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Abstract

We determine an upper bound for the average size of the Selmer groups associated to certain self-dual
isogenies related to Jacobians of hyperelliptic curves. This is one of the first results of this kind for
isogenies that are not multiplication-by-n. The proof follows Bhargava’s framework, and features a novel
orbit parametrisation associated to the Dynkin diagram of type B2n.
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1 Introduction

1.1 Statement of results

Let n ≥ 2, and consider the hyperelliptic curve C : y2 = xf(x), where f(x) = x2n + p2x
2n−1 + · · · + p4n. Let

B = SpecZ[p2, . . . , p4n], and for an element b ∈ B(R) let us define its height as

ht(b) = sup
i=1,...,2n

{|p2i|1/(2i)}.

Let us consider the Jacobian Jb = Jac(Cb). The point T = (0, 0) ∈ C(Q) defines a rational 2-torsion point
inside Jb: we will denote by M the group generated by T inside Jb[2]. Let M⊥ be the orthogonal complement
of M with respect to the Weil pairing. We note that M ⩽M⊥, and that both M and M⊥ are stable under
Gal(Q/Q)-action. Therefore, there exists an abelian variety Ab with maps

Jb
ϕM−−→ Ab

ϕ−→ A∨
b −→ Jb, (1)

such that if ψ = ϕ ◦ ϕM , then Jb[ϕ] = M , Jb[ψ] = M⊥, Ab[ϕ] = M⊥/M and the whole composition in (1)
is the multiplication-by-2 isogeny. We will denote the isogenies by ϕb or ψb when we wish to emphasize the
invariant b ∈ B.

Theorem 1.1. When ordered by height, the average size of Selϕ(Ab), where b varies in B(Z), is at most 6.

In fact, Theorem 1.1 remains true even when finitely many congruence conditions are imposed on B(Z): see
Section 4 and Theorem 4.3.

1.2 Method of proof

Many results on the average size of Selmer groups of isogenies that are multiplication-by-n have appeared in
the literature in the past years, helped mainly by Bhargava’s striking new methods in geometry-of-numbers:
as seen for instance in [BS15a; BS15b; Lag24], among many others.

The standard technique in “Bhargavology” is to parametrise the elements of the Selmer groups by integral
orbits of a representation (G,V ) of a reductive group G defined over Z. Finding such parametrisations
is one of the main obstacles in obtaining more of these results. Previous experience suggests that many
representations used in arithmetic statistics actually arise from Vinberg theory, or in other words the study
of graded Lie algebras. In [Tho13], Thorne connected the Vinberg representations associated to the Z/2Z-
gradings of the simply laced Lie algebras (i.e. those of type An, Dn or En) with certain families of curves
arising as deformations of simple surface singularities, in such a way that the orbits of the representation
should give arithmetic information about the constructed families of curves. This perspective has been used,
implicitly and explicitly, to obtain statistical results on the size of 2-Selmer groups in the past: all these
results have been unified and reproved in Laga’s thesis [Lag24], which gives a uniform proof of all such
results.

Other Vinberg representations have appeared in the literature, either coming from either non-simply laced
Dynkin diagrams or higher order gradings (or both). In [RT21], a Z/3Z-grading in E8 is used to study the
3-Selmer group of odd genus 2 curves. In [BES20], a Z/3Z-grading of G2 was used to study 3-isogeny Selmer
groups of the elliptic curves y2 = x3 + k, a perspective that was later generalised in [Bha+19] for abelian
varieties. In [Lag24], a Z/2Z-grading in F4 is used to study 2-Selmer groups of a family of Prym varieties, in
a manner that serves as a template for our results.

We now explain the structure of this paper. In Section 2, we will construct the representation (G,V )
associated to the diagram B2n, and we will describe its rational and integral orbits. We will also see how
this representation is connected to the geometric picture of (1). We now explain this more precisely. First,
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we will observe that the ring of invariants Q[V ]G is isomorphic to an affine space Q[p2, . . . , p4n], where
p2i has degree 2i. Therefore, any element of V (Q) can be associated to the hyperelliptic curve Cb : y2 =
x(x2n + p2x

2n−1 + · · · + p4n), and consequently to the isogenies described in (1). Then, we will find an
embedding

Selψ Jb ↪−→ (G(Q)\Vb(Q))
⋂ 1

2V (Z),

where Vb denotes the subset of V of elements having invariants b. Later, in Section 3, we will consider a
related representation (G∗, V ∗), for which will have V ∗ // G∗ ≃ V // G and a commutative diagram

Selψ Jb SelϕAb

G(Q)\Vb(Q) G∗(Q)\V ∗
b (Q),

where again the rightmost map is injective and every element in its image has a representative in 1
2V

∗
b (Z). It

turns out that the representation (G∗, V ∗) is the Vinberg representation associated to the Z/2Z-grading on
A2n−1, which has already been studied in [SW18]. Therefore, in Section 4 we can use the counting results of
loc. cit. to prove Theorem 1.1.

We can compare the result of Theorem 1.1 with the Poonen-Rains heuristics in [PR12]. These heuristics
contain some predictions for Selmer groups of self-dual isogenies λ : A → A∨ which come from some symmetric
line sheaf L in A. This is the case for all of our isogenies ϕ : Ab → A∨

b : ϕ is self-dual by Lemma 3.3, and the
obstruction for ϕ to come from a symmetric line bundle is measured by an element cϕ ∈ H1(Ab[ϕ]), which
is zero in our case by [PR11, Proposition 3.12(f)]. Then, [PR12, Theorem 4.14] identifies Selϕ Jb1 with an
intersection of two maximal isotropic subspaces of an infinite-dimensional quadratic space over F2. Then,
Theorem 1.1 appears to be consistent with the predictions of the Poonen-Rains heuristics: the upper bound
for our average size coincides with that of 2-Selmer groups of even hyperelliptic curves, which in both cases
account for the presence of a marked rational subgroup of the Selmer group.

We end by noting a limitation of our current methods. Namely, we cannot obtain an analogous result for the
average of Selψ Jb using the representation (G,V ). This is explained in detail in Section 5, where we discuss
the possibility that the average size of Selψ Jb might be unbounded. We further elaborate how this compares
with previous results in the literature in the elliptic curve case, and the reasons why such an average might
be unbounded.

1.3 Acknowledgements

I wish to thank my PhD advisor Jack Thorne for many helpful comments and conversations. I also want to
thank Jef Laga for his useful suggestions.

2 Orbit parametrisation in B2n

2.1 The representation (G, V )

The representation (G,V ) of interest will be the Vinberg representation associated to the stable 2-grading
associated to the root system of type B2n. We now construct it explicitly: the reader can consult [Vin76;
Pan05; Ree+12] for more context on such representations.

1The cited [PR12, Theorem 4.14] only identifies a quotient of Selϕ Jb as an intersection, but that quotient is equal to Selϕ Jb

100% of the time by [PR12, Proposition 3.4], using the fact that Ab[ϕ] is isomorphic to the 2-torsion of the Jacobian of y2 = f(x).
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Let Jm denote the m×m matrix with 1s in the antidiagonal and 0s elsewhere. Define SO(Jm) = {A ∈ SLm |
tAJA = J}. Throughout this paper, we will simply denote SOm := SO(Jm). We will also fix a field K of
characteristic 0.

Let n ≥ 1, and define G := SO2n+1 × SO2n. This group acts on the vector space V = (2n+ 1)⊠ (2n), whose
elements can be seen as (2n + 1) × (2n) matrices, by (g, h) · A = gAh−1 for any g ∈ SO2n+1, h ∈ SO2n
and A ∈ V . Given A ∈ V , define its adjoint to be A∗ = J2n

tAJ2n+1. If the (2n) × (2n) matrix A∗A has
characteristic polynomial f(x) = x2n + p2x

2n−1 + · · · + p4n, then the (2n + 1) × (2n + 1) matrix AA∗ has
characteristic polynomial xf(x). The coefficients p2, . . . , p4n are all invariants of the representation, satisfying
p2i(λv) = λ2ip2i(v) for all i = 1, . . . , n. Let B := V // G = SpecK[V ]G be the GIT quotient: the following
lemma holds by general facts of Vinberg theory (see [Pan05, Corollary 3.6]):

Proposition 2.1. We have that B ∼= SpecK[p2, . . . , p4n].

We will denote π : V → B for the invariant map, and we will write Vb(K) for those elements in V (K) with
invariants b ∈ B(K). We will also denote the discriminant ∆ of an element b ∈ B(K) corresponding to the
polynomial f(x) = x2n + p2x

2n−1 + · · · + p4n as the discriminant of the polynomial xf(x2), and similarly
define the discriminant of an element v ∈ V (K) as the discriminant of π(v). The following result is also
well-known:

Proposition 2.2. An element v ∈ V (K) is regular semisimple if and only if ∆(v) ̸= 0.

We will use the subscript V rs to distinguish those elements that are regular semisimple, and we will also
denote Brs for π(V rs), which is equivalently the set of elements of B with non-zero discriminant.

2.2 Rational orbits

In general, a G(Ks)-orbit of elements in V (Ks) might break up into multiple G(K)-orbits in V (K). We have
the following general result from arithmetic invariant theory (see [BG14, Proposition 1]) indicating how this
phenomenon can be studied with Galois cohomology groups:

Proposition 2.3. Let v ∈ V (K). The set of G(K)-orbits in V (K) which are G(Ks)-conjugate to v are in
bijection with the kernel of the map

H1(K,StabG(v)) → H1(K,G)

of pointed sets.

We will now show how to construct all the rational orbits with given invariants from an element α ∈
ker(H1(K,StabG(v)) → H1(K,G)). We start by constructing a “distinguished” orbit, and then we will
show how to obtain the rest from it.

2.2.1 A distinguished orbit

Let b = (p2, . . . , p4n) ∈ B(K), and consider the polynomial f(x) = x2n + p2x
2n−1 + · · · + p4n. Define the

K-vector space M = K[x]/(xf(x2)) = K[β], which is spanned by the K-linear combinations of 1, β, . . . , β4n.
Define the bilinear form (·, ·) : M ×M → K by:

(λ, µ) = coefficient of β4n in λµ.

Let L1 = K[x]/(xf(x)) and let L2 = K[x]/(f(x)). Then, M is isomorphic to L1 ⊕ βL2, where there is a
natural inclusion L1 ↪−→ M by sending x 7→ x2. In other words, L1 is the subspace spanned by {1, β2, . . . , β4n}
and βL2 is spanned by {β, β3, . . . , β4n−1}. Then, the form (·, ·) splits as a direct sum of bilinear forms in
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L1 and βL2. Using the explicit power bases, we can see that both quadratic forms on L1 and L2 have
discriminant 1 and are in fact split, so we can isometrically identify L1 with a quadratic space (W1, J2n+1)
of dimension 2n+ 1 and L2 with a quadratic space (W2, J2n) of dimension 2n.

Let W be the quadratic space given by (W1, J2n+1) ⊕ (W2, J2n), and consider the multiplication-by-β map
Tβ : M → M , which can also be seen as a map from W to W . Given that Tβ is self-adjoint with respect to
(·, ·), we get that the matrix of Tβ on W is of the form(

0(2n+1)×(2n+1) A
A∗ 02n×2n

)
,

where A ∈ Mat(2n+1)×(2n). Thus, we get an element v ∈ V (K) with invariants b ∈ B(K) by construction.
We also observe the following:

Proposition 2.4. Let v ∈ V (K) be the orbit previously constructed, and assume that ∆(v) ̸= 0. Then, the
stabiliser StabG(v) is isomorphic to the kernel of the norm map ResL2/K µ2 → µ2.

Proof. Given that v is regular semisimple by Proposition 2.2, the centraliser of Tβ in GL(M) is M×. Since
the centraliser actually lies inside SO(M), this forces elements λ ∈ M× to satisfy λ2 = 1. Moreover, because
λ needs to preserve both L1 and βL2, we see that λ ∈ L×

1 . Finally, the fact that λ ∈ SO(W )×SO(W1) forces
NL1/K(λ) = 1 and NL2/K(λ) = 1, where λ is the image of λ in L2.

The conclusion is that the stabiliser is in bijection with the elements of ResL1/K µ2 whose norm is 1 and whose
image in L2 also has norm 1. This can be identified with ker(ResL2/K µ2 → µ2), and so we are done.

We will denote the kernel of the map ResL2/K µ2 → µ2 by (ResL2/K µ2)N=1.

2.2.2 The other orbits

Let G′ = SO2n+1 ×O2n. We will start by explaining how to construct all the diferent G′(K)-orbits, and
then we will specialise to G(K)-orbits. Note that given v ∈ V (K) with ∆(v) ̸= 0, we have that StabG′(v) ∼=
ResL2/K µ2, and that H(K,ResL2/K µ2) ∼= L×

2 /L
×2
2 . We also observe that the pointed set H1(K,SOm)

parametrises non-degenerate quadratic spaces of dimension m and discriminant 1, and that the trivial element
of H1(K,SOm) corresponds to the (unique) split orthogonal space of dimension m. Similarly, the pointed set
H1(K,Om) classifies non-degenerate quadratic spaces of dimension m, with a similar trivial element. The
map H1(K,SOm) → H1(K,Om) has trivial kernel as a map of pointed sets, as can be seen from the usual
long exact sequence in group cohomology of

1 SOm Om {±1} 1.det

In fact, H1(K,SOm) → H1(K,Om) is injective (cf. [Knu+98, §29.E]), but we will not need this fact.

Given α ∈ (L×
2 /L

×2
2 ) that maps to the trivial element in H1(K,G′), we will show how to construct a rational

orbit from it. An element α ∈ L×
2 can be lifted to an element of L×

1
∼= K× × L×

2 by simply considering
(1, α) ∈ L×

1 . Moreover, as in last section, we can naturally embed L1 ↪−→ M , so given α ∈ (L×
2 /L

×2
2 )

we can naturally consider it as an element of M . Under this identification, consider the quadratic form
(·, ·)α : M ×M → K defined by

(λ, µ)α = coefficient of β4n in α−1λµ. (2)

As before, this quadratic form splits as a direct sum of quadratic forms in L1 and βL2. If α has norm 1
(up to squares) in L2, then both forms have discriminant 1, so they give a well-defined map to H1(K,G′).
Unwinding the definitions similarly to [BG14, §5], the condition that α lands in the kernel of H1(K,G′)
translates precisely to both forms (·, ·)α|L1 and (·, ·)α|βL2 being split of discriminant 1. Therefore, under
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appropriate change of bases in L1 and L2, the map Tβ given an element of V (K) in the same way as in the
distinguished case.

Thus, given α ∈ (L×
2 /L

×2
2 )N≡1 which maps to the trivial element of H1(K,G′), we have constructed a

rational G′(K)-orbit.

We now turn our attention toG(K)-orbits. Following [BGW15, §4.3], there is a mapH1(K, (ResL2/K µ2)N=1) →
(L×

2 /L
×2
2 )N≡1 which is either bijective or 2-to-1, according to whether f(x) has an odd degree factor over K

or not, which in turn happens depending on whether L×
2 [2] has an element of norm −1 or not. Therefore, a

G′(K)-orbit in V (K) splits in either one or two G(K)-orbits. In the case where f(x) does not have an odd
degree factor over K, we note that the stabiliser over K of the constructed v over SO2n+1 × SO2n is the same
as the stabiliser over SO2n+1 ×O2n. By choosing h ∈ O2n(K) \ SO2n(K), we can obtain a new orbit by just
considering the element (1, h) · v. If f(x) has an odd degree factor over K, the constructed orbits coincide.
We summarise our results as follows:
Theorem 2.5. Let b ∈ B(K) with ∆(b) ̸= 0. Then, the set of G(K)-orbits in Vb(K) are in bijection with the
set of equivalence classes (α, s), where α ∈ (L×

2 )N≡1 maps to the trivial element in H1(K,G) and s ∈ K×

satisfies N(α) = s2. Two pairs (α, s) and (α′, s′) are equivalent if there exists c ∈ L×
2 such that α′ = c2α and

s′ = N(c)s. The stabiliser of such an orbit is isomorphic to (ResL2/K µ2)N=1.

It will be convenient for us later to introduce the notion of reducible and irreducible orbits:
Definition 2.6. Let v ∈ Vb(K) with b = π(v). We say that v is K-reducible if either ∆(b) = 0 or if v maps
to the trivial element in the composition

G(K)\Vb(K) → H1(K, (ResL2/K µ2)N=1) →
(
L2

L×2
2

)
N≡1

.

We say that v is K-irreducible if it is not K-reducible.

Equivalently, v ∈ Vb(K) is K-reducible if it is (SO2n+1 ×O2n)(K)-equivalent to the distinguished orbit
constructed in Section 2.2.1. Note that the notion of reducibility depends on the base field. If K is alge-
braically closed, every element is K-reducible. We will typically refer to Q-(ir)reducible elements simply as
(ir)reducible. We also note that there might be one or two K-reducible G(K)-orbits with a given invariant
b ∈ Brs(K).

We will now give an alternative, more explicit description of reducibility. Recall that an element v ∈ V (K)
corresponds to (2n + 1) × 2n matrix A, which can in turn be viewed as a linear map A : L2 → L1. Under
this convention, we can also view A∗ as a linear map A∗ : L1 → L2.
Proposition 2.7. Let b ∈ Brs(K). An orbit v ∈ Vb(K) corresponding to a (2n + 1) × 2n matrix A is
K-reducible if and only if there exists a K-rational space X ⊂ L1 of dimension n such that AA∗X ⊂ X⊥.

Proof. Assume that b corresponds to the invariant polynomial f(x). From v ∈ Vb(K) and its corresponding
matrix A, the matrix AA∗ is a (2n+1)×(2n+1) matrix with characteristic polynomial f(x), and the action of
(g, h) ∈ G(K) transforms AA∗ as (g, h) · (AA∗) = gAA∗g−1 (noting that g−1 = g∗). Denoting G′ = SO2n+1
and V ′ = Sym2(2n + 1), we get a natural map G(K)\Vb(K) → G′(K)\V ′

b (K). Note that (G′, V ′) is the
representation studied in [BG13]. In there, an operator T : L1 → L1 ∈ V ′

b (K) is called distinguished if
and only if there exists an n-dimensional isotropic subspace X ⊂ L1 with TX ⊂ X⊥. Furthermore, there
is an injective map G′(K)\V ′

b (K) → (L×
1 /L

×2
1 )N≡1 ∼= (L×

2 /L
×2
2 ) under which the (unique) distinguished

G′(K)-orbit in V ′
b (K) maps to the trivial element. The proof concludes by observing that the diagram

G(K)\Vb(K) G′(K)\V ′
b (K)

(L×
2 /L

×2
2 )N≡1 (L×

2 /L
×2
2 )

is commutative, which follows from unpacking the definitions in [BG13].
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2.3 Connection with hyperelliptic curves

Let b ∈ Brs(K) correspond to the polynomial f(x) ∈ K[x] with deg f = 2n. Consider the hyperelliptic curve
Cb : y2 = xf(x) and its Jacobian Jb := Jac(Cb). If the discriminant of xf(x) is non-zero, then the roots
x0 = 0, x1, . . . , x2n of xf(x) over K are all different. If we denote Pi = (xi, 0) and ∞ is the point at infinity,
then Jb[2](K) is generated by the elements (Pi) − (∞), with the only relation that

∑2n
i=0((Pi) − (∞)) = 0.

Consider the order 2 subgroup M ⊂ Jb[2] generated by T = (0, 0), and consider its orthogonal complement
M⊥ under the Weil pairing. Note that M ≤ M⊥ and that M⊥(K) has size 22n−1. We can construct some
isogenies as explained in the introduction, there are isogenies (see (1)).

Jb
ϕM−−→ Ab

ϕ−→ A∨
b

ψ̂−→ Jb,

with Jb[ϕM ] = M , if ψ = ϕ ◦ ϕM then Jb[ψ] = M⊥ and the whole composition is the multiplication-by-2
map.

Proposition 2.8. Let v ∈ V (K) with ∆(v) ̸= 0. Then, StabG(v) ∼= Jb[ψ].

Proof. It suffices to show that Jb[ψ] ∼= (ResL2/K µ2)N=1, which is an elementary computation.

Note that we also have that we have the injective descent map A∨
b (K)/ψ(Jb(K)) ↪−→ H1(K,Jb[ψ]). It is then

natural to ask whether the elements of A∨
b (K)/ψ(Jb(K)) actually correspond to Gb(K)-orbits in Vb(K).

Theorem 2.9. The natural composition

A∨
b (K)/ψ(Jb(K)) ηb−→ H1(K,Jb[ψ]) → H1(K,G)

is trivial.

Definition 2.10. We will say an element v ∈ V rs(K) is K-soluble if v ∈ ηb(A∨
b (K)/ψ(Jb(K))).

It is not so obvious what an explicit description of the map A∨
b (K)/ψ(Jb(K)) → H1(K,Jb[ψ]) should be.

However, we can try to simplify the situation by trying to relate it to the 2-descent map Jb(K)/2Jb(K) →
H1(K,Jb[2]). Consider the group G′ = SO2n+1 ×O2n: similarly to Proposition 2.8, we can see that
StabG′(v) ∼= ResL1/K(µ2) ∼= Jb[2]. We then have the following commutative diagram:

A∨
b (K)/ψ(Jb(K)) Jb(K)/2Jb(K)

H1(K,Jb[ψ]) H1(K,Jb[2])

H1(K,G) H1(K,G′)

δψ δ2

ι (3)

The map H1(K,Jb[2]) → H1(K,G′) ∼= H1(K, SO2n+1) ×H1(K,O2n) can be given using the same recipe as
in Section 2.2.2. Explicitly, given α ∈ H1(K,Jb[2]), which can be viewed both as an element of L×

2 /L
×2
2 and

as an element of (L×
1 /L

×2
1 )N≡1 via α 7→ (NL2/K(α), α) ∈ K× × L×

2
∼= L×

1 , we obtain two quadratic spaces
(·, ·)(1)

α : L1 × L1 → K and (·, ·)(2)
α : L2 × L2 → K given by

(µ, λ)(1)
α = coefficient of β2n

1 in α−1µλ (inside L1)

and
(µ, λ)(2)

α = coefficient of β2n−1
2 in α−1µλ (inside L2),

7



where we are writing L1 = K⟨1, β, . . . , β2n⟩ and L2 = K⟨1, β, . . . , β2n−1⟩. Alternatively, if we consider the
codimension 1 vector subspace β1L1 of L1, we have that for (·, ·)(2)

α is equivalent to a form (·, ·)(2′)
α : β1L1 ×

β1L1 → K given by (β1µ, β1λ)(2′)
α := (µ, β1λ)(1)

α (we can check that this is well-defined).

The image of any given α ∈ H1(K,Jb[2]) in H1(K,SO2n+1) × H1(K,O2n) is given by the quadratic spaces
(L1, (·, ·)(1)

α ) and (L2, (·, ·)(2)
α ), and these quadratic spaces will correspond to the trivial element if and only

if they are split of discriminant 1. We note that the discriminant of (·, ·)(1)
α is 1, while the discriminant of

(·, ·)(2)
α is equal to NL2/K(α). Therefore, it is not necessarily the case that the composition Jb(K)/2Jb(K) δ2−→

H1(K,Jb[2]) → H1(K,G′) is trivial: it is a necessary condition that NL2/K(α) ∈ K×2.

Recall that there is a surjective map H1(K,Jb[ψ]) → (L×
2 /L

×2
2 )N≡1, which is either bijective or 2-to-1. Then,

the map ι : H1(K,Jb[ψ]) → H1(K,Jb[2]) ∼= L×
2 /L

×2
2 is just given by the natural inclusion H1(K,Jb[ψ]) →

(L×
2 /L

×2
2 )N≡1 → L×

2 /L
×2
2 .

Lemma 2.11. Let [D] ∈ Jb(K)/2Jb(K), and suppose that δ2([D]) ∈ Im(ι). Then, the image of δ2([D]) in
H1(K,G′) is trivial.

Proof. We start by recounting the proof of [BG13, Proposition 5.2]. Consider the two quadrics in L1 ⊕ K
given by

Q1(λ, a) = (λ, λ)(1)
α , Q2(λ, a) = (λ, β1λ)(1)

α + a2.

Then, it is shown in loc. cit. that there exists a rational n-dimensional subspace Y of L1 ⊕ K which is
isotropic with respect to both Q1 and Q2. In particular, given that the line 0 ⊕K is not contained in Y , we
see that the projection of Y to L1 is an n-dimensional isotropic subspace of Q1, thus showing that (·, ·)(1)

α is
split.

Now, consider the subspace Y ′ = Y ∩ (L1 ⊕ 0), of dimension at least n− 1. We see that Y ′ ∩ f(β1)L1 = {0},
as (f(β1), f(β1))(1)

α = NL2/K(α−1)NL2/K(β1) ̸= 0. Therefore, the subspace β1Y
′ of β1L1 has dimension at

least n− 1, and it is also the case that for any β1µ, β1λ ∈ β1Y
′ we have that (β1µ, β1λ)(2′)

α = (µ, β1λ)(1)
α = 0

by construction. Therefore, (·, ·)(2)
α has a rational isotropic space of dimension n− 1 and thus, as a quadratic

space, we have that (L2, (·, ·)(2)
α ) ∼= Hn−1 ⊕ V ′, where H ∼

〈(
0 1
1 0

)〉
. But V ′ is a quadratic space of

dimension 2 and discriminant 1 (by hypothesis), and therefore V ′ ∼ H as well, showing that (·, ·)(2)
α is split,

as wanted.

Proof of Theorem 2.9. First, note that the map H1(K,G) → H1(K,G′) has a trivial pointed kernel, which
is equivalent to H1(K,SO2n) → H1(K,O2n) having a trivial pointed kernel, as noted in Section 2.2.2. Then,
the proof follows from Lemma 2.11 and the commutativity of the diagram (3).

Remark 2.12. Let A∨
b [ψ̂] = {0, TA}. Then, both 0 and TA give distinguished orbits of G(K)\Vb(K).

Whether or not these two orbits coincide depends on whether TA ∈ ψ(Jb(K)).

Corollary 2.13. Let K be a number field, and let b ∈ B(K) with ∆(b) ̸= 0. Then, there is an embedding

Selψ(Jb) ↪−→ G(K)\Vb(K).

Proof. Consider the commutative diagram

A∨
b (K)/ψ(Jb(K)) H1(K,Jb[ψ]) H1(K,G)

∏
v A

∨
b (Kv)/ψ(Jb(Kv))

∏
vH

1(Kv, Jb[ψ])
∏
vH

1(Kv, G),δψ,v

where the product is taken over all finite places v of K. Recall that Selψ(Jb) is defined as ker(H1(K,Jb[ψ]) →∏
vH

1(Kv, Jb[ψ])/(Im(δψ,v))). Our statement then follows from the fact that the composition of maps in
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the second row is trivial by Theorem 2.9, and the fact that the map H1(K,G) →
∏
vH

1(Kv, G) has trivial
kernel (see e.g. [Lag24, Proposition 6.8]).

2.4 Integral orbits

To prove our main theorems, we will require an integral version of Corollary 2.13. We remark that even
though we have originally constructed our representation over K, a field of characteristic zero, we could also
have constructed (G,V ) over Z. In this case, we also have B = SpecZ[p2, . . . , p4n].

Theorem 2.14. The image of the map

Selψ(Jb) ↪−→ G(Q)\Vb(Q).

falls inside 1
2Vb(Z).

Because G has class number 1 (cf. [Lag24, Proposition 7.2]), it will suffice to see that the map

A∨
b (Qp)/ψ(J(Qp)) ↪−→ G(Qp)\Vb(Qp)

falls inside 1
2V (Zp) for all p. We start by giving an ideal parametrisation of integral orbits inside Zp, in

an analogous way to other results in the literature, such as [Sha19, Proposition 6.7]. For the proof of
Theorem 2.14, we will need to know when a Zp-lattice L of dimension m with a given symmetric bilinear
form L×L → Zp is isometric over Zp to an m-dimensional lattice Lm with matrix Jm. We summarise known
results on this next lemma:

Lemma 2.15. Let I be a Zp-module of rank m equipped with a symmetric bilinear form φ : I × I → Zp of
discriminant 1.

• If p ̸= 2, then I is isometric to Lm over Zp.

• If p = 2 and m = 2m′ + 1, then I is isometric to Lm over Z2 if I ⊗ Q2 is a split orthogonal space.

• If p = 2 and m = 2m′, then I is isometric to Lm over Z2 if I ⊗ Q2 is a split orthogonal space and I is
an even lattice (i.e. φ(x, x) ∈ 2Z2 for all x ∈ I).

In the last item, the condition that I is an even lattice is necessary, as (Lm, Jm) admits both an even and an
odd lattice over Z2. These two lattices can be transformed to one another via an element of Om(Q2) with
coefficients in 1

2Z2.

Proposition 2.16. Let b ∈ B(Zp) with ∆(b) ̸= 0. Then, the set of orbits G(Zp)\Vb(Zp) is in bijection with
the equivalence classes of (I1, I2, α, s), where I1 is a fractional ideal of R1, I2 is a fractional ideal of R2,
α ∈ (L×

2 )N≡1 and s ∈ K×; satisfying:

1. I2
1 ⊂ αR1 and N(I1)2 = NL1/Qp(α), where α can be interpreted as an element of L1 ∼= Qp × L2 via
α 7→ (NL2/Qp(α), α).

2. I2
2 ⊂ αR2 and N(I2)2 = NL2/Qp(α).

3. Let I1 denote the projection of I1 in L2, and let I1
′ = {γ ∈ L2 | (0, β1γ) ∈ I1}. Then, I1 ⊂ I2 ⊂ I1

′.

4. The forms (·, ·)(1)
α and (·, ·)(2)

α are split of discriminant 1 over Qp.

5. I2 is even with respect to (·, ·)(2)
α .

6. NL2/Qp(α) = s2.

9



Two such tuples (I1, I2, α, s) and (I ′
1, I

′
2, α

′, s′) are equivalent if and only if there exists an element c ∈ L×
2

such that I1 = cI ′
1, I2 = cI ′

2, α = c2α′ and s = NL2/Qp(c)s′. An integral orbit (I1, I2, α, s) corresponds to the
rational orbit given by (α, s).

Proof. First, we start with a tuple (I1, I2, α, s) and we construct an orbit in G(Zp)\Vb(Zp). First, we note
that the forms (·, ·)(1)

α and (·, ·)(2)
α , when restricted to I1 and I2 respectively, take integral values and are split

of discriminant 1. Therefore, we can find Zp-bases for I1 and I2 such that the forms have Gram matrices
J2n+1 and J2n respecively. Then, also by construction we have that the matrix of Tβ has values in Zp, so it
gives an element of Vb(Zp).

Now, suppose that we start with an orbit in G(Zp)\Vb(Zp). Theorem 2.5 gives (α, s) and hence properties 4
and 6. We recall that such an orbit can be constructed as the matrix of Tβ in M = Qp[x]/(xf(x2)). Given
a basis {e1, . . . , e4n+1} of M , the action of Tβ realizes J = Zp⟨e1, . . . , e4n+1⟩ as an R = Zp[x]/(xf(x2))-
submodule. Note that R ∼= R1 ⊕ βR2. The fact that Tβ respects R1 and R2 implies that J = I1 + βI2 for
some fractional ideals I1 in R1 and I2 in R2, which necessarily satisfy I1 ⊂ I2 ⊂ I1

′. The fact that the forms
(·, ·)(1)

α and (·, ·)(2)
α have to be self-dual with respect to I1 and I2 with matrices isometric to J2n+1 and J2n

over Zp, respectively, give the rest of the hypotheses.

These two constructions are inverse to each other, and so we are done.

Proof of Theorem 2.14. It suffices to show that for every element of Âb(Qp)/ψ(Jb(Qp)) there is a tuple
(I1, I2, α, s) satisfying the conditions of Proposition 2.16. We note that splitness of the forms over Qp follows
from Theorem 2.9. Furthermore, by [LT24, Lemma 4.9] (cf. [BG13, Proposition 8.5]), there exists a fractional
ideal I1 in R1 such that I2

1 ⊂ αR1 with N(I1)2 = NL1/Qp(α).

We can observe that when reducing to R2, the lattices I1 and I1
′ are dual to each other with respect to the

form (·, ·)(2)
α . This follows from observing that for any µ, λ ∈ L2 with liftings µ′, λ′ ∈ L1 we have that

(µ, λ)(2)
α = (µ′, βλ′)(1)

α .

Then, the process of finding a fractional ideal I2 with the required conditions reduces to finding a lattice
I1 ⊂ Λ ⊂ I1

′ which is self-dual and is stable under multiplication by β2, up to considerations at p = 2.
We further observe that any lattice Λ satisfying I1 ⊂ Λ ⊂ I1

′ is automatically stable under ×β2, so it
automatically is a fractional ideal.

We split our the rest of our proof in the two cases p ̸= 2 and p = 2, in a similar way to [Sha19, Propositions
6.9, 6.11].

• p ̸= 2: By [Cas78, Lemma 3.4] we can find a basis (fi) of I1 such that its Gram matrix with respect to
(·, ·)(2)

α is 
u1p

a1

u2p
a2

. . .

u2np
a2n


where the ai are non-negative integers and ui ∈ Z×

p . By substituting fi by p−⌊ ai2 ⌋fi, we may assume
that ai ∈ {0, 1}, and the resulting lattice Λ still satisfies I1 ⊂ Λ ⊂ I1

′. Write Λ = Λ0 ⊕ Λ1, where Λi is
the span of those fj with bj = i (i = 0, 1). Given that the discriminant of the form is 1 modulo squares,
the dimensions of both Λ0 and Λ1 have to be even. We will now see that both Λ0 ⊗ Qp and Λ1 ⊗ Qp
are split quadratic spaces.
Let Λ0 be spanned by (f1, . . . , f2a) and let Λ1 be spanned by (f2a+1, . . . , f2n). Then, the discrimi-
nant of Λ0 ⊗ Qp is (−1)a

∏2a
i=1 ui and the Hasse invariant is 1, as (ui, uj)p = 1 for all ui, uj ∈ Z×

p .
On the other hand, the discriminant of Λ1 ⊗ Qp is (−1)n−a∏2n

i=2a+1 ui and its Hasse invariant is
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(−1)(n−a)(p−1)/2∏p
i=2a+1

(
ui
p

)
. A straightforward computation shows that the Hasse invariant of

(Λ0 ⊕ Λ1) ⊗ Qp is equal to the Hasse invariant of Λ1 ⊗ Qp, so both these invariants are equal to
1. Given that (−1)(n−a)(p−1)/2 is equal to (−1)n−a up to squares (indeed, both these quantities are
equal to (−1)n−a if p ≡ 3 (mod 4) or equal to 1 modulo squares if p ≡ 1 (mod 4)), this forces the
discriminant of Λ1 ⊗ Qp to be equal to 1. Since the discriminant of (Λ0 ⊕ λ1) ⊗ Qp is 1, and also the
product of discriminants in Λ0 and Λ1, this implies that the discriminant of Λ0 ⊗ Qp is also 1, proving
our claim that both Λ0 ⊗ Qp and Λ1 ⊗ Qp are split quadratic spaces.
Thus, we can choose a basis of Λ0 such that its Gram matrix is J2a, and we can choose a basis of Λ1
such that its basis is pJ2(n−a). By replacing f2a+1, . . . , f2n by f2a+1/p, . . . , fa+n/p, fa+n+1, . . . , f2n, we
get the matrix J2(n−a). Therefore, we obtain a self-dual lattice Λ = Λ0 ⊕ Λ1 with the desired inclusion
conditions.

• p = 2: In this situation, by [Cas78, Lemma 4.1] we can find a basis of I1 such that its Gram matrix
with respect to (·, ·)(2)

α is 
2a1Q1

2a2Q2
. . .

2akQk

 ,

where ai ≥ 0 and the Qi are either 1 × 1 matrices with an entry in Z×
p or 2 × 2 matrices of the form

Qi =
(

0 1
1 0

)
or Qi =

(
2 1
1 2

)
.

As before, we may assume that ai ∈ {0, 1}. For the 2 × 2 matrices, we may further assume that ai = 0:
if ai = 1, we may substitute e1 for e1/2 to get a self-dual lattice. Therefore, we may assume that the
Gram matrix is of the form 

2U
Q2

. . .

Qk

 ,

where U is a diagonal matrix of size 2a × 2a with unit entries, and the Qi are either 1 × 1 or 2 × 2
matrices with unit determinant. Finally, we notice that for a matrix

(
2u1 0
0 2u2

)
with u1, u2 ∈ Z×

p ,

the basis spanned by (e1 + e2)/2 and (e1 − e2)/2 gives a self-dual lattice. We can conclude that there
exists a self-dual lattice I1 ⊂ Λ ⊂ β−1

2 I1.
It is not necessarily the case that I2 is even with respect to the form (·, ·)(2)

α , so it might not the case that
this lattice is isometric to (L2n, J2n) over Z2. However, it is the case that both lattices are isometric
under a matrix in O2n(Q2) with coefficients in 1

2Z2. Thus, the given tuple (I1, I2, α, s) yields an orbit
in 1

2V (Z).

3 The resolvent form

As before, let K be a field of characteristic zero. Consider an element A ∈ V (K) as a (2n+1)×2n matrix with
entries in K and associated characteristic polynomial f(x). Then, A∗A is a 2n×2n matrix that is symmetric
along the antidiagonal and has characteristic polynomial f(x). We get an action of (g, h) ∈ SO2n+1 × SO2n
act on A∗A by (g, h) · (A∗A) = hA∗Ah∗.

Let PSO2n = SO2n /µ2. Then, we define the representation (G∗, V ∗) = (PSO2n,Sym2(2n)), where Sym2(2n)
denotes the 2n×2n matrices that are symmetric along the antidiagonal, and G∗ acts by conjugation on these
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matrices. This is (up to a trace zero condition) the same representation that was studied in [SW18]. The ring
of invariants of (G∗, V ∗) is generated by the coefficients of the characteristic polynomials of the matrices of
V ∗, and hence we have an isomorphism between B∗ := V ∗ // G∗ and B. We note, however, that the degrees
of the elements of B∗ are half the degrees of the corresponding invariants in B.

3.1 Rational orbits

We recall [SW18, Proposition 2.1].

Proposition 3.1. Let b ∈ Brs(K) with ∆(b) ̸= 0. If the associated characteristic polynomial is f(x), write
L = K[x]/(f(x)). Then, if v ∈ V ∗

b (K), then StabG∗(v) ∼= (ResL/K µ2)N≡1/µ2.

Therefore, by Proposition 2.3, if b ∈ Brs(K) the G∗(K)-orbits in V ∗
b (K) are in bijection with the pointed

kernel of
H1(K, (ResL/K µ2)N≡1/µ2) → H1(K,SO2n).

Similarly to (G,V ), there is a map H1(K, (ResL/K µ2)N≡1/µ2) → (L×/K×L×2)N≡1 which is bijective or
2-to-1 according to whether the norm map N : (ResL/K µ2)µ2(K) → µ2 is surjective or not (see [SW18,
Proposition 2.2] for a more explicit description).

Let β denote the image of x inside L, so that L has a K-basis 1, β, . . . , β2n−1. Given α ∈ (L×/K×L×2)N≡1,
we can define the form (·, ·)α : L× L → K by

(µ, λ)α = coefficient of β2n−1 in α−1µλ.

This form has discriminant 1, up to squares. Then, we have (cf. [SW18, Theorem 2.6]):

Theorem 3.2. There is a bijection between PO(K)-orbits in V ∗
b (K) and elements α ∈ (L×/K×L×2)N≡1

such that (·, ·)α is split. These PO(K)-orbits split into one or two PSO(K)-orbits according to whether the
norm map on (ResL/K µ2)N≡1/µ2 is surjective or not, respectively.

Let b ∈ Brs(K) correspond to the invariant polynomial f(x), and consider the hyperelliptic curve Cb : y2 =
xf(x) with Jacobian Jb = Jac(Cb). We recall the setup of (1):

Jb
ϕM−−→ Ab

ϕ−→ A∨
b −→ Jb

where Jb[ϕM ] = M , Jb[ϕ ◦ ϕM ] = M⊥ and the whole composition Jb → Jb is multiplication-by-2. In
particular, we have that Ab[ϕ] is isomorphic to M⊥/M . First, we note the following fact:

Lemma 3.3. The isogeny ϕ : Ab → A∨
b is self-dual.

Proof. As suggested by the notation, the abelian varieties Ab and A∨
b are indeed dual to each other. It is a

general fact of principally polarised abelian varieties that (J/M)∨ ≃ J/M⊥, which follows from the properties
of the Weil pairing. Moreover, the finite group scheme M⊥/M is isomorphic to its own Cartier dual, so the
dual isogeny ϕ∨ : Ab → A∨

b can be identified with ϕ.

We also observe the following fact about the stabiliser:

Lemma 3.4. Under the above notation, we have (ResL/K µ2)N≡1/µ2 ∼= M⊥/M .

This follows immediately from Proposition 2.8. Therefore, we have a map

A∨
b (K)/ϕ(Ab(K)) ↪−→ H1(K, (ResL/K µ2)N≡1/µ2).
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Theorem 3.5. The composition

A∨
b (K)/ϕ(Ab(K)) ↪−→ H1(K, (ResL/K µ2)N≡1/µ2) −→ H1(K,G)

is trivial.

Proof. Note there’s a commutative diagram

A∨
b (K)/ψ(Jb(K)) A∨

b (K)/ϕ(Ab(K))

H1(K,Jb[ψ]) H1(K,Ab[ϕ])

H1(K,G) H1(K,G∗)

Theorem 2.9 shows that the composition in the first column is trivial. The map in the first row is surjective,
and the map in the last row is just the forgetful map H1(K,SO2n+1 × SO2n) → H1(K,SO2n). The result
follows.

Therefore, for all b ∈ Brs(K) there is a map

A∨
b (K)/ϕ(Ab(K))

η∗
b

↪−→ G∗(K)\V ∗
b (K), (4)

and similarly to the last section we will call a G∗(K)-orbit in V ∗
b (K) K-soluble if it intersects the image of

η∗
b . If K is a number field, we say that an orbit is locally soluble if it is Kv soluble for all completions Kv.

The same proof as in Corollary 2.13 yields

Corollary 3.6. Let K be a number field. Then, for b ∈ Brs(K) we have

Selϕ(Ab) ↪−→ G∗(K)\V ∗
b (K).

In [SW18], a G∗(K)-orbit in V ∗
b (K) is called reducible (or distinguished) if it maps to the element α = 1 in

H1(K, (ResL/K µ2)N≡1/µ2) → (L×/K×L×2)N≡1.

More precisely, in [SW18, §2.2] a distinguished orbit vb is constructed, and a PSO2n(K)-orbit is called
distinguished if it is PO2n(K)-equivalent to the constructed orbit vb. This corresponds precisely to the orbits
that map to 1 ∈ (L×/K×L×2)N≡1, of which there are at most two.

3.2 Integral representatives

We will prove the equivalent of Theorem 2.14. To do so, we will use the description of integral orbits in
[SW18, §2.4]. We note, however, that there is an oversight in loc. cit. in the case p = 2; the amended
statement should read like that:

Theorem 3.7. Let b ∈ Brs(Z2) with invariant polynomial f(x), and let L = Q2[x]/(f(x)) and R =
Z2[x]/(f(x)). There is a bijection between O2n(Z2)-orbits in V ∗

b (Z2) and equivalence classes of (I, α), where
α ∈ L× and I is a fractional ideal of R satisfying I2 ⊂ αR and N(I)2 = N(α), which is even with respect
to the form (·, ·)α. Two pairs (I1, α1) and (I2, α2) are equivalent if there exists c ∈ L× such that I1 = cI2
and α1 = c2α2.

Remark 3.8. There’s a small convention difference in [SW18], where they take α−1 where we take α.
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The condition of I being even with respect to the form is necessary, and in some cases the constructed ideals
in [SW18, §2.4] need not be even. In that case, it can only be guaranteed that the orbit will fall inside
1
2V

∗(Z2).

Theorem 3.9. Let b ∈ Brs(Z). Every locally soluble orbit in V ∗
b (Q) has a representative in 1

2V
∗
b (Z).

Proof. As in the proof of Theorem 2.14, it is enough to see that for all p, the map

A∨
b (Qp)/ϕ(Ab(Qp)) ↪−→ G∗(Qp)\V ∗

b (Qp)

always intersects 1
2V

∗
b (Zp). For p ̸= 2, this is immediate; if a (2n+ 1) × 2n matrix A has entries in Zp, then

A∗A also does. For p = 2, we note that by Theorem 2.14 and Proposition 2.16 there exists an ideal called I2
in there satisfying the hypotheses of Theorem 3.7 with the corresponding α of the rational orbit.

4 Proof of Theorem 1.1

To prove Theorem 1.1, we will use Theorem 3.9 in conjunction with the counting results of [SW18] (which
are a particular case of [Lag24, §8]). We start by noting the following result from [Lag23, Lemma 7.1]:

Lemma 4.1. Let K = R or Qp for some prime p, and write | · |K : K× → R>0 for the normalised absolute
value of K. Let A be an abelian variety over K with dual abelian variety A∨, and let λ : A → A∨ be a self-dual
isogeny, which will have degree m2 for some m ∈ Z≥1. Then, the quantity

c(λ) := #A∨(K)/λ(A(K))
#A[λ](K)

satisfies c(λ) = 1/|m|K .

In particular, for our map of interest ϕ : Ab → A∨
b , we will have that

cp(ϕb) =


2−(n−1) if p = ∞,

2(n−1) if p = 2,
1 otherwise.

We turn our interest into counting G∗(Z)-orbits in V ∗(Z). We will do so imposing infinitely many congruence
conditions:

Definition 4.2. A map w : V ∗(Z) → [0, 1] is said to be defined by infinitely many congruence conditions if
for each prime p there exist functions wp : V ∗(Zp) → [0, 1] such that

• wp is G(Zp)-invariant;

• wp is locally constant outside the subset {v ∈ V ∗(Zp) | ∆(v) = 0};

which additionally satisfy w =
∏
p wp.

Consider a G∗(Z)-invariant subset A ⊂ V ∗(Z), and let w : V ∗(Z) → R be a function defined by infinitely
many congruence conditions. We denote

N∗
w(A,X) =

∑
v∈G∗(Z)\A<X

w(v)
# StabG∗(Z)(v) .
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Recall that a G∗(R)-orbit in V ∗
b (R) is called R-soluble if it falls in the image of η∗

b in (4). Observe that the
number of G∗(R)-soluble orbits in V ∗

b (R) is #A∨
b (R)/ϕ(Ab(R)). Then, analogously to [Lag24, Theorem 8.18]

we get that

N∗
w(A,X) ≤

(∏
p

∫
v∈V (Zp)

w(v)dv
)

|W1|
2n−1 vol(G∗(Z)\G∗(R)) vol(B(R)<X) + o(XdimV ∗

),

where W1 ∈ Q× is a fixed scalar number, and where w =
∏
p wp are the congruence conditions defining w.

To estimate the size of Selϕ(Ab), we note that the non-trivial torsion point Tb ∈ A∨
b [ψ̂] generates a subgroup

ST in Selϕ(Ab) of order dividing 2. In the map

Selϕ(Ab) ↪−→ G∗(K)\V ∗
b (K),

the elements of Selϕ(Ab) which intersect the reducible orbits correspond exactly to the subgroup ST , and
the complement of ST falls entirely in the irreducible orbits. Given that #ST ≤ 2, it suffices to bound
Selϕ(Ab) \ ST by looking at irreducible orbits.

We can prove our results in higher generality by imposing congruence conditions on B. We say that a set
B ⊂ B(Z)rs is defined by finitely many congruence conditions if it is the preimage of the reduction map
B(Z)rs → B(Z/NZ) for some N ≥ 1. We will prove the following:

Theorem 4.3. Let B ⊂ B(Z) be defined by finitely many congruence conditions. Then,

lim
X→∞

∑
b∈B, ht(b)<X #(Selϕ(Ab) \ ST )

#{b ∈ B | ht(b) < X}
≤ 4.

Proof. Let Bp denote the closure of B inside Brs(Zp). For our counting result, it will suffice to count those
irreducible G∗(Z)-orbits in V ∗(Z) corresponding to Selmer elements, as given by Theorem 3.9. Given that we
are only guaranteed to have orbits in 1

2V
∗(Z), and that Selϕ(Ab) ≃ Selϕ(Aλ·b) for any λ ∈ Q×, it will suffice

to look at orbits with invariants in 2 · B, for which Selmer elements will always have integral representatives.
We choose the counting function

w(v) =


(∑

v′∈G∗(Z)\(G∗(Q)·v∩V ∗(Z))
# StabG∗(Q)(v′)
# StabG∗(Z)(v′)

)−1
if π(v) ∈ 2 · B and v is locally soluble,

0 otherwise.

This is defined by congruence conditions by the functions

wp(v) =


(∑

v′∈G∗(Zp)\(G∗(Qp)·v∩V ∗(Zp))
# StabG∗(Qp)(v′)
# StabG∗(Zp)(v′)

)−1
if π(v) ∈ 2 · Bp and v is soluble,

0 otherwise,

by an analogous argument to [BS15a, Proposition 3.6]. The last part of [Lag24, Lemma 8.5] gives∫
v∈V (Zp)

w(v)dv = |W1|p vol(G∗(Zp))
∫
b∈2·Bp

#A∨
b (Qp)/ϕ(Ab(Qp))
#Ab[ϕ](Qp)

db

= |W1|p vol(G∗(Zp))|2−(n−1)|p|2n(2n+1)|p vol(Bp),

using Lemma 4.1 in the last line. Under this counting function, we have that for any given locally soluble
v ∈ V ∗(Z) with π(v) ∈ B: ∑

v′∈G∗(Q)v∩V ∗(Z)

w(v′)
# StabG∗(Z)(v′) = 1

# StabG∗(Q)(v) .

100% of the time, this quantity is equal to 1 by [SW18, Proposition 23]. Thus, we have that∑
b∈B<X

#(Selϕ(Ab) \ ST ) = N∗
w(V ∗(Z)irr ∩ V (R)sol, 2X) + o(Xn(2n+1)).
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With an elementary point-counting argument, we can see that

lim
X→∞

∏
p vol(Bp) vol(B(Z)<2X)
#{b ∈ B | ht(b) < X}

= 2n(2n−1).

Putting it all together, we have that

N∗
w(V ∗(Z)irr ∩ V (R)sol, 2X)

#{b ∈ B | ht(b) < X}
≤ vol(G∗(Z)\G∗(R))

∏
p

vol(G∗(Zp)),

which equals the Tamagawa number of G∗ = PSO2n, which is 4. This concludes the proof.

Theorem 1.1 then follows from Theorem 4.3, since ST has size at most 2.

5 Further heuristics

It seems natural that an analogous result to Theorem 1.1 should hold about the average size of Selψ Jb, using
the representation (G,V ) and Theorem 2.14. However, following the results in [KL14] for the analogous
family in genus 1, there is a reasonable expectation that the average size of Selψ Jb is unbounded, as long
as one assumes that genus 1 phenomena generalises well to higher genus (as has been case with Sel2 of the
complete families, like in [BS15a] and [BG13]). We will now explain what can be said about Selψ Jb with the
tools we have at our disposal.

Using a standard diagram chase (cf. [Bha+19, Lemma 9.1]), we get the following exact sequence:

Ab[ϕ](Q)/ϕM (Jb[ψ](Q)) SelϕM Jb Selψ Jb SelϕAb. (5)

Moreover, we observe that Ab[ϕ](Q) ≃ M⊥/M , and that the size of M⊥/M is bigger than 1 only if the
corresponding polynomial f(x) is reducible, something that should happen 0% of the time, asymptotically
(cf. [BSW22, Proposition 4.3]). If Sel♮ψ Jb denotes the subset of elements in Selψ Jb having non-trivial image
in SelϕAb, then we have the bound

# Selψ Jb ≤ # SelϕM Jb + # Sel♮ψ Jb,

We can obtain information about Sel♮ψ Jb using the irreducible orbits of the representation (G,V ), which we
now define. Recall that there is a map G(K)\Vb(K) → (L×/L×2)N=1.
Definition 5.1. Let b ∈ B(K). We will say that a G(K)-orbit in Vb(K) is reducible if ∆(b) = 0 or if it maps
to 1 in the map

G(K)\Vb(K) →
(

L×

K×L×2

)
N=1

.

Otherwise, we will say that the orbit is irreducible.

Alternatively, an orbit is reducible in (G,V ) if and only if it maps to a reducible orbit in (G∗, V ∗). Under these
definitions, a G(K)-orbit corresponding to an element of Selψ Jb is irreducible if and only if it corresponds to
an element of Sel♮ψ Jb; and the orbit is reducible if and only if it is in the image of SelϕM Jb inside Selψ Jb in
(5). Therefore, if we want to determine the average size of Selψ Jb, it would suffice to understand both the
reducible and irreducible orbits of (G,V ).

Counting irreducible orbits can be done analogously to previous cases in the literature, following e.g. [Lag24,
§8]. For instance, the analogue of [Lag24, Proposition 8.10] would hold: namely, if w : V (Z) → [0, 1] is some
function defined by congruence conditions w =

∏
p wp, if we define

Nw(V (Z)irr, X) =
∑

v∈G(Z)\V (Z)irr
<X

w(v)
# StabG(Z)(v) ,
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then we expect that

Nw(V (Z)irr, X) ∼

(∫
v∈V (Zp)

w(v)dv
)
CX2n(2n+1), (6)

for some constant C > 0 which can be made explicit. Equation 6 can indeed be proven with ≤ instead of an
equality as in [Lag24, Theorem 8.18]. Analogously to Section 4, we can sieve the counting to Selmer elements
by imposing congruence conditions. We note, however, two important differences with the arguments in that
section:

• If b ∈ Brs(Z), then StabG(Q)(v) always has at least two elements.

• The Selmer ratio
cp(ψb) = #A∨

b (K)/ψ(Jb(K))
#Jb[ψ](K)

for K = Qp or R might not be constant like in Lemma 4.1, because ψ is not self-dual.

The end result is the following:

Theorem 5.2. The average size of Sel♮ψ Jb, when b varies in B(Z), is at most

8

∫
b∈B(R)
ht(b)<1

c∞(ψb)db∫
b∈B(R)
ht(b)<1

db

∏
p

∫
b∈B(Zp) cp(ψb)db∫

b∈B(Zp) db
.

The factor of 8 is a product of the Tamagawa number of G, which is 4, and the mentioned minimum size of
the stabiliser, which is 2. We note that this result is similar to the main results in [BES20; Bha+19], and
that similarly to loc. cit., the average size of Sel♮ψ Jb depends very much on the family in which b ∈ B(Z),
and that imposing congruence conditions on B(Z) would yield different upper bounds.

To count reducible orbits, we can follow the methods of [Sha+24], generalised in [Oll25]. In there, for
the Vinberg representations associated to the Z/2Z-gradings of type ADE, we observe that the number of
reducible orbits is of the order of XdimV . In our B2n case, the computations can be slightly reworked to show
that N(V (Z)red, X) ∼ CredX

2n(2n+1) logX for some constant Cred > 0. In particular, the representation
(G,V ) appears to answer [Sha+24, Question 2] in the negative, given that the number of reducible and
irreducible orbits are of different orbits.

Following these computations, one may obtain the (rather weak) bound that the average size of Selψ Jb is
≪ logX as X → ∞. Imposing congurence conditions to obtain a meaningful bound for the “reducible” part
of Selψ Jb seems hard to do using uniquely geometry-of-numbers methods. For instance, it is unclear whether
the product of the p-adic densities in the classical squarefree sieve would diverge to 0 in this situation, which
would require more advanced techniques. If Selψ Jb is actually unbounded, it would be interesting to see
whether the contribution of 5.2 would correspond to a second-order term in the counting.

In any case, the possible unboundedness of Selψ Jb seems to come from the 2-isogeny SelϕM Jb. In the case
of elliptic curves (which we have excluded from our analysis), it is predicted by Kane and Klagsbrun (as
mentioned in [KL14, §1]) that the average size of the 2-Selmer group of a 2-isogeny over the curves of the
form y2 = x3 + ax2 + bx is of the order of

√
logX as X → ∞. Similarly, in [CHL19] it is proven that the

average size of the 2-Selmer group tends to infinity in the family of elliptic curves with full Z/2Z × Z/8Z-
torsion. In both cases, these results are deduced from the unboundedness of the Tamagawa ratio, which for
an isogeny λ : A → B of abelian varieties is defined as

T (A/B) = # Selλ(A)
# Selλ∨(B∨) .
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Both in [KL14] and [CHL19], they prove that the average of the Tamagawa ratio of an associated 2-isogeny
is unbounded, from which the unboundedness of the corresponding ϕ-Selmer group (and therefore of the 2-
Selmer group) follows. In our situation, for the isogeny ϕM : Jb → Ab, the Greenberg-Wiles formula [NSW08,
Theorem 8.7.9] in our case states that

T (Jb/Ab) =
∏
p≤∞

cp(ϕM,b) =
∏
p≤∞

#Ab(Qp)/ϕM (Jb(Qp))
2 ,

and if 2 ̸= p < ∞, then by [Sch96, Lemma 3.8], we have that

cp(ϕM,b) = #Ab(Qp)/Ab,0(Qp)
#Jb(Qp)/Jb,0(Qp)

.

If Jb has good reduction at an odd prime p, then cp(ϕM,b) = 1. However, given that ϕM,b is not self-dual,
it could happen that cp(ϕM,b) ̸= 1 if Jb does not have good reduction at p. Heuristically, let us assume the
following:

• Over the b ∈ B(Zp) with p | ∆(b), the expected value of cp(ϕM,b) tends to a constant α > 1.

• The values of cp(ϕM,b) behave independently for each prime p.

It is not unreasonable to expect that the average value of cp(ϕM,b) over the b’s of bad reduction is larger
that 1: if, for instance, the proportion of b with cp(ϕM,b) = 2n was positive and equal to the proportion of
cp(ϕM,b) = 1/2n, that would be a contribution of (22n+1)/2n+1 > 1 to the expected value. The independence
of different primes would give that

E[
∏
p

cp(ϕM,b)] = αω(∆(b)),

where ω(∆(b)) denotes the number of distinct primes dividing ∆(b). As the height of b grows, we can expect
the average of αω(∆(b)) to be unbounded, provided the heuristics are valid. More precisely, the expected value
of αω(∆(b)) is e2(α−1) log logX , which recover the aforementioned predicted value of

√
logX if α = 5/4. This

phenomoenon is, very roughly, what happens in [KL14] and [CHL19].

The phenomenon in which the unboundedness of the average of Selmer groups comes from the unboundedness
of the average of Tamagawa ratios has been widely observed: other than the aforementioned [KL14; CHL19],
a similar phenomenon was noted by Smith in [Smi23, Proposition 2.5]. Smith has also asked to which extent
the converse is true: whether the average of Selmer groups is unbounded if and only if the Tamagawa ratio
of some related isogeny is unbounded. We wonder whether how the constructions in this article fit into this
framework.
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