∑
m>M

m squarefree
(m,N)=1

{b ∈ W(2)
m | ht(b) < X} = Oε

(
Xdim V +ε

M

)
+ O

(
Xdim V −δ

)
.

The implied constants are independent of X and M .

As in [BSW22a, Theorem 1.5(a)], the strongly divisible case follows from the use of the Ekedahl sieve;
more precisely, it follows from the results in [Bha14b, Theorem 3.5, Lemma 3.6] and the fact that
the discriminant polynomial is irreducible by [Lag24, Lemma 4.2]. Therefore, it remains to prove the
(substantially harder) weakly divisible case, which is the content of most of this paper.

We start in Section 2 by giving the necessary background and introducing our objects of interest, most
importantly the representation (G, V ) coming from Vinberg theory and the associated family of curves
C → B. The main step in the proof of Theorem 1.2 is done in Section 3, where given a b ∈ W(2)

m we
obtain a special integral G(Z)-orbit in V whose elements have invariants b. We additionally consider a
distinguished subspace W0(Z) ⊂ V (Z), and we define a Q-invariant for the elements of W0(Z). Then,
we will see that the elements in the constructed orbit have large Q-invariant when they intersect W0(Z)
(which happens always except for a negligible amount of times by cutting-off-the-cusp arguments). This
construction is the analogue of [BSW22a, §2.2, §3.2]; we give a more detailed comparison at the end of
Section 3.

In view of all that, to prove Theorem 1.2 it suffices to bound the number of these distinguished G(Z)-
orbits in W0(Z) having large Q-invariant. However, before doing that, we will need to take a small
detour and estimate the number of all reducible G(Z)-orbits in V (Z). A G(C)-orbit in V (C) can split
into multiple G(Q)-orbits, and among these G(Q)-orbits there is a “distinguished” one (namely, the one
given by the Kostant section, as defined in Section 2.3). We say that an element in V (Q) is reducible if
it falls into this special G(Q)-orbit. Using Bhargava’s geometry-of-numbers arguments, and in particular
the techinques in the cusp developed in [Sha+22], we will obtain the following result:

Theorem 1.3. The number N(V (Z)red, X) of reducible G(Z)-orbits on V (Z) of height at most X is

N(V (Z)red, X) = CXdim V + O(Xdim V −δ),

where C, δ are real positive constants. The constant C will be explicitly determined in Section 5.5.

The proof of this theorem relies on the construction of a box-shaped fundamental domain for the action of
G(Z) on G(R), which will be carried out in Section 4.3. Following that, we will mostly follow the steps in
[Sha+22, §4], relying on critical reductions given by [Lag24, §8]; and we will conclude our proof by using
elementary but lengthy case-by-case computations. We remark that our proof implicitly also relies on
other implicit case-by-case computations: namely, the cutting-off-the-cusp result in Proposition 5.3 relies
on an (even more tedious) exhaustive analysis of all cases, sometimes relying on lengthy computations
on a computer (cf. [RT18, Proposition 4.5]).

In Section 6, we will conclude the proof of Theorem 1.2, from which Theorem 1.1 will follow using a
squarefree sieve. The sieve is carried out in a general enough setting that allows us to count the density
of subsets in B(Z) defined by infinitely many congruence conditions. In particular, we get an application
of our result to the context of [Lag24], which allows us to get an upper bound on the average size of
2-Selmer groups of families defined by infinitely many congruence condtions. For b ∈ B(Z), denote by Jb

the Jacobian of the curve Cb.
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Theorem 1.4. Let m be the number of marked points of the family C → B, as given in Table 2. Let S
be a κ-acceptable subset of B(Z) in the sense of Section 6.4. Then, we have

lim sup
X→∞

∑
b∈S, ht(b)<X # Sel2 Jb

#{b ∈ S | ht(b) < X}
≤ 3 · 2m−1.
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vision of Jack Thorne. I would like to thank him for providing many useful suggestions, guidance and
encouragement during the process, and for revising an early version of this manuscript. I also wish to
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these results received the support of a fellowship from “la Caixa” Foundation (ID 100010434). The fel-
lowship code is LCF/BQ/EU21/11890111. The author wishes to thank them, as well as the Cambridge
Trust and the DPMMS, for their support.

2 Preliminaries

In this section, we introduce our representation (G, V ) of interest, together with some of its basic prop-
erties. We do so mostly following [Tho13, §2] and [Lag24, §3].

2.1 Vinberg representations

Let H be a split adjoint simple group of type A, D, E over Q. We assume H is equipped with a pinning
(T, P, {Xα}), meaning:

• T ⊂ H is a split maximal torus (determining a root system ΦH).

• P ⊂ H is a Borel subgroup containing T (determining a root basis SH ⊂ ΦH).

• Xα is a generator for hα for each α ∈ SH .

Let W = NH(T )/T be the Weyl group of ΦH , and let D be the Dynkin diagram of H. Then, we have
the following exact sequences:

0 H Aut(H) Aut(D) 0 (1)

0 W Aut(ΦH) Aut(D) 0 (2)

The subgroup (T, P, {Xα}) ⊂ Aut(H) of automorphisms of H preserving the pinning determines a split-
ting of (1). Then, we can define ϑ ∈ Aut(H) as the unique element in (T, P, {Xα}) such that its image
in Aut(D) under (1) coincides with the image of −1 ∈ Aut(ΦH) under (2). Writing ρ̌ for the sum of
fundamental coweights with respect to SH , we define

θ := ϑ ◦ Ad(ρ̌(−1)) = Ad(ρ̌(−1)) ◦ ϑ.

The map θ defines an involution of H, and so dθ defines an involution of the Lie algebra h. By considering
±1 eigenspaces, we obtain a Z/2Z-grading

h = h(0) ⊕ h(1),

where [h(i), h(j)] ⊂ h(i + j). We define G = (Hθ)◦ and V = h(1), which means that V is a representation
of G by restriction of the adjoint representation. Moreover, we have Lie(G) = h(0).

We have the following basic result [Pan05, Theorem 1.1] on the GIT quotient B := V // G = SpecQ[V ]G.
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Theorem 2.1. Let c ⊂ V be a Cartan subspace. Then, c is a Cartan subalgebra of h, and the map
NG(c) → Wc := NH(c)/ZH(c) is surjective. Therefore, the canonical inclusions c ⊂ V ⊂ h induce
isomorphisms

c // Wc
∼= V // G ∼= h // H.

In particular, all these quotients are isomorphic to a finite-dimensional affine space.

For any field k of characteristic zero, we can define the discriminant polynomial ∆ ∈ k[h]H as the image of∏
α∈ΦH

α under the isomorphism k[t]W ∼−→ k[h]H . The discriminant can also be regarded as a polynomial
in k[B] through the isomorphism k[h]H ∼= k[V ]G = k[B]. We can relate the discriminant to one-parameter
subgroups, which we now introduce. If k/Q is a field and λ : Gm → Gk is a homomorphism, there exists
a decomposition V =

∑
i∈Z Vi, where Vi := {v ∈ V (k) | λ(t)v = tiv ∀t ∈ Gm(k)}. Every vector v ∈ V (k)

can be written as v =
∑

vi, where vi ∈ Vi; we call the integers i with vi ̸= 0 the weights of v. Finally, we
recall that an element v ∈ h is regular if its centraliser has minimal dimension.

Proposition 2.2. Let k/Q be a field, and let v ∈ V (k). The following are equivalent:

1. v is regular semisimple.

2. ∆(v) ̸= 0.

3. For every non-trivial homomorphism λ : Gm → Gks , v has a positive weight with respect to λ.

Proof. The reasoning is the same as in [RT18, Corollary 2.4].

We remark that the Vinberg representation (G, V ) can be identified explictly. For the reader’s conve-
nience, we reproduce the explicit description written in [Lag24, §3.2] in Table 1. We refer the reader to
loc. cit. for the precise meaning of some of these symbols.

Type G V

A2n SO2n+1 Sym2(2n + 1)0
A2n+1 PSO2n+2 Sym2(2n + 2)0
D2n (n ≥ 2) SO2n × SO2n /∆(µ2) 2n ⊠ 2n
D2n+1 (n ≥ 2) SO2n+1 × SO2n+1 (2n + 1) ⊠ (2n + 1)
E6 PSp8 ∧4

08
E7 SL8 /µ4 ∧48
E8 Spin16/µ2 half spin

Table 1: Explicit description of each representation

2.2 Restricted roots

In the previous section, we considered the root system Φ := ΦH of H, but we will also need to understand
the restricted root system Φ(G, T θ) and the set of weights ΦV of the action of T θ on V . This will be
particularly important when defining the distinguished subspace W0 ⊂ V and the Q-invariant in Section
3. The exposition in this section is based on [Tho15, §2.3].

Write Φ/ϑ for the orbits of ϑ on Φ, where ϑ is the pinned automorphism defined in the previous section.

Lemma 2.3. 1. The map X∗(T ) → X∗(T θ) is surjective, and the group G is adjoint. In particular,
X∗(T θ) is spanned by Φ(G, T θ).
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2. Let α, β ∈ Φ. Then, the image of α in X∗(T θ) is non-zero, and α, β have the same image if and
only if either α = β or α = ϑ(β).

Proof. This is [Tho15, Lemma 2.5].

Hence, we can identify Φ/ϑ with its image in X∗(T θ). We note that ϑ = 1 if and only if −1 is an element
of the Weyl group W (H, T ); in this case Φ/ϑ coincides with Φ.

We can write the following decomposition:

h = t ⊕
⊕

a∈Φ/ϑ

ha,

with t = tθ ⊕ V0 and ha = ga ⊕ Va, so that

g = tθ
⊕

a∈Φ/ϑ

ga, V = V0 ⊕
⊕

a∈Φ/ϑ

Va.

Given a ∈ Φ/ϑ, we can identify ga and Va explicitly according to the value of s = (−1)⟨α,ρ̌⟩:

1. a = {α} and s = 1. Then, Va = 0 and gα is spanned by Xα.

2. a = {α} and s = −1. Then, Va is spanned by Xα and gα = 0.

3. a = {α, ϑ(α)}, with α ̸= ϑ(α). Then, Va is spanned by Xα − sXϑ(α) and gα is spanned by
Xα + sXϑ(α).

We note that ϑ preserves the height of a root α with respect to the basis SH (recall that the height of
a root α is defined as

∑
i ci, where α =

∑
αi∈SH

ciαi is the decomposition as the sum of simple roots).
Therefore, it will make sense to define the height of a root a ∈ Φ/ϑ as the height of any element in ϑ−1(a).

Remark 2.4. It will be important for us to define the height of a root in Φ/ϑ relative to its corresponding
height in h and not relative to its height with respect to some choice of basis of the root system Φ(G, T θ).
As an example, consider the E6 case following the conventions of [Tho15]. Say that a root basis for ΦH

is {α1, . . . , α6} and a basis for Φ(G, T θ) is (a1, a2, a3, a4) = (α3 + α4, α1, α3, α2 + α4). If a root a ∈ ΦV

can be expressed as a =
∑

niai =
∑

miαi for some integers ni, mi ∈ Z, under our definitions the height
of a root is ht(α) =

∑
mi and not

∑
ni. This is different than the natural notion of height we might

arrive at if we consider the weights of V as a representation of G abstractly.

2.3 Transverse slices over V // G

In this section, we present some remarkable properties of the map π : V → B, where we recall that
B := V // G is the GIT quotient.

Definition 2.5. An sl2-triple of h is a triple (e, h, f) of non-zero elements of h satisfying

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Moreover, we say this sl2-triple is normal if e, f ∈ h(1) and h ∈ h(0).

Theorem 2.6 (Graded Jacobson-Morozov). Every non-zero nilpotent element e ∈ h(1) is contained in
a normal sl2-triple. If e is also regular, then it is contained in a unique normal sl2-triple.

Proof. The first part of the statement is [Tho13, Lemma 2.17], and the second part follows from [Tho13,
Lemma 2.14].
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Type Curve # Marked points
A2n y2 = x2n+1 + p2x2n−1 + · · · + p2n+1 1
A2n+1 y2 = x2n+2 + p2x2n + · · · + p2n+1 2
D2n (n ≥ 2) y(xy + p2n) = x2n−1 + p2x2n−2 + · · · + p4n−2 3
D2n+1 (n ≥ 2) y(xy + p2n+1) = x2n + p2x2n−1 + · · · + p4n 2
E6 y3 = x4 + (p2x2 + p5x + p8)y + (p6x2 + p9x + p12) 1
E7 y3 = x3y + p10x2 + x(p2y2 + p8y + p14) + p6y2 + p12y + p18 2
E8 y3 = x5 + (p2x3 + p8x2 + p14x + p20)y + (p12x3 + p18x2 + p24x + p30) 1

Table 2: Families of curves

Definition 2.7. Let r be the rank of h. We say an element x ∈ h is subregular if dim zh(x) = r + 2.

Subregular nilpotent elements in V exist by [Tho13, Proposition 2.27]. Let e ∈ V be such an element,
and fix a normal sl2-triple (e, h, f) using Theorem 2.6. Let C = e + zV (f), and consider the natural
morphism φ : C → B.

Theorem 2.8. 1. The geometric fibres of φ are reduced connected curves. For b ∈ B(k), the corre-
sponding curve Cb is smooth if and only if ∆(b) ̸= 0.

2. The central fibre φ−1(0) has a unique singular point which is a simple singularity of type An, Dn, En,
coinciding with the type of H.

3. We can choose coordinates pd1 , . . . , pdr in B, with pdi being homogeneous of degree di, and coordi-
nates (x, y, pd1 , . . . , pdr

) on C such that C → B is given by Table 2.

Proof. See [Tho13, Theorem 3.8].

Our choice of pinning in Section 2.1 determines a natural choice of a regular nilpotent element, namely
E =

∑
α∈SH

Xα ∈ V (Q). Let (E, H, F ) be its associated normal sl2-triple by Theorem 2.6. We define
the affine linear subspace κE := (E + zh(F )) ∩ V as the Kostant section associated to E. Whenever E is
understood, we will just denote the Kostant section by κ.

Theorem 2.9. The composition κ ↪→ V → B is an isomorphism, and every element of κ is regular.

Proof. See [Tho13, Lemma 3.5].

Definition 2.10. Let k/Q be a field and let v ∈ V (k). We say v is k-reducible if ∆(v) = 0 or if v is
G(k)-conjugate to some Kostant section, and k-irreducible otherwise.

We will typically refer to Q-(ir)reducible elements simply as (ir)reducible. We note that if k is algebraically
closed, then all elements of V are reducible, see [Lag24, Proposition 2.11].

2.4 Integral structures

So far, we have considered our objects of interest over Q, but for our purposes it will be crucial to define
integral structures for G and V .

The structure of G over Z comes from the general classification of split reductive groups over any non-
empty scheme S: namely, every root datum is isomorphic to the root datum of a split reductive S-group
(see [Con14, Theorem 6.1.16]). By considering the root datum Φ(G, T θ) studied in Section 2.2 and the
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scheme S = SpecZ, we get a split reductive group G defined over Z, such that its base change to Q
coincides with G. By [Ric82, Lemma 5.1], we know that T θ, P θ are a maximal split torus and a Borel
subgroup of G, respectively. We also get integral structures for T θ and P θ inside of G.
Proposition 2.11. G and P θ have class number 1: G(A∞) = G(Q)G(Ẑ) and P θ(A∞) = P θ(Q)P θ(Ẑ).

Proof. Note that cl(G) ≤ cl(P θ) ≤ cl(T θ) by [PR94, Theorem 8.11, Corollary 1]. We see that T has
class number 1 using [PR94, Theorem 8.11, Corollary 2], since G contains a Q-split torus consisting of
diagonal matrices in GL(V ) and Q has class number 1.

To obtain the Z-structure for V , we consider h as a semisimple G-module over Q via the restriction of
the adjoint representation. This G-module splits into a sum of simple G-modules:

h = (⊕r
i=1Vi) ⊕ (⊕s

i=1gi) ,

where ⊕Vi = V and ⊕gi = g, since both subspaces are G-invariant. For each of these irreducible
representations, we can choose highest weight vectors vi ∈ Vi and wi ∈ gi, and we then consider

V i := Dist(G)vi, g
i

:= Dist(G)wi,

where Dist(G) the algebra of distributions of G (see [Jan07, I.7.7]). By the results in [Jan07, II.8.3], we
have that Vi = Q ⊗Z V i, gi = Q ⊗Z g

i
and that V := ⊕V i is a G-stable lattice inside V . By scaling the

highest weight vectors if necessary, we will assume that E ∈ V (Z).

We can also consider an integral structure B on B. We can take the polynomials pd1 , . . . , pdr
∈ Q[V ]G

determined in Section 2.3 and rescale them using the Gm-action t · pdi = tdipdi to make them lie in
Z[V ]G. We let B := SpecZ[pd1 , . . . , pdr ] and write π : V → B for the corresponding morphism. We may
additionally assume that the discriminant ∆ defined in Section 2.1 lies in Z[V ]G, where the coefficients
of ∆ in Z[pd1 , . . . , pdr

] may be assumed to not have a common divisor.

A crucial step in our argument will be to make our constructions in Zp for all p and then glue it all
together using the class number one property in Proposition 2.11. For this, we will need the following
lemma, which records the existence of orbits in V (Zp) (cf. [Tho15, Lemma 2.8]):
Lemma 2.12. There exists an integer N0 ≥ 1 such that for all primes p and for all b ∈ B(Zp) we have
N0 · κb ∈ V (Zp).

Our arguments in Section 3 will implicitly rely on integral geometric properties of the representation
(G, V ). In there, we will need to avoid finitely many primes, or more precisely to work over S =
SpecZ[1/N ] for a suitable N ≥ 1. By combining the previous lemma and the spreading out properties
in [Lag24, §7.2], we get:
Proposition 2.13. There exists a positive integer N ≥ 1 such that:

1. For every b ∈ B(Z), the corresponding Kostant section κb is G(Q)-conjugate to an element in
1
N V (Z).

2. N is admissible in the sense of [Lag24, §7.2].

In particular, we will always assume that N is even. We fix the integer N in Proposition 2.13 throughout
the rest of the paper. We will also drop the underline notation for the objects defined over Z, and just
refer to G, V . . . as G, V . . . by abuse of notation.

To end this section, we consider some further integral properties of the Kostant section. In Section 2.3,
we considered κ defined over Q, and now we will consider some of its properties over Zp. Consider the
decomposition

h =
⊕
j∈Z

hj
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according to the height of the roots. If P − is the negative Borel subgroup of H, N− is its unipotent
radical and p− and n− are their respective Lie algebras, we have p− =

⊕
j≤0 hj , n− =

⊕
j<0 hj and

[E, hj ] ⊂ hj+1.
Theorem 2.14. Let R be a ring in which N is invertible. Then:

1. [E, n−
R] has a complement in p−

R of rank rkR p−
R − rkR n−

R; call it Ξ.

2. The action map N− × (E + Ξ) → E + p− is an isomorphism over R.

3. Both maps in the composition E + Ξ → (E + p−) // N− → h // H are isomorphisms over R.

Proof. See [AFV18, §2.3].

Remark 2.15. If R is a field of characteristic not dividing N , then Ξ can be taken to be zh(F ) and
E + Ξ is the same as the Kostant section considered in Section 2.3. We will abuse notation by referring
to both the Kostant section defined in Section 2.3 and the section in Theorem 2.14 by κ.

Theorem 2.14 will be an important improvement from Theorem 2.9, since in the sequel we will need
the Kostant section to maintain certain integrality properties. In particular, it will be helpful to apply
Theorem 2.14 over Zp, a feature that would not be present if we only had Theorem 2.9.

3 Constructing orbits

Given an element b ∈ B(Z) with discriminant weakly divisible by m2 for a large squarefree number m
coprime to N , we will show how to construct a special g ∈ G(Z[1/m]) \ G(Z) such that gκb ∈ 1

N V (Z) in
a way that “remembers m”.

We start by defining the distinguished subspace W0 ⊂ V as

W0 :=
⊕

a∈Φ/ϑ
ht(a)≤1

Va,

where the notation is as in Section 2.2. We write an element v ∈ W0(Q) as v =
∑

ht(α)=1 vαXα +∑
ht(β)≤0 vβXβ , where each Xα, Xβ generates each root space Vα, Vβ and vα, vβ ∈ Q. Then, we can

define the Q-invariant of v ∈ W0 as Q(v) =
∣∣∣∏ht(α)=1 vα

∣∣∣. Now, define:

WM :=
{

v ∈ 1
N

V (Z)
∣∣∣∣ v = gκb for a squarefree m > M, (m, N) = 1, g ∈ G(Z[1/m]) \ G(Z), b ∈ B(Z), ∆(b) ̸= 0

}
.

The main result of the section is the following:
Proposition 3.1. Let b ∈ B(Z), and assume that StabG(Q) κb = {e}.

1. Let m > M be a squarefree integer, coprime to N . If m2 weakly divides ∆(b), then WM ∩ π−1(b) is
non-empty.

2. If v ∈ WM ∩ W0, then Q(v) > M .

The proof of Proposition 3.1 will rely on a reduction to sl2, inspired by the techniques in the proofs of
[Lag22, Lemma 4.19] and [RT21, Proposition 5.4], which we now explain.

Assume we have a connected reductive group L over a field k, together with an involution ξ. As in Section
2.1, the Lie algebra l decomposes as l = l(0) ⊕ l(1), according to the ±1 eigenspaces of dξ. We also write
L0 for the connected component of the fixed group Lξ.
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Definition 3.2. Let k be algebraically closed. We say a vector v ∈ l(1) is stable if the L0-orbit of v is
closed and its stabiliser ZL0(v) is finite. We say (L0, l(1)) is stable if it contains stable vectors. If k is not
necessarily algebraically closed, we say (L0, l(1)) is stable if (L0,ks , l(1)ks) is.

By [Tho16, Proposition 1.9], the θ defined in Section 2.1 is a stable involution, i.e. (G, V ) is stable.

We now prove the analogue of [RT21, Lemma 2.3]: the proof is very similar and is reproduced for
convenience.

Lemma 3.3. Let S be a Z[1/N ]-scheme. Let (L, ξ), (L′, ξ′) be two pairs, each consisting of a reductive
group over S whose geometric fibres are adjoint semisimple of type A1, together with a stable involution.
Then for any s ∈ S there exists an étale morphism S′ → S with image containing s and an isomorphism
LS′ → LS intertwining ξS′ and ξ′

S′ .

Proof. We are working étale locally on S, so we can assume that L = L′ and that they are both split
reductive groups. Let T denote the scheme of elements l ∈ L such that Ad(l) ◦ ξ = ξ′: by [Con14,
Proposition 2.1.2], T is a closed subscheme of L that is smooth over S. Since a surjective smooth
morphism has sections étale locally, it is sufficient to show that T → S is surjective. Moreover, we can
assume that S = Spec k for an algebraically closed field k, since the formation of T commutes with base
change.

Let A, A′ ⊂ L be maximal tori on which ξ, ξ′ act as an automorphism of order 2. By the conjugacy
of maximal tori, we can assume that A = A′ and that ξ, ξ′ define the (unique) element of order 2 in
the Weyl group. Write ξ = aξ′ for some a ∈ A(k). Writing a = b2 for some b ∈ A(k), we have
ξ = b · b · ξ′ = b · ξ′ · b−1. The conclusion is that ξ and ξ′ are L(k)-conjugate (in fact, A(k)-conjugate),
which completes the proof.

The following lemma is the key technical part in our proof. We remark the the first part was already
implicitly proven in the proof of [Lag24, Theorem 7.17].

Lemma 3.4. Let p be a prime that does not divide N .

1. Let b ∈ B(Zp) be an element with ordp ∆(b) = 1, where ordp : Q∗
p → Z is the usual normalized

valuation. Let v ∈ V (Zp) with π(v) = b. Then, the reduction mod p of v in V (Fp) is regular.

2. Let b ∈ B(Zp) be an element with discriminant weakly divisible by p2. Then, there exists gb,p ∈
G(Qp) \ G(Zp) such that gb,p · κb ∈ V (Zp).

Proof. Let vFp
= xs + xn be the Jordan decomposition of the reduction of v in Fp. Then, we have a

decomposition hFp
= h0,Fp

⊕ h1,Fp
, where h0,Fp

= zh(xs) and h1,Fp
= image(Ad(xs)). By Hensel’s lemma,

this decomposition lifts to hZp = h0,Zp ⊕ h1,Zp , with ad(v) acting topologically nilpotently in h0,Zp and
invertibly in h1,Zp . As explained in the proof of [Lag22, Lemma 4.19], there is a unique closed subgroup
L ⊂ HZp

which is smooth over Zp with connected fibres and with Lie algebra h0,Zp
.

For the first part of the lemma, we are free to replace Zp for a complete discrete valuation ring R with
uniformiser p, containing Zp and with algebraically closed residue field k. In this case, the spreading out
properties in [Lag24, §7.2] guarantee that the derived group of L is of type A1. Since the restriction of θ
restricts to a stable involution in L by [Tho13, Lemma 2.5], Lemma 3.3 guarantees that there exists an
isomorphism hder

0,R
∼= sl2,R intertwining the action of θ on hder

0,R with the action of ξ = Ad(diag(1, −1)) on
sl2,R. To show that vk is regular is equivalent to showing that the nilpotent part xn is regular in hder

0,k .
The elements vk and xn have the same projection in hder

0,k , and given that v ∈ hder,dθ=−1
0,R , its image in

sl2,R is of the form (
0 a
b 0

)
.
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We claim that ordR(ab) = 1. This can be seen from an argument similar to the end of [Lag24, Lemma
7.15], i.e. using [Lag24, Lemma 2.3]1, it follows that the discriminant of v in h coincides with the
discriminant of its image in sl2 up to a unit in R, as wanted. In particular, exactly one of a, b is non-zero
when reduced to k, and hence xn is regular in hder

0,k , as wanted.

For the second part, we return to the case R = Zp. If b ∈ B(Zp) has discriminant weakly divisible by p2,
there exists b′ ∈ B(Zp) such that ordp ∆(b + pb′) = 1. Since the Kostant section κ is algebraic, we know
that κb − κb+pb′ ∈ pV (Zp). By the first part of the lemma, we know that κb+pb′ is regular mod p, and so
κb is also regular mod p. In particular, writing κb,Fp

= xs + xn as before, this means that the nilpotent
part xn is a regular nilpotent in hder

0,Fp
. We now claim that:

(i) We have an isomorphism hder
0,Zp

∼= sl2,Zp ;

(ii) The isomorphism intertwines the actions of θ and the previously defined ξ;

(iii) Over Fp, the isomorphism sends the regular nilpotent xn to the matrix

e =
(

0 1
0 0

)
of sl2,Fp

.

We note that this does not follow immediately from Lemma 3.3, as the isomorphism a priori does not
need to be defined over Zp.

We prove our claim as follows: Consider the Zp-scheme X = Isom((L/Z(L), θ), (PGL2, ξ)), consisting of
isomorphisms between L/Z(L) and PGL2 that intertwine the θ and ξ-actions. Using Lemma 3.3, we see
that étale-locally, X is isomorphic to Aut(PGL2, ξ); in particular, it is a smooth scheme over Zp. By
Hensel’s lemma [Gro67, Théorème 18.5.17], to show that X has a Zp-point it is sufficient to show that it
has an Fp-point.

We now consider the Fp-scheme Y = Isom((L/Z(L)Fp , θ, xn), (PGL2, ξ, e)) of isomorphisms preserving
the θ and ξ-actions which send xn to e: it is a subscheme of XFp

. If Y (Fp) is non-empty, then by Hensel’s
lemma it can be lifted to an isomorphism of X(Zp) satisfying all three points of the claim. Therefore,
the claim will follow from seeing that Y (Fp) ̸= ∅.

Again by Lemma 3.3, Y is étale locally of the form Aut(PGL2, ξ, e), since PGLξ
2 acts transitively on

the regular nilpotents of sldξ=−1
2 for any field of characteristic p > N . In particular, we see that Y is

an Aut(PGL2, ξ, e)-torsor. In this situation, to see that Y (Fp) is non-empty it will suffice to see that
Aut(PGL2, ξ, e) = SpecFp. This follows from the elementary computation of the stabiliser of e under
PGLξ

2, which can be seen to be trivial over any field.

In conclusion, Y (Fp) is non-empty, meaning that there is an isomorphism hder
0,Zp

∼= sl2,Zp respecting θ and
ξ, and we can make it so that the projection of κb in sl2,Zp

is an element of the form(
0 a

bp2 0

)
,

with a, b ∈ Zp and a ∈ 1 + pZp. Moreover, there exists a morphism φ : SL2 → Lder
Qp

inducing the
given isomorphism hder

0,Qp

∼= sl2,Qp
, since SL2 is simply connected. The morphism φ necessarily respects

the grading, and induces a map SL2(Qp) → Lder(Qp) on the Qp-points. Consider the matrix gb,p =
φ(diag(p, p−1)): it satisfies the conditions of the lemma, and so we are done.

1The cited result is only stated in [Lag24] for fields of characteristic zero, but it is still valid in our situation for k: the
only results that are invoked in that proof are those in [Ste75, §3], which hold as long as char k is not a torsion prime for
H, which we may assume.
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Remark 3.5. A natural follow-up question to Lemma 3.4 is to ask how many gb,p ∈ G(Qp) \ G(Zp) are
there (up to a G(Zp)-action) such that gb,p ·kb ∈ V (Zp). The proof of the lemma implies that if pk | ∆(b),

then the projection of κb in sl2,Zp
is of the form

(
0 a

bpk 0

)
, so we can conjugate by diag(p, p−1) a total

of ⌊ k
2 ⌋ times. It is natural to expect that all the possible choices of gb,p arise in this fashion; however, we

do not know if that is true.

Remark 3.6. It would be very convenient if in the proof of Lemma 3.4 we could obtain a g ∈ SL2(Qp)
such that

g

(
0 a

bp2 0

)
g−1 =

(
0 ap
bp 0

)
,

in order to transform the “mod p2” divisibility into “mod p” divisibility, but unfortunately that doesn’t
appear to be possible in general. If that were the case, the element v′ ∈ V (Zp) corresponding to the

matrix
(

0 ap
bp 0

)
would not be regular modulo p, and in this situation we would be able to count such

orbits using [Bha14b] (without needing geometry-of-numbers!). We note that this strategy is used in
[RT21, Proof of Theorem 6.10], which works in their case because they are working over a Z/3Z-grading
instead of a Z/2Z-grading.

Proof of Proposition 3.1. We start by proving the first item. Since G has class number 1 by Proposition
2.11, the natural map G(Z)\G(Z[1/m]) →

∏
p|m G(Zp)\G(Qp) is a bijection. In Lemma 3.4, for each

prime p | m, we constructed an element gb,p ∈ G(Zp)\G(Qp), so all these elements together correspond to
some element gb ∈ G(Z[1/m])\G(Z). By construction, gb·κb belongs to (∩p|mV (Zp))∩V (Z[1/m]) = V (Z).

We now prove the second item. Specifically, if v ∈ WM ∩W0 is given by gκb for some g ∈ G(Z[1/m])\G(Z),
we will prove that m | Q(v). It suffices to consider each prime p | m separately, so assume that g ∈
G(Z[1/p]) \ G(Z). Since the group H is adjoint, there exists a t ∈ T (Q) that makes all the height-one
coefficients of tκb be equal to one, and in this case we see that t ∈ T θ(Q). By Theorem 2.14, there
exists a unique γ ∈ N−(Q) such that γtκb = v; by taking θ-invariants in the isomorphisms of Theorem
2.14. we see that γ ∈ N−,θ(Q). Since the stabiliser is trivial, we see that g = γt, or in other words that
g ∈ P −,θ(Z[1/p]) \ P −,θ(Z).

Assume that Q(v) is invertible in Zp, so that all the height-one coefficients of v are invertible. Then,
there exists a t′ ∈ T (Zp) making all the height-one coefficients of t′v be equal to one, and by Theorem
2.14, there exists at most one element γ′ in N−(Zp) such that γ′t′κb = v. Consequently, g ∈ P −,θ(Zp) ∩
P −,θ(Z[1/p]) = P −,θ(Z), a contradiction. In summary, we have that p | Q(v) for all primes p | m, as
wanted.

Example 3.7. Our construction is inspired by the construction in [BSW22a, Sections 2.2 and 3.2] for
the case An. In that case, C → B corresponds to the family of hyperelliptic curves y2 = f(x), where
f(x) has degree n + 1 (there is a slight difference between this paper and [BSW22a], in that we consider
f(x) without an xn term while they consider polynomials with a possibly non-zero linear term; we ignore
this difference for now). The main goal of [BSW22a, Sections 2.2 and 3.2] is to construct an embedding

σm : W(m)
2 → 1

4W0(Z) ⊂ 1
4V (Z),

where σm(f) has characteristic polynomial f and Q(σm(f)) = m.2 By taking the usual pinning in SLn+1,
we see that V corresponds to the space of matrices in sln+1 which are symmetric across the antidiagonal,
W0 corresponds to the subspace of V where the entries above the superdiagonal are zero, and the height-
one entries are precisely those in the superdiagonal (in [BSW22a], everything is “reflected vertically”, so

2In [BSW22a], the space that we denote as W0 is denoted there by W00.
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for instance V is the space of symmetric matrices across the diagonal; this makes no difference in the
results). An explicit section of B can be taken to lie in 1

4 W0(Z): namely, if n is odd, the matrix

B(b1, . . . , bn+1) =



0 1

0 . . .

1
0 1

−b2
2 −b1 1

. .
.

−b3
−b2

2 0 1
−bn−2

2 . .
.

. .
. . . .

−bn

2 −bn−1
−bn−2

2 0 1
−bn+1

−bn

2 0


can be seen to have characteristic polynomial f(x) = xn+1 + b1xn + · · · + bnx + bn+1; if n is even, a
similar matrix can be given. The main observation in this case is that if m2 weakly divides ∆(f), then
there exists an l ∈ Z such that f(x + l) = xn+1 + p1xn + · · · + mpnx + m2pn+1 (cf. [BSW22a, Proposition
2.2]). Then, if D = diag(m, 1, . . . , 1, m−1), we observe that the matrix

D(B(p1, . . . , pn−1, mpn, m2pn+1) + lIn+1)D−1

is integral, has characteristic polynomial f(x) and the entries in the superdiagonal are (m, 1, . . . , 1, m).
Thus, this matrix has Q-invariant m, as desired.

Remark 3.8. Our Q-invariant is slightly different to the Q-invariant defined in [BSW22a], which is
defined in a slightly more general subspace of V . When restricting to W0(Q), their Q-invariant turns out
to be a product of powers of the elements of the superdiagonal, whereas in our case we simply take the
product of these elements. This difference does not affect the proof of Theorem 1.2, and we can also see
that for both definitions the Q-invariant in the previous example is m.

4 Reduction theory

In light of the results in Section 3, to bound families of curves with non-squarefree discriminant it is
sufficient to estimate the size of the G(Z)-invariant set WM . Before we are able to obtain such an
estimate, we will need to obtain a precise count of the number of reducible G(Z)-orbits in V (Z). To
do so, we will first need some results about reduction theory: most importantly, we will construct a
box-shaped domain for the action of G(Z) on G(R), in the style of [Sha+22, §2.2].

4.1 Heights

Recall that B = SpecZ[pd1 , . . . , pdr ]. For any b ∈ B(R), we define the height of b to be

ht(b) = sup
i=1,...,r

|pdi(b)|1/di .

Similarly, for every v ∈ V (R) we define ht(v) := ht(π(v)). We record the following fact from [Lag24,
Lemma 8.1], which in particular means that the number of elements of B(Z)<X := {b ∈ B(Z) | ht(b) < X}
is of order Xdim V :

Lemma 4.1. We have d1 + · · · + dr = dimQ V .
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4.2 Measures on G

Let ΦG = Φ(G, T θ) be the set of roots of G. The Borel subgroup P θ of G determines a root basis SG

and a set of positive/negative roots Φ±
G, compatible with the choice of positive roots in H determined by

the pinning of Section 2.1. Let N be the unipotent radical of the negative Borel subgroup P −,θ. Then,
there exists a maximal compact subgroup K ⊂ G(R) such that

N(R) × T θ(R)◦ × K → G(R)

given by (n, t, k) 7→ ntk is a diffeomorphism; see [Lan75, Chapter 3, §1]. We can choose K to be
“compatible” with T ; that is, we can choose a Cartan involution τ such that the fixed points of G with
respect to τ is exactly K, and satisfying that τ |T is just the inversion map. The following result is a
well-known property of the Iwasawa decomposition:

Lemma 4.2. Let dn, dt, dk be Haar measures on N(R), T θ(R)◦, K, respectively. Then, the assignment

f 7→
∫

n∈N(R)

∫
t∈T θ(R)◦

∫
k∈K

f(ntk)δ(t)−1dn dt dk

defines a Haar measure on G(R). Here, δ(t) =
∏

β∈Φ−
G

β(t) = det Ad(t)|Lie N(R).

We get the measure on T θ(R)◦ by pulling it back from the isomorphism
∏

β∈SG
β : T θ(R)◦ → R#SG

>0 ,
where R>0 is given the standard Haar measure d×λ = dλ/λ. We will choose the normalizations for dn
and dk in Section 5.1 in a way that will be convenient for us.

4.3 Fundamental domains

In this section, we construct a fundamental domain for the action of G(Z) on G(R). In view of [Sha+22],
it will be useful to construct a “box-shaped” fundamental domain F , which we will now define. For any
c > 0, define Tc = {t ∈ T θ(R)◦ | ∀α ∈ SG, α(t) ≥ c}. We define a Siegel set to be a set of the form
S = ω · Tc · K, where ω ⊂ N(R) is a compact subset, c is a positive real constant and K is the maximal
compact subset fixed in Section 4.2. Then, we say that a fundamental domain F for the action of G(Z)
on G(R) is box-shaped at infinity if there exist two Siegel sets S1 ⊂ F ⊂ S2 satisfying that:

1. There exists an open subset U1 ⊂ S1 of full measure such that every G(Z)-orbit in G(R) intersects
U1 at most once.

2. Every G(Z)-orbit in G(R) intersects S2 at least once.

3. For sufficiently large c, we have S1 ∩ NTcK = S2 ∩ NTcK.

To construct F , we will see that it is sufficient to construct S1 and S2. More precisely, we have as in
[Sha+22, Lemma 7]:

Lemma 4.3. Let Λ be a discrete subgroup of a Lie group G and denote by B(G) the Borel σ-algebra of
G. Assume there exist sets S1, S2 in B(G) such that the natural maps S1 → G/Λ and S2 → G/Λ are
injective and surjective, respectively. Then, there exists a set F in B(G) which is a fundamental domain
for the action of Λ on G satisfying S1 ⊂ F ⊂ S2.

We will construct S1 and S2 in the following subsections.

Remark 4.4. The constructed S1 and S2 will not strictly be Siegel sets of the form ωTcK, but rather
of the form ωTcK ′ for some subset K ′ of K. We will call them Siegel sets regardless.
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4.3.1 Constructing S1

To obtain the domain S1, we will use general properties of the Borel-Serre compactification following
[BS73]. The construction below holds for a general connected semisimple algebraic group G over Q,
unless otherwise specified (note that our group G is always semisimple by [Lag24, Proposition 3.7]).

Consider the symmetric space X = G(R)/K, where K is a maximal compact subgroup of G(R). For each
parabolic Q-subgroup P of G, let SP := (RdP/(RuP · RdG)), where Ru denotes the unipotent radical
and Rd denotes the Q-split part. Then, SP is a Q-split torus, and we let AP := SP (R)◦. There is a
natural action of AP on X called the geodesic action (see [BS73, (3.2)]). Set e(P ) = AP \X, and consider

X =
∐

P parabolic
e(P ),

which by [BS73, (7.1)] naturally has a structure of a manifold with corners. The topology of X is studied
in [BS73, §5, §6]; in particular, it is shown that for any parabolic group P , the subset X(P ) =

∐
Q⊃P e(Q)

is an open subset of X. Taking P = G, we see that e(G) = X is an open submanifold of X.

Assume for simplicity that G is split over Q with split maximal torus T . Let P = NT be a Borel subgroup
of G. For x ∈ X and a real constant c > 0, we can consider the set

Ux,P,c = N(R)(Tc · x).

Its closure Ux,P,c in X is a neighbourhood of the closure of e(P ) in X. Then, we have the following result
(see [BS73, Proposition 10.3]):

Proposition 4.5. There exists c > 0 satisfying that for any g1, g2 ∈ Ux,P,c, if there exists γ ∈ G(Z) such
that g1 = γg2, then γ ∈ P (Z).

To obtain a suitable Siegel set S1, we need to carefully choose a compact subset ω ⊂ N(R). Let
(α1, . . . , αk) be an ordering of the positive roots of G satisfying that ht(αi) ≤ ht(αi+1) for all 1 ≤ i ≤ k−1.
For each root αi we consider the isomorphism uαi : Ga → Uαi , where Uαi ⊂ N . By [Con14, Theorem
5.1.13], there is an isomorphism of varieties over Z:

k∏
i=1

Uαi
→ N

which is just the multiplication map. In other words, we can express any element of N(R) as uα1(x1) · · · uαk
(xk)

for some x1, . . . , xk ∈ R. Moreover, a set of x1, . . . , xk will correspond to an element of N(Z) if and only
if x1, . . . , xk ∈ Z. We now recall the following result (see e.g. [Con14, Proposition 5.1.14]):

Lemma 4.6. Let x, y ∈ R, and let α, β be positive roots. Then,

uα(x)uβ(y)uα(−x)uβ(−y) =
∏

i,j>0
uiα+jβ(ci,α,j,βxiyj).

Here ci,α,j,β is a constant, and the product is taken over all i, j > 0 such that iα + jβ is a positive root.

Consider the set ω = {uα1(x1) · · · uαk
(xk) ∈ N(R) | xi ∈ [−1/2, 1/2] ∀i} ⊂ N(R).

Proposition 4.7. We have that

1. N(Z)ω = N(R).

2. Except for a set of zero measure, no two distinct elements of ω are N(Z)-translates of each other.
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Proof. For the first point, let y1, . . . , yk ∈ R. We will show that there exist n1, . . . , nk ∈ Z and x1, . . . , xk ∈
R such that

uα1(n1) · · · uαk
(nk)uα1(x1) · · · uαk

(xk) = uα1(y1) · · · uαk
(yk). (3)

Using the commutator relations of Lemma 4.6, we can reorder the terms in the left hand side to get
equations of the form

ym = nm + xm + pm(n1, . . . , nk, x1, . . . , xk), (4)

where pm are polynomials. By examining the commutator relations, we see that pm only depends on
the variables corresponding to lower height coefficients. In particular, if αm is a height-one root, we can
choose nm ∈ Z and xm ∈ [−1/2, 1/2] such that ym = nm + xm. We can then find coefficients nm, xm for
the larger height roots inductively using (4).

For the second point, choose two elements of ω with coefficients x1, . . . , xk and y1, . . . , yk lying in
(−1/2, 1/2). Assume there exist n1, . . . , nk ∈ Z satisfying (3). By induction, we will show that ni = 0
for all i. This is clear for the height-one coefficients, since ni + xi = yi. Assume by induction that all
the coefficients ni are zero up to some height h. We note that by Lemma 4.6 all terms in the polynomial
pm(n1, . . . , nk, x1, . . . , xk) are multiple of at least one ni of lower height. Hence, by induction we get that
pm(n1, . . . , nk, x1, . . . , xk) = 0 and thus that nm = 0, as wanted.

Assume from now on that our group G is one of the groups constructed in Section 2.1. We note that
T θ(Z) acts by conjugation on ω: recall that Ad(t) · uα(x) = uα(α(t) · x), and for any t ∈ T θ(Z) we
have that α(t) = ±1. Alternatively, we can say that there is a mapping T θ(Z) → {±1}#SG given by
t 7→ (α(t))α∈SG

; however, it needs not be surjective: denote by A = {a1, . . . , al} a set of representatives
of the cokernel of this map. For any element ai ∈ A, write it as ai = (ai,1, . . . , ai,k), where ai,j = ±1
correspondingly. Consider the set ωi inside ω consisting of those elements u = uα1(x1) · · · uαk

(xk) such
that for all height-one coefficients αj , we have xj ∈ ai,j · [0, 1/2]. Finally, define ω to be the union of the
sets ωi. Then, each element in ω is conjugate to a unique element in ω.

Additionally, we note that T θ(Z) ⊂ K, since T θ(Z) is fixed by the Cartan involution τ chosen in Section
4.2, and τ |T θ is just the inverse map.

Take S1 = ωTcK, where c > 0 satisfies the conclusions of Proposition 4.5, and K is a fundamental set
for the action of Z(G)(Z) on K. Let g1 = n1t1k1 and g2 = n2t2k2 be two elements of S1, and moreover
we assume that n1 and n2 lie in the interior of ω (this interior is a set of full measure). Assume that g1
and g2 are equivalent under the G(Z)-action. By Proposition 4.5, it follows that g1 and g2 have to be
P θ(Z)-conjugate, say by an element p0 = n0t0 for n0 ∈ N(Z) and t0 ∈ T θ(Z). Then, we can write

n0(t0n1t−1
0 )t1(t0k1) = n2t2k2.

By uniqueness in the Iwasawa decomposition, we have that n0(t0n1t−1
0 ) = n2, t1 = t2 and t0k1 =

k2. If we look at the first equation in terms of height-one roots αi, we get equalities of the form
uαi(x0)uαi(αi(t0)x1) = uαi(x2), where x0 ∈ Z and x1, x2 ∈ [−1/2, 1/2] (or a subinterval if appropriate).
This can only happen if x0 = 0 for all coefficients, meaning that n0 = 1, and also by construction of ω it
must also happen that αi(t0) = 1 for all i, or in other words that t0 ∈ Z(G)(Z). Then, the last equation
t0k1 = k2 can only happen if t0 = 1 by construction. Therefore, g1 = g2 as wanted.

4.3.2 Constructing S2

We can construct S2 compatibly with S1 thanks to the following proposition:

Proposition 4.8. There exists a real constant c > 0 such that G(R) = G(Z)ωTcK, where ω and K are
as in Section 4.3.1.

17



Proof. We can show that G(R) = G(Z)ω′TcK for some compact subset ω′ ⊂ N(R) and some c > 0 using
[PR94, Theorem 4.15], the first statement is reduced to showing that G(Q) = P θ(Q)G(Z), which follows
from [Bor66, §6, Lemma 1(b)].

It is clear that K can be substituted by K, since we can multiply by an appropriate element of Z(G)(Z)
in G(Z). Now, let g = g0ntk be an element of G(R) = G(Z)ω′TcK: we will show that g ∈ G(Z)ωTcK.
We know that there exists n0 ∈ N(Z) and t0 ∈ T θ(Z) such that t0n0nt−1

0 ∈ ω. Let z ∈ Z(G)(Z) be such
that zt0k ∈ K. Then, g = (z−1g0n−1

0 t−1
0 )(t0n0nt−1

0 )t(zt0k) ∈ G(Z)ωTcK, as wanted.

We fix S2 = ωTcK, for some c > 0 satisfying the above proposition. It is clear then that S1 and S2 satisfy
the required properties, and hence that by Lemma 4.3 we obtain a box-shaped fundamental domain F
for the action of G(Z) over G(R).

5 Counting reducible orbits

In light of the results of Section 3, to estimate the elements of B(Z) having discriminant divisible by
the square of a large prime, it suffices to count certain special reducible G(Z)-orbits in V (Z). In this
section, we develop much of what we will need in this regard, following Bhargava’s geometry-of-numbers
techinques, and in particular using the ideas in [Sha+22].

5.1 Averaging

Let S ⊂ V (Z) be a G(Z)-invariant subset. Define

N(S, X) =
∑

v∈G(Z)\S
ht(v)<X

1
# StabG(v)(Z) .

We will prove the following:

Theorem 5.1. There exist real positive constants C, δ such that

N(V (Z)red, X) = CXdim V + O(Xdim V −δ).

By analogous arguments to [Tho15, §2.9], there exist open subsets L1, . . . , Lk covering {b ∈ B(R) |
ht(b) = 1, ∆(b) ̸= 0} such that for a fixed i, the quantity ri = # StabG(R)(v) remains constant for any
choice of v ∈ π−1(Li). We will denote Λ = R>0 and Vi := V (Z)red ∩ G(R)κ(ΛLi). Fix a compact left
and right K-invariant set G0 ⊂ G(R) which is the closure of a non-empty open set, for which we assume
that G0 = G−1

0 . An averaging argument just as in [BS15, §2.3] yields

N(Vi, X) = 1
ri vol(G0)

∫
g∈F

#{v ∈ V (Z)red ∩ (gG0κ(ΛLi))<X}dg. (5)

To obtain the estimate for N(V (Z)red, X), it will suffice to obtain the appropriate estimates for N(Vi, X).
For any subset S inside V (Z)red ∩ G(R)κ(ΛLi), we can use the expression (5) to define N(S, X) as

N(S, X) = 1
ri vol(G0)

∫
g∈F

#{v ∈ S ∩ (gG0κ(ΛLi))<X}dg.

For the argument, it will be crucial to use Davenport’s lemma (see [Dav51]), as stated in [BS15, Propo-
sition 2.6]. We record it here for convenience.
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Proposition 5.2. Let R be a bounded, semialgebraic multiset in Rn having maximum multiplicity m
and that is defined by at most k polynomial inequalities, each having degree at most l. Then,

#(R ∩ Zn) = vol(R) + O(max({vol(R), 1})),

where vol(R) denotes the greatest d-dimensional volume of any projection of R onto a coordinate subspace
obtained by equating n − d coordinates to zero, and where d takes any value between 1 and n − 1. The
implied constant in the second summand depends only on n, m, k and l.

5.2 Applying the Selberg sieve

Another important step in our argument will be the use of the Selberg sieve. Notably, in the statement
of Theorem 5.1 we require a power saving estimate in the error term, which we will obtain by applying
the Selberg sieve as in [ST14]. In this section, we describe exactly how the Selberg sieve is used, and
which hypothesis are needed.

The general situation is the following: suppose we have a finite sequence of non-negative numbers A =
(an)n, and let P be a finite product of distinct primes. For all d|P , assume the following holds:∑

n≡0 mod d

an = g(d)X + rd, (6)

where X > 0 and g(d) is a multiplicative function satisfying 0 < g(p) < 1 for all primes p|P . Define the
multiplicative function h by h(p) = g(p)

1−g(p) at primes p. For some choice of D0 > 1, write

H =
∑

d<
√

D0
d|P

h(d).

Then, [IK04, Theorem 6.4] says that

∑
(n,P )=1

an ≤ XH−1 + O

∑
d≤D0

d|P

τ3(d)rd

 . (7)

We now explain how to apply (7) in our context of orbit-counting. We will typically work in a subset
W ⊂ V (Z) (e.g. the main body, the cusp...), and we will suppose we have a set S ⊂ W which satisfies
S = ∩pSp, where for each prime p, the set Sp is defined by congruence conditions modulo p. We wish
to estimate N(S, X), which will generally be some orbit-counting function of S inside W (to be made
precise in future applications). Let Tp be the complement of Sp in W , and fix a number z < X. Let
P (z) =

∏
p<z p, and for a number d|P (z) set

ad = N

⋂
p|d

Tp

⋂
p| P (z)

d

Sp, X

 .

If d ∤ P (z), set ad = 0. To apply the Selberg sieve, we need an estimate like (6). Let L be a translate of
mW , for some squarefree m ∈ Z, and assume that we have an estimate of the form

N(L, X) = km−AXB + O(m−A+CXB−D), (8)

for some non-negative constants A, B, C, D and k. Then, it follows that∑
n≡0 mod d

an = N(∩p|dTp, X) = kgdXB + rd,
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where for a prime p, the quantity gp is the density of Tp, for d squarefree we set gd =
∏

p|d gp, and we
have rd = O(dCgdXB−D). Then, by (7), we have

a1 =
∑

(n,P (z))=1

an ≤ kXBH−1 + O

∑
d≤D0

d|P

τ3(d)rd

 .

Assume now that as p → ∞, the density gp converges to some constant λ ∈ (0, 1). Then, we are able to
obtain bounds for H and rd depending only on X and the choice of D. Given that d−ε ≪ε gd ≪ε dε, we
get that H = D

1/2+o(1)
0 . For the error term, we get that∣∣∣∣∣∣∣∣

∑
d≤D0

d|P

τ3(d)rd

∣∣∣∣∣∣∣∣ ≪ε XB−DDε
0
∑

d≤D0

dC ≪ε XB−DDC+1+ε
0 .

The end result is that a1 ≪ε XBD
−1/2+ε
0 + XB−DDC+1+ε

0 . By making an appropriate choice of D as a
power of X, we can optimize this expression to yield a1 = O(XB−δ) for some δ > 0.

So, in summary, to use the Selberg sieve in the same way that is used in [ST14], it will suffice to have
an expression of the form (8), and a proof that the densities of our sets Sp converge to some constant in
(0, 1) as p goes to infinity.

5.3 Reductions

We return to the setting of Section 5.1, where we had

N(Vi, X) = 1
ri vol(G0)

∫
g∈F

#{v ∈ V (Z)red ∩ (gG0κ(ΛLi))<X}dg.

To estimate this quantity, we will make some necessary reductions. We will begin with a “cutting-off-
the-cusp” result, which amounts to saying that not too many points in the cusp are irreducible.

Proposition 5.3. Let v0 be the coefficient of the highest weight in V . Then, there exists a constant
δ1 > 0 such that ∫

g∈F
#{v ∈ (V (Z) \ W0(Z)) ∩ gBX | v0 = 0}dg = O(Xdim V −δ1).

Proof. This is the content of [Lag24, Proposition 8.12].

In a similar spirit, we also show that most of the elements in the main body are irreducible:

Proposition 5.4. Let v0 be the coefficient of the highest weight in V . Then, there exists a constant
δ2 > 0 such that ∫

g∈F
#{v ∈ V (Z)red ∩ gBX | v0 ̸= 0}dg = O(Xdim V −δ2)

Proof. We will prove this statement by using the Selberg sieve, as explained in Section 5.2. First of all,
if v ∈ V (Z) is reducible, then for all primes p not dividing the N fixed in Proposition 2.13 the reduction
of v mod p is reducible, since by Theorem 2.14 v is G(Zp) conjugate to κb. By [Lag24, Proof of Lemma
8.22], the density of elements in V (Fp) which are Fp-reducible converges to some constant λ ∈ (0, 1).
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To apply the Selberg sieve, we need some result in the style of (8). This is essentially the content of
[Lag24, Proposition 8.15 and Theorem 8.17]; a power saving estimate can be obtained similarly to [BG13,
Proposition 10.5], and the contribution from the congruence conditions can be done similarly to our proof
of Theorem 6.1: we do not repeat it here for the sake of concision.

5.4 Counting reducible orbits

The previous reductions show that when trying to estimate

N(Vi, X) = 1
ri vol(G0)

∫
g∈F

#{v ∈ V (Z)red ∩ (gG0κ(ΛLi))<X}dg,

it is sufficient to work over the cusp W0(Z) up to a power-saving error term. Given that F is a box-shaped
fundamental domain, we can write it as a disjoint union F ′ ∪ ωTcK, where ω, c and K are as in Section
4.3.1 and F ′ is a subset of

ω · {t ∈ T θ(R)◦ | α(t) ≤ c for some α ∈ SG} · K.

An explicit computation (e.g. following the reasoning in this section and in Section 5.6) shows that the
integral in (5) is negligible when F is substituted by F ′. Hence, it suffices to integrate over ωTcK. Given
that G0 is K-invariant and that dk can be normalised so that K has volume 1, we get:

N(Vi, X) = 1
ri vol(G0)

∫
n∈ω

∫
t∈Tc

#{v ∈ W0(Z) ∩ ntBX}δ−1(t)dnd×t + O
(
Xdim V −δ

)
for some δ > 0. It would be desirable to estimate the lattice points in the region using Davenport’s
lemma; however, as noted in [Sha+22], the cuspidal region is too skewed to apply the lemma directly: in
particular, some of volumes of the projections can be of the order of the main term. To circumvent this,
we will “slice” the region W0(Z) according to the values of the height-one coefficients. For v ∈ W0(Z),
denote by (σ1(v), . . . , σr(v)) its height-one coefficients. Then, for any b = (b1, . . . , br) ∈ Rr and any
subset S ⊂ W0(R), we will denote

S|b = {v ∈ S | (σ1(v), . . . , σr(v)) = b}.

Then, we can express
#(W0(Z) ∩ (ntBX)) =

∑
b∈Zr

#(W0(Z) ∩ (ntBX)|b).

Actually, we can assume that in the sum over b = (b1, . . . , br) ∈ Zr, none of the components bi are equal
to zero due to the following:

Lemma 5.5. Let v ∈ W0(R). If σi(v) = 0 for some i, then ∆(v) = 0.

Proof. Let {α1, . . . , αk} be the height-one weights, and assume that the coefficient of αi of v is zero. Let
λi : Gm → GC be the one-parameter subgroup such that (αj ◦ λi)(t) = tδij . Then, v has no positive
weights with respect to λi, and so by Proposition 2.2 we get the result.

When applying Proposition 5.2 to (ntBX)|b, we get

#(W0(Z) ∩ (ntBX)|b) = vol((ntBX)|b)(1 + O(X−1)). (9)

The term O(X−1) can be obtained as follows: each coefficient v0 in W0(R) has a weight under the action
of T , which we will denote w(v0). When performing the slicing, that is, fixing the values of the height-one
coefficients, all the weights turn out to be ≫ X, and given that the volume of the region is the product
of the weights of the different coordinates, we obtain the saving of size X.
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Given that unipotent transformations preserve the volume, and that we can normalise dn so that vol(ω) =
1, we can write the following:

N(Vi, X) = 1
ri vol(G0)

∑
b∈(Z\{0})r

∫
t∈Tc

vol((tBX)|b)δ−1(t)d×t + O(Xdim V −δ). (10)

For each height-one coefficient vi, we will denote βi := (Xw(vi)bi)−1, and β = (βi)i. Denote by W♭ the
set of coordinates of W0 of non-positive height. It follows that

vol((tBX)|b) = vol(tX · B|β) = Xdim W♭

∏
v∈W♭

w(v) vol(B|β).

We will make the change of variables t 7→ β = (β1, . . . , βr), under which d×t = d×β =
∏

i
dβi

βi
. In Section

5.6, we will explicitly compute the volume of the cuspidal region for each of the possible cases. We will
obtain a polynomial Z(β) =

∏
i βei

i with integer exponents ei ≥ 2, and we will see that

Xdim W♭

∏
v∈W♭

w(v)δ−1(t) = Xdim V Z(β)
Z(b) . (11)

It follows that ∫
t∈Tc

vol((tBX)|b)δ−1(t)d×t = Xdim V

|Z(b)|

∫
β∈Rr

>0\T ′
Z(β) vol(B|β)d×β,

where T ′ is the region corresponding to T (R) \ Tc. It is not difficult to see that the integral over T ′ is
O(X−1), and hence can be added to the error term. For an element v ∈ W0(Z), define Z(v) := Z(σi(v)) =∏

i σi(v)ei and Z×(v) :=
∏

i σi(v)ei−1. Then,∫
t∈Tc

vol((tBX)|b)δ−1(t)d×t = Xdim V

|Z(b)|

∫
β∈Rr

>0

Z(β) vol(B|β)d×β + O(Xdim V −1)

= Xdim V

|Z(b)|

∫
v∈B∩W0(R)+

Z×(v)dv + O(Xdim V −1).
(12)

Here, W0(R)+ = {v ∈ W0(R) | σi(v) > 0, ∀i}. Combining (10) and (12), and summing over all b, we
obtain that

N(Vi, X) = 2r
r∏

i=1
ζ(ei) ·

(
1

ri vol(G0)

∫
v∈B∩W0(R)+

Z×(v)dv

)
Xdim V + O(Xdim X−δ). (13)

To obtain the desired asymptotic for N(V (Z)red, X), it suffices to use the inclusion-exclusion principle.
For any subset I ⊂ {1, . . . , r}, the same procedure as above obtains (13) for the the set VI = ∩i∈IVi,
with the appropriate constants substituted. This concludes the proof of Theorem 5.1.

5.5 Computing the constant

As promised, we will compute the constant of the main term of Theorem 5.1. We will do so using a
Jacobian change-of-variables formula, whose statement and proof are completely analogous to [Sha+22,
Proposition 14]: we include the proof in our case for convenience.
Proposition 5.6. Let ϕ : W0(R) → R be a measurable function. Then, there exists a non-zero rational
constant J ∈ Q× such that

∫
v∈W0(R)

ϕ(v)|Z×(v)|dv = |J |
∫

b∈B(R)
∆(b)̸=0

 ∑
v∈ π−1(b)

P −,θ(R)

∫
h∈P −,θ(R)

ϕ(h · v)dh

 db.

Here, dv and db are Euclidean measures, and dh = δ−1(t)dnd×t is a right Haar measure for P −,θ(R).
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Proof. Let U ⊂ B(R) be an open subset, and let σ : U → W0(R) be a continuous section of the GIT
quotient map π : V → B. We first claim that we have∫

v∈P −,θ(R)σ(U)
ϕ(v)|Z×(v)|dv = |J |

∫
b∈U

∫
h∈P −,θ(R)

ϕ(h · σ(b))dhdb (14)

for some non-zero rational constant J . By the Stone-Weierstrass theorem, we can assume that σ is
piecewise analytic, in which case we have∫

v∈P −,θ(R)σ(U)
ϕ(v)|Z×(v)|dv =

∫
b∈U

∫
h∈P −,θ(R)

|Jσ(h, b)|ϕ(h · σ(b))dhdb,

where Jσ(h, b) denotes the determinant of the Jacobian matrix arising from the change of variables that
takes the measure Z×(v)dv to dhdb. We will now show that Jσ(h, b) is independent of σ, h and b.

To show that Jσ(h, b) is independent of h, we fix γ ∈ P −,θ(R) and consider the change of variables v 7→ γ·v
in W0(R). We have that Z×(γ · v)d(γ · v) = χ(γ)Z×(v)dv for some character χ : P −,θ(R) → R>0, which
we now determine explicitly. If γ ∈ N(R), then χ(γ) = 1, since neither Z× or the volume of W0(R) are
changed by the action of N(R). Now, assume that γ ∈ T θ(R). On one hand, we have that

Z×(γ · v) =
( ∏

αi∈SG

αi(γ)ei−1

)
Z×(v).

On the other hand, we have that

d(γ · v) =

 ∏
α∈Φ(G,T θ)

ht(α)≤1

α(γ)


−1

dv.

In view of (11), we conclude that χ(γ) = δ−1(γ). On the other hand, for γ = nt ∈ P θ(R) we also have
that

Jσ(γh, b)d(γh)db = δ−1(t)Jσ(γh, b)dhdb

because dh is a right Haar measure of H, and δ−1(t) is the corresponding modular function (cf. [Kna96,
(8.26)]). We then have that

Jσ(γh, b)d(γh)db = Z×(γv)dv = δ−1(t)Z×(v)dv = δ−1(t)Jσ(h, b)dhdb,

and hence that Jσ(h, b) = Jσ(γh, b) is independent of h, as wanted.

The rest of the proof now follows analogously to [BS15, Proof of Proposition 3.10]. More precisely, that
Jσ(h, b) is independent of σ is analogous to Step 2 in [BS15, Proof of Proposition 3.10]; in particular,
we can take σ to be the Kostant section. Then, independence of b follows from steps 3 and 4 in [BS15,
Proof of Proposition 3.10].

Thus, we have shown (14). The proposition now follows from from (14) in a similar way as how [BS15,
Proposition 3.7] follows from [BS15, Proposition 3.10].

The proof of Theorem 5.1 shows that the leading constant in the asymptotic for N(Vi, X) is:

2r
r∏

i=1
ζ(ei)

k∑
i=1

1
ri vol(G0)

∫
v∈B∩W0(R)+

Z×(v)dv.

Here, r is the amount of height-one coefficients, ζ is the Riemann zeta function, and ei are the exponents
corresponding to Z(β) =

∏
i βei

i . We will now give a more succint description of the above integral,
following [Sha+22, §4.3].
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Given that G0 is K-invariant, we can write it as G0 = S · K, for some set S ⊂ P −,θ(R). We have the
following lemma:

Lemma 5.7. The map π : Kκ(ΛLi) ∩ W0(R)+ → Li is ri to 1.

Proof. The result follows from the fact that every element v ∈ Kκ(ΛLi) satisfies # StabG(R) v = ri, and
that if g ∈ StabG(R) v, then writing g = pk for p ∈ P −,θ(R) and k ∈ K, we get that kv = p−1v, so
kv belongs to Kκ(ΛLi) ∩ W0(R)+. Conversely, given that P −,θ acts simply transitively on W0(R), any
element in Kκ(Li) ∩ W0(R)+ that is conjugate to v has to be of the form kv = p′v for some k ∈ K and
p′ ∈ P −,θ.

Now, setting ϕ to be the indicator function of B ∩ W0(R)+ in Proposition 5.6, we obtain

1
ri vol(G0)

∫
v∈B<X ∩W0(R)+

Z×(v)dv = |J |ri vol(KS) vol({b ∈ ΛLi | ht(b) < 1})
ri vol(SK) .

However, we observe that:

Lemma 5.8. We have SK = KS.

Proof. Recall that G0 is left and right K-invariant and satisfies G−1
0 = G0. Then,

KS ⊂ KSK = SK = G0 = G−1
0 = KS−1.

By uniqueness in the Iwasawa decompsition, we must have that S ⊂ S−1, and symmetrically that
S = S−1. Therefore, SK = KS−1 = KS, as wanted.

We are left to deal with the volumes of the corresponding Li terms, which we do using the inclusion-
exclusion principle. The end result is

N(V (Z)red, X) ∼ 2r
r∏

i=1
ζ(ei)|J | vol({b ∈ B(R) | ht(b) < 1})Xdim V .

We can compare this result with the asymptotics for N(V (Z)irred, X), which can be read off [Lag24,
Theorem 8.8]. In there, one of the factors of the constant is related to the volume of G(Z)\G(R) with
respect to a suitably normalised Haar measure, and can be done following [Lan66] and [Col58], for
instance. Surprisingly, we get that

vol(G(Z)\G(R)) = c

r∏
i=1

ζ(ei),

where c is the order of the fundamental group of GC and ei turn out to be the same exponents as above; in
particular, the constants for the reducible and irreducible case appear to be the same up to some rational
factor, thus answering Question 2 of [Sha+22] affirmatively for our representations (G, V ). However, the
two methods of obtaining the constants appear to be fundamentally different, and we wonder if there is
any “natural” explanation as to why they should give the same result.

5.6 Case-by-case analysis

In this section, we complete the proof of Theorem 5.1 by performing a case-by-case analysis. For the
Dn and En cases, we will explicitly compute the dimension and volume of W♭ (which was defined to
be the set of coefficients of W0 of non-positive height), and the modular function δ(t) =

∏
β∈Φ−

G
β(t) =

det Ad(t)|Lie N(R).
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5.6.1 D2n+1

The exposition in the Dn cases is inspired by [Lag24, Appendix A] and [Sha18, §7.2.1]. We start by
describing explicitly the representation (G, V ) of D2n+1 in the form given by Table 1.

Let n ≥ 2 be an integer. Let U1 be a Q-vector space with basis {e1, . . . , en, u1, e∗
n, . . . , e∗

1}, endowed
with the symmetric bilinear form b1 satisfying b1(ei, ej) = b1(ei, u1) = b1(e∗

i , e∗
j ) = b1(e∗

i , u1) = 0,
b1(ei, e∗

j ) = δij and b1(u1, u1) = 1 for all 1 ≤ i, j ≤ n. In this case, given a linear map A : U → U we
can define its adjoint as the unique map A∗ : U → U satisfying b1(Av, w) = b1(v, A∗w) for all v, w ∈ U .
In terms of matrices, A∗ corresponds to taking the reflection of A along its antidiagonal when working
with the fixed basis. We can define SO(U1, b1) := {g ∈ SL(U1) | gg∗ = id}, with a Lie algebra that can
be identified with {A ∈ End(U) | A = −A∗}.

Let U2 be a Q-vector space with basis {f1, . . . , fn, u2, f∗
n, . . . , f∗

1 }, with a similarly defined bilinear form
b2. Let (U, b) = (U1, b1) ⊕ (U2, b2). Let H = SO(U, b), and consider h := Lie H. With respect to the basis

{e1, . . . , en, u1, e∗
n, . . . , e∗

1, f1, . . . , fn, u2, f∗
n, . . . , f∗

1 },

the adjoint of a block matrix according to the bilinear form b is given by(
A B
C D

)∗

=
(

A∗ C∗

B∗ D∗

)
,

where A∗, B∗, C∗, D∗ denote reflection by the antidiagonal. An element of h is given by{(
B A

−A∗ C

) ∣∣∣∣ B = −B∗, C = −C∗
}

.

The stable involution θ is given by conjugation by diag(1, . . . , 1, −1, . . . , −1), where the first 2n+1 entries
are 1 and the last 2n + 1 entries are given by −1. Under this description, we see that

V =
{(

0 A
−A∗ 0

) ∣∣∣∣ A ∈ Mat(2n+1)×(2n+1)

}
.

Moreover, G = (Hθ)◦ is isomorphic to SO(U1) × SO(U2). We will use the map(
0 A

−A∗ 0

)
7→ A

to establish a bijection between V and Hom(U2, U1), where (g, h) ∈ SO(U1) × SO(U2) acts on A ∈ V as
(g, h) · A = gAh−1.

Let T be the maximal torus diag(t1, . . . , tn, 1, t−1
n , . . . , t−1

1 , s1, . . . , sn, 1, s−1
n , . . . , s−1

1 ) of G. A basis of
simple roots for G is

SG = {t1 − t2, . . . , tn−1 − tn} ∪ {s1 − s2, . . . , sn−1 − sn}.

A positive root basis for V can be taken to be

SV = {t1 − s1, s1 − t2, . . . , tn − sn, sn}.

For convenience, we now switch to multiplicative notation for the roots. We make the change of variables
αi = ti/ti+1 for i = 1, . . . , n − 1 and αn = tn; similarly γi = si/si+1 for i = 1, . . . , n − 1 and γn = sn.
The estimate for the volume of W♭ becomes:

∏
v∈W♭

Xw(v) = X2n2+2n+1
n∏

i=1
α−2in+i2−2i

i γ−2in+i2

i .
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The modular function in our case is

δ−1(t) =
n∏

i=1
α2in−i2

i γ2in−i2

i .

Changing variables to βi = (Xw(vi)bi), where vi are the height-one coefficients, we obtain∏
v∈W♭

Xw(v)δ−1(t) = X4n2+4n+1 Z(β)
Z(b) ,

where Z(β) :=
∏n

i=1(β2i−1β2i)2i.

5.6.2 D2n

The analysis in this case is very similar to the D2n+1 case. Now, we consider the Q-vector space U1
with basis {e1, . . . , en, e∗

n, . . . , e∗
1}, endowed with a symmetric bilinear form b1(ei, ej) = b1(e∗

i , e∗
j ) =

0, b1(ei, e∗
j ) = δij . We also consider a Q-vector space U2 with basis {f1, . . . , fn, f∗

n, . . . , f∗
1 }, with an

analogous symmetric bilinear form b2.

Let (U, b) = (U1, b1) ⊕ (U2, b2), let H ′ = SO(U, b) and define H to be the quotient of H ′ by its centre of
order 2. Under the basis

{e1, . . . , en, e∗
n, . . . , e∗

1, f1, . . . , fn, f∗
n, . . . , f∗

1 },

the stable involution is given by conjugation with diag(1, . . . , 1, −1, . . . , −1). Similarly to the D2n+1 case,
we have

V =
{(

0 A
−A∗ 0

) ∣∣∣∣ A ∈ Mat2n×2n

}
,

where A∗ denotes reflection by the antidiagonal. In this case, the group G = (Hθ)◦ is isomorphic to
SO(U1) × SO(U2)/∆(µ2), where ∆(µ2) denotes the diagonal inclusion of µ2 into the centre µ2 × µ2 of
SO(U1) × SO(U2). As before, we can identify V with the space of 2n × 2n matrices using the map(

0 A
−A∗ 0

)
7→ A,

where (g, h) ∈ G acts by (g, h) · A = gAh−1.

We consider the maximal torus T of H given by diag(t1, . . . , tn, t−1
n , . . . , t−1

1 , s1, . . . , sn, s−1
n , . . . , s−1

1 ). A
basis of simple roots for H and G are given by

SH = {t1 − s1, s1 − t2, . . . , sn−1 − tn, tn − sn, sn + tn},

SG = {t1 − t2, . . . , tn−1 − tn, tn−1 + tn} ∪ {s1 − s2, . . . , sn−1 − sn, sn−1 + sn}.

Let αi = ti/ti+1 and γi = si/si+1 for i = 1, . . . , n, and let αn = tn−1tn and γn = sn−1sn. Under this
change of variables, the volume of W♭ is:∏

v∈W♭

Xw(v) = X2n2

(
n−2∏
i=1

α−2in+i2−i
i α

(−n2−n+4)/2
n−1 α(−n2−n)/2

n

n−2∏
i=1

γ−2in+i2+i
i (γn−1γn)(−n2+n)/2

)
.

The modular function is

δ−1(t) =
n−2∏
i=1

(αiγi)i2−2in+i(t)(αn−1γn−1αnγn)−(n−1)n/2(t).

As before, we can compute: ∏
v∈W♭

Xw(v)δ−1(t) = X4n2 Z(β)
Z(b) ,

where Z(β) =
∏n−1

i=1 (β2i−1β2i)2i · (β2n−1β2n)n.
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5.6.3 E6

For the E6 case, we use the conventions and computations in [Tho15, §2.3, §5].

Let SH = {α1, . . . , α6}, where the Dynkin diagram of H is:

α1 α3 α4 α5 α6

α2

The pinned automorphism ϑ consists of a reflection around the vertical axis. We can define a root basis
SG = {γ1, γ2, γ3, γ4} of G as γ1 = α3 + α4, γ2 = α1, γ3 = α3 and γ4 = α2 + α4. Under this basis, we have∏

v∈W♭

Xω(v) = X22(γ−12
1 γ−18

2 γ−22
3 γ−12

4 )

The modular function is
δ−1(t) =

(
γ8

1γ14
2 γ18

3 γ10
4
)

(t).
The weights of the height-one coefficients are {γ2, −γ1 + γ3 + γ4, γ3, γ1 − γ3}. In light of this, we obtain∏

v∈W♭

Xω(v)δ−1(t) = X42 Z(β)
Z(b) .

where Z(β) = β4
1β2

2β8
3β6

4 .

5.6.4 E7

For the E7 and E8 cases, we follow the conventions in [RT18]. Let SH = {α1, . . . , α7}, where the Dynkin
diagram of H is:

α1 α3 α4 α5 α6 α7

α2

The root basis SG = {γ1, . . . , γ7} can be described as

γ1 = α3 + α4

γ2 = α5 + α6

γ3 = α2 + α4

γ4 = α1 + α3

γ5 = α4 + α5

γ6 = α6 + α7

γ7 = α2 + α3 + α4 + α5
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The volume of W♭ can be computed to be∏
v∈W♭

Xw(v) = X35(γ−15/2
1 γ−13

2 γ
−33/2
3 γ−18

4 γ
−35/2
5 γ−15

6 γ
−21/2
7 ).

The modular function for G can be computed to be

δ−1(t) = (γ7
1γ12

2 γ15
3 γ16

4 γ15
5 γ12

6 γ7
7)(t).

We can compute the weights βi corresponding to the height-one coefficients, with the end result being∏
v∈W♭

Xw(v)δ−1(t) = X70 Z(β)
Z(b) ,

for Z(β) = β2
1β5

2β6
3β8

4β7
5β4

6β3
7 .

5.6.5 E8

Let SH = {α1, . . . , α8}, where the Dynkin diagram of H is:

α1 α3 α4 α5 α6 α7 α8

α2

The root basis SG = {γ1, . . . , γ8} can be described as

γ1 = α2 + α3 + α4 + α5

γ2 = α6 + α7

γ3 = α4 + α5

γ4 = α1 + α3

γ5 = α2 + α4

γ6 = α5 + α6

γ7 = α7 + α8

γ8 = α3 + α4

The volume of W♭ can be computed to be∏
ω∈W♭

Xω(t) = X64(γ−18
1 γ−30

2 γ−40
3 γ−48

4 γ−54
5 γ−58

6 γ−30
7 γ−30

8 ).

The modular function for G can be computed to be

δ−1(t) = (γ14
1 γ26

2 γ36
3 γ44

4 γ50
5 γ54

6 γ28
7 γ28

8 )(t).

We get ∏
v∈W♭

Xw(v)δ−1(t) = X128 Z(β)
Z(b) ,

with Z(β) = β4
1β8

2β10
3 β14

4 β12
5 β8

6β6
7β2

8 .
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6 Proof of the main results

We are finally in a position to prove Theorems 1.1 and 1.2. Before that, we present an auxiliary result
bounding the elements in V (Z) with big stabiliser.

6.1 Congruence conditions

We want to bound the number of elements in V (Z) having a big stabiliser in the cusp. To do that, we
will apply the Selberg sieve, which in turn requires a power saving estimate in the count of the elements
in the cusp when applying finitely many congruence conditions.

Let S ⊂ V (Z) be a subset which is not necessarily G(Z)-invariant. Analogously to Section 5.1, we define

N cusp(S, X) =
k∑

i=1

1
ri vol(G0)

∫
g∈F

#{v ∈ S ∩ W0 ∩ (gG0κ(ΛLi))<X}dg.

This is the analogue of the definition of N(S, X) but substituting V (Z)red for the cusp W0(Z). In the
proof of Theorem 5.1 we saw that

N cusp(W0(Z), X) = CXdim V + O(Xdim V −1)

for some constant C. The main theorem of this section is the following:

Theorem 6.1. Let S be a translate of mV (Z), for some integer m ≥ 1. Then, for a fixed m, we have
that

N cusp(S, X) = Cm− dim V Xdim V + O(m1−dim V Xdim V −1),

where the implied constant is independent of m and the choice of translate S, as long as m = O(X).

Proof. The computation is almost exactly the same as in Section 5.1, with the only major difference
being in the application of Davenport’s lemma. In our situation, given a bounded region R as in the
statement of Proposition 5.2, we have that

#(R ∩ Zn) = vol(R) + O(max{vol(R), 1}).

If we now replace Zn by a translate L of mZn, we can translate and shrink the region R appropriately
so that L gets identified with Zn, so that Davenport’s lemma yields

#(R ∩ L) = m−n vol(R) + O(max{vol(m−1 · R), 1}).

In our situation, what we get now instead of (9) is

#(S ∩ (ntBX)|b) = m− dim V vol((ntBX)|b) + O(m1−dim V Xdim V −1),

where the implied constant does not change with respect to m or S. The hypothesis that m = O(X)
guarantees that none of the lower-dimensional terms dominate. Now, the rest of the argument of Section
5.4 goes through in an analogous way to obtain the desired result.

Remark 6.2. The added hypothesis of m = O(X) is added here for convenience, and does not affect
the use of the Selberg sieve. In the notation of Section 5.2, we are really only adding the error terms
for d < D0, where D0 is later chosen to be a suitable power of X. We can always impose the additional
restriction that D0 = O(X), and the argument would go through as usual just with a possibly worse
error term. We do not do the explicit computations of D0 in this paper, but they always turn out to be
O(X).

29



6.2 Elements with big stabiliser

Let V bs(Z) be the set of elements v ∈ V (Z) with # StabG(Q)(v) > 1. Then, we are in a position to prove
the following:

Proposition 6.3. There exists a constant δbs > 0 such that

N cusp(V bs(Z), X) = O(Xdim V −δbs).

Proof. By [Lag24, Proof of Lemma 8.22], the density of elements in V (Fp) having big stabiliser converges
to a constant c ∈ (0, 1) as p → ∞. The proof can be easily modified to show this is also true when
substituting V (Fp) by W0(Fp). Then, we can apply the Selberg sieve as explained Section 5.2, combined
with Theorem 6.1.

Remark 6.4. We remark that this result depends on Theorem 6.1. Namely, to apply the Selberg sieve
in that way we need a power saving estimate on the count of reducible G(Z)-orbits in B(Z), so we could
not have proven Proposition 6.3 at the same time as Proposition 5.3.

6.3 Elements with large Q-invariant

In this section, we conclude the proof of Theorem 1.2 about bounding elements with discriminant divisible
by the square of a large squarefree number. For W(1)

m , the strongly divisible case, it suffices to use the
Ekedahl sieve as in [Bha14b, Theorem 3.5, Lemma 3.6], knowing that the discriminant polynomial is
irreducible by [Lag24, Lemma 4.2]. Thus, to conclude the proof of Theorem 1.2, it suffices to consider
the weakly divisible case.

Recall that by the results in Section 3, to prove Theorem 1.2 it is enough to bound the number of elements
in

WM = {v ∈ 1
N

V (Z) | v = gκb for a squarefree m > M, (m, N) = 1, g ∈ G(Z[1/m])\G(Z), b ∈ B(Z), ∆(b) ̸= 0}.

It suffices to prove that:

Theorem 6.5. There exists a constant δ > 0 such that

N(WM , X) = O

(
Xdim V

M

)
+ O(Xdim V −δ).

Proof. We can apply the same averaging argument as in Section 5.1, up to the point where

N(WM,i, X) = 1
ri vol(G0)

∫
n∈ω

∫
t∈Tc

#{v ∈ WM ∩ W0(Z) ∩ (ntG0κ(ΛLi))}δ(t)dnd×t + O
(
Xdim V −δ

)
,

where WM,i := WM ∩G(R)κ(ΛLi). In light of Proposition 6.3, it suffices to count elements in WM,i∩W0(Z)
with trivial stabilizer. For each of these elements v, Proposition 3.1 guarantees that Q(v) > M , and in
particular that |Z(v)| > M2. Then, by following the same proof as in Theorem 5.1, there is some constant
Ci such that

N(WM,i, X) = CiX
dim V

∑
b∈Zr

|Z(b)|>M2

1
|Z(b)| + O(Xdim V −δ).

But the written sum is O( 1
M ), so that concludes the proof.
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Therefore, we have proven Theorem 1.2. With the same proof as [BSW22a, Theorem 4.4], combining the
estimates for the strongly divisible primes and the weakly divisible primes, we get:
Theorem 6.6. For a squarefree integer m, let Wm denote the elements of B(Z) with discriminant
divisible by m2. There is a constant δ > 0 such that∑

m>M
m squarefree

(m,N)=1

#{b ∈ Wm | ht(b) < X} = Oε

(
Xdim V +ε

√
M

)
+ O(Xdim V −δ).

6.4 A squarefree sieve

Theorem 1.1 follows from the previous tail estimates by performing a squarefree sieve, following the
methods in [BSW22a, §4]. In fact, we will prove a slightly more general result about counting elements
in B(Z) imposing infinitely many congruence conditions.

Let κ be a positive integer. We say a subset S ⊂ B(Z) is κ-acceptable if S = B(Z) ∩
⋂

p Sp, where
Sp ⊂ B(Zp) satisfy the following:

1. Sp is defined by congruence conditions modulo pκ.

2. For all sufficiently large primes p, the set Sp contains all b ∈ B(Zp) such that p2 ∤ ∆(b).

For any subset A ⊂ B(Z), denote by N(A, X) the number of elements of A having height less than X.
For any prime p and any subset Ap ⊂ B(Zp), we denote by ρ(Ap) the density of elements of Ap inside
B(Zp).
Theorem 6.7. Let κ be a positive integer, and let S ⊂ B(Z) be a κ-acceptable subset. Then, there exists
a constant δ > 0 such that

N(S, X) =
(∏

p

ρ(Sp)
)

N(B(Z), X) + O(Xdim V −δ).

Proof. Recall that B = SpecZ[pd1 , . . . , pdk
]. For an element b ∈ B(Z) of height at most X, it holds that

|pdi(b)| < Xdi , where by Table 2 we see that di ≥ 2 for all i. For a positive squarefree integer m coprime
to N , denote by S ′

m the big family defined for each prime p as:

• If p | N , we set S ′
p = Sp.

• If p | m, we set S ′
p = B(Zp) \ Sp.

• Otherwise, we set S ′
p = B(Zp).

By the inclusion-exclusion principle, we get that

N(S, X) =
∑
m≥1

(m,N)=1

µ(m)N(S ′
m, X),

where µ(m) is the Möbius function. We can estimate N(Sm, X) as follows: in B(Z), the set S ′
m is

the union of Tm translates of a congruence class modulo (mN)κ, and we have that Tm =
∏

p|m(1 −

ρ(Sp))
∏

p|N ρ(Sp) · (mN)kκ. Each of these congruence classes contributes
∏k

i=1

(
2Xdi

(mN)κ + O(1)
)

to the
sum N(Sm, X). In summary, we get

N(Sm, X) =
∏
p|m

(1 − ρ(Sp))
∏
p|N

ρ(Sp)N(B(Z), X) + O(mκXdim V −2).
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By Theorem 1.2, we also have that for large enough M :∑
m≥M

µ(m)N(S ′
m, X) = Oε

(
Xdim V +ε

√
M

)
+ O(Xdim V −δ)

Combining the previous identities, we get

N(S, X) =
∏
p|N

ρ(Sp)
M∑

m=1
µ(m)

∏
p|m

(1 − ρ(Sp))N(B(Z), X) + Oε

(
Mκ+1Xdim V −2 + Xdim V +ε

√
M

+ Xdim V −δ

)

=
∏

p

ρ(Sp)N(B(Z), X) + Oε

(
Xdim V

M
+ Mκ+1Xdim V −2 + Xdim V +ε

√
M

+ Xdim V −δ

)
,

where the last estimate follows from the observation that ρ(Sp) ≫ 1 − 1
p2 by [Poo03, Proof of Theorem

3.2]. Now, optimizing we choose M = X4/(2κ+3), which is enough for the result.

References
[AFV18] Jeffrey D. Adler, Jessica Fintzen, and Sandeep Varma. “On Kostant sections and topological

nilpotence”. In: Journal of the London Mathematical Society 97.2 (2018), pp. 325–351. doi:
https://doi.org/10.1112/jlms.12106.

[Bha14a] Manjul Bhargava. “Rational points on elliptic and hyperelliptic curves”. In: Proceedings of
the International Congress of Mathematicians—Seoul 2014. Vol. 1. 2014, pp. 657–684.

[Bha14b] Manjul Bhargava. The geometric sieve and the density of squarefree values of invariant poly-
nomials. 2014. arXiv: 1402.0031 [math.NT].

[BG13] Manjul Bhargava and Benedict H. Gross. “The average size of the 2-Selmer group of Jacobians
of hyperelliptic curves having a rational Weierstrass point”. In: Automorphic representations
and L-functions. American Mathematical Society, 2013, pp. 23–91.

[BH22] Manjul Bhargava and Wei Ho. On average sizes of Selmer groups and ranks in families of
elliptic curves having marked points. 2022. arXiv: 2207.03309 [math.NT].

[BS15] Manjul Bhargava and Arul Shankar. “Binary quartic forms having bounded invariants, and
the boundedness of the average rank of elliptic curves”. In: Annals of Mathematics (Jan.
2015), pp. 191–242. doi: 10.4007/annals.2015.181.1.3.

[BSW22a] Manjul Bhargava, Arul Shankar, and Xiaoheng Wang. “Squarefree values of polynomial
discriminants I”. English (US). In: Inventiones Mathematicae (2022). issn: 0020-9910. doi:
10.1007/s00222-022-01098-w.

[BSW22b] Manjul Bhargava, Arul Shankar, and Xiaoheng Wang. Squarefree values of polynomial dis-
criminants II. 2022. arXiv: 2207.05592 [math.NT].

[BS73] A. Borel and J.-P. Serre. “Corners and arithmetic groups”. In: Comment. Math. Helv. 48
(1973), pp. 436–491. issn: 0010-2571,1420-8946. doi: 10.1007/BF02566134. url: https:
//doi.org/10.1007/BF02566134.

[Bor66] Armand Borel. “Density and maximality of arithmetic subgroups.” In: Journal für die reine
und angewandte Mathematik (Crelles Journal) 1966.224 (1966), pp. 78–89. doi: doi:10.
1515/crll.1966.224.78.

[Col58] A. J. Coleman. “The Betti Numbers of the Simple Lie Groups”. In: Canadian Journal of
Mathematics 10 (1958), pp. 349–356. doi: 10.4153/CJM-1958-034-2.

[Con14] Brian Conrad. “Reductive group schemes”. In: Autour des schémas en groupes. Vol. I.
Vol. 42/43. Panor. Synthèses. Paris: Soc. Math. France, 2014, pp. 93–444.

32

https://doi.org/https://doi.org/10.1112/jlms.12106
https://arxiv.org/abs/1402.0031
https://arxiv.org/abs/2207.03309
https://doi.org/10.4007/annals.2015.181.1.3
https://doi.org/10.1007/s00222-022-01098-w
https://arxiv.org/abs/2207.05592
https://doi.org/10.1007/BF02566134
https://doi.org/10.1007/BF02566134
https://doi.org/10.1007/BF02566134
https://doi.org/doi:10.1515/crll.1966.224.78
https://doi.org/doi:10.1515/crll.1966.224.78
https://doi.org/10.4153/CJM-1958-034-2


[Dav51] H. Davenport. “On a principle of Lipschitz”. In: J. London Math. Soc. 26 (1951), pp. 179–
183. issn: 0024-6107,1469-7750. doi: 10.1112/jlms/s1-26.3.179. url: https://doi.org/
10.1112/jlms/s1-26.3.179.

[Gro67] Alexander Grothendieck. “Éléments de géométrie algébrique : IV. Étude locale des schémas
et des morphismes de schémas, Quatrième partie”. fr. In: Publications Mathématiques de
l’IHÉS 32 (1967), pp. 5–361.

[Ho13] Wei Ho. “How many rational points does a random curve have?” In: Bulletin of the American
Mathematical Society 51.1 (Sept. 2013), pp. 27–52. doi: 10.1090/s0273-0979-2013-01433-
2.

[IK04] Henryk Iwaniec and Emmanuel Kowalski. Analytic number theory. Vol. 53. American Math-
ematical Society Colloquium Publications. American Mathematical Society, Providence, RI,
2004, pp. xii+615. isbn: 0-8218-3633-1. doi: 10.1090/coll/053. url: https://doi.org/
10.1090/coll/053.

[Jan07] Jens Jantzen. Representations of algebraic groups. Mathematical Surveys and Monographs.
Providence, RI: American Mathematical Society, Aug. 2007.

[Kna96] Anthony W. Knapp. Lie groups beyond an introduction. Vol. 140. Progress in Mathematics.
Birkhäuser Boston, Inc., Boston, MA, 1996, pp. xvi+604. isbn: 0-8176-3926-8. doi: 10.1007/
978-1-4757-2453-0. url: https://doi.org/10.1007/978-1-4757-2453-0.

[Lag22] Jef Laga. “The average size of the 2-Selmer group of a family of non-hyperelliptic curves of
genus 3”. In: Algebra & Number Theory 16.5 (2022), pp. 1161–1212. doi: 10.2140/ant.
2022.16.1161.

[Lag24] Jef Laga. “Graded Lie Algebras, Compactified Jacobians and Arithmetic Statistics”. In: J.
Eur. Math. Soc. (2024). Published online first. doi: 10.4171/JEMS/1526.

[Lan75] Serge Lang. SL2(R). Reading, Mass.-London-Amsterdam: Addison-Wesley Publishing Co.,
1975.

[Lan66] R. P. Langlands. “The volume of the fundamental domain for some arithmetical subgroups of
Chevalley groups”. In: Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure
Math., Boulder, Colo., 1965). Providence, R.I.: Amer. Math. Soc., 1966, pp. 143–148.

[Pan05] Dmitri Panyushev. “On invariant theory of θ-groups”. In: Journal of Algebra - J ALGEBRA
283 (Jan. 2005), pp. 655–670. doi: 10.1016/j.jalgebra.2004.03.032.

[PR94] Vladimir Platonov and Andrei Rapinchuk. Algebraic Groups and Number Theory. Vol. 139.
Pure and Applied Mathematics. Translated from the 1991 Russian original by Rachel Rowen.
Boston, MA: Academic Press, Inc., 1994.

[Poo03] Bjorn Poonen. “Squarefree values of multivariable polynomials”. In: Duke Mathematical Jour-
nal 118.2 (2003), pp. 353–373. doi: 10.1215/S0012-7094-03-11826-8.

[Ric82] R. W. Richardson. “Orbits, invariants, and representations associated to involutions of re-
ductive groups”. In: Inventiones Mathematicae 66.2 (June 1982), pp. 287–312. doi: 10.1007/
bf01389396.

[RT18] Beth Romano and Jack A. Thorne. “On the arithmetic of simple singularities of type E”. In:
Research in Number Theory 4.2 (Apr. 2018). doi: 10.1007/s40993-018-0110-5.

[RT21] Beth Romano and Jack A. Thorne. “E8 and the average size of the 3-Selmer group of the
Jacobian of a pointed genus-2 curve”. In: Proceedings of the London Mathematical Society
122.5 (2021), pp. 678–723. doi: https://doi.org/10.1112/plms.12388.

[Sha18] Ananth N. Shankar. “2-Selmer groups of hyperelliptic curves with marked points”. In: Trans-
actions of the American Mathematical Society 372.1 (Oct. 2018), pp. 267–304. doi: 10.1090/
tran/7546.

[ST14] Arul Shankar and Jacob Tsimerman. “Counting S5 fields with a power saving error term”.
In: Forum of Mathematics, Sigma 2 (2014). doi: 10.1017/fms.2014.10.

33

https://doi.org/10.1112/jlms/s1-26.3.179
https://doi.org/10.1112/jlms/s1-26.3.179
https://doi.org/10.1112/jlms/s1-26.3.179
https://doi.org/10.1090/s0273-0979-2013-01433-2
https://doi.org/10.1090/s0273-0979-2013-01433-2
https://doi.org/10.1090/coll/053
https://doi.org/10.1090/coll/053
https://doi.org/10.1090/coll/053
https://doi.org/10.1007/978-1-4757-2453-0
https://doi.org/10.1007/978-1-4757-2453-0
https://doi.org/10.1007/978-1-4757-2453-0
https://doi.org/10.2140/ant.2022.16.1161
https://doi.org/10.2140/ant.2022.16.1161
https://doi.org/10.4171/JEMS/1526
https://doi.org/10.1016/j.jalgebra.2004.03.032
https://doi.org/10.1215/S0012-7094-03-11826-8
https://doi.org/10.1007/bf01389396
https://doi.org/10.1007/bf01389396
https://doi.org/10.1007/s40993-018-0110-5
https://doi.org/https://doi.org/10.1112/plms.12388
https://doi.org/10.1090/tran/7546
https://doi.org/10.1090/tran/7546
https://doi.org/10.1017/fms.2014.10


[SW18] Arul Shankar and Xiaoheng Wang. “Rational points on hyperelliptic curves having a marked
non-Weierstrass point”. In: Compositio Mathematica 154.1 (2018), pp. 188–222. doi: 10.
1112/S0010437X17007515.

[Sha+22] Arul Shankar et al. Geometry-of-numbers methods in the cusp. 2022. arXiv: 2110.09466
[math.NT].

[Ste75] Robert Steinberg. “Torsion in reductive groups”. In: Advances in Mathematics 15.1 (1975),
pp. 63–92. issn: 0001-8708. doi: https://doi.org/10.1016/0001-8708(75)90125-5. url:
https://www.sciencedirect.com/science/article/pii/0001870875901255.

[Sut19] Andrew V. Sutherland. “A database of nonhyperelliptic genus-3 curves over Q”. In: The
Open Book Series 2.1 (Jan. 2019), pp. 443–459. doi: 10.2140/obs.2019.2.443.

[Tho13] Jack Thorne. “Vinberg’s representations and arithmetic invariant theory”. In: Algebra &
Number Theory 7.9 (2013), pp. 2331–2368. doi: 10.2140/ant.2013.7.2331.

[Tho15] Jack Thorne. “E6 and the arithmetic of a family of non-hyperelliptic curves of genus 3”. In:
Forum of Mathematics, Pi 3 (2015), e1. doi: 10.1017/fmp.2014.2.

[Tho16] Jack Thorne. “Arithmetic invariant theory and 2-descent for plane quartic curves”. In: Alge-
bra & Number Theory 10.7 (2016), pp. 1373–1413. doi: 10.2140/ant.2016.10.1373.

34

https://doi.org/10.1112/S0010437X17007515
https://doi.org/10.1112/S0010437X17007515
https://arxiv.org/abs/2110.09466
https://arxiv.org/abs/2110.09466
https://doi.org/https://doi.org/10.1016/0001-8708(75)90125-5
https://www.sciencedirect.com/science/article/pii/0001870875901255
https://doi.org/10.2140/obs.2019.2.443
https://doi.org/10.2140/ant.2013.7.2331
https://doi.org/10.1017/fmp.2014.2
https://doi.org/10.2140/ant.2016.10.1373

	Introduction
	Preliminaries
	Vinberg representations
	Restricted roots
	Transverse slices over V  /-6mu//-6mu//-5mu//-5mu/G
	Integral structures

	Constructing orbits
	Reduction theory
	Heights
	Measures on G
	Fundamental domains
	Constructing S1
	Constructing S2


	Counting reducible orbits
	Averaging
	Applying the Selberg sieve
	Reductions
	Counting reducible orbits
	Computing the constant
	Case-by-case analysis
	D2n+1
	D2n
	E6
	E7
	E8


	Proof of the main results
	Congruence conditions
	Elements with big stabiliser
	Elements with large Q-invariant
	A squarefree sieve


