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Abstract

We determine an upper bound for the average size of the Selmer groups associated to certain self-dual
isogenies related to Jacobians of hyperelliptic curves. This is one of the first results of this kind for
isogenies that are not multiplication-by-n. The proof follows Bhargava’s framework, and features a novel
orbit parametrisation associated to the Dynkin diagram of type Ba,.
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1 Introduction

1.1 Statement of results

Let n > 2, and consider the hyperelliptic curve C: y? = xf(z), where f(z) = 22" + poa®* ™1 + -+ + py,. Let
B = SpecZ[pa, . ..,pan], and for an element b € B(R) let us define its height as

ht(d) = ~sup {[pas| /DY,

i=1,...,2n

Let us consider the Jacobian J, = Jac(Cy). The point T' = (0,0) € C(Q) defines a rational 2-torsion point
inside .J;: we will denote by M the group generated by T inside J,[2]. Let M~ be the orthogonal complement
of M with respect to the Weil pairing. We note that M < M L, and that both M and M+ are stable under
Gal(Q/Q)-action. Therefore, there exists an abelian variety A, with maps

(o34 [l V]

Jp — Ap = Ay — b, (1)
such that if 1 = ¢ o ¢ps, then Jy[¢] = M, Jy[th] = M+, Ayl¢] = M+/M and the whole composition in
is the multiplication-by-2 isogeny. We will denote the isogenies by ¢ or ¥, when we wish to emphasize the
invariant b € B.

Theorem 1.1. When ordered by height, the average size of Sely(Ayp), where b varies in B(Z), is at most 6.

In fact, Theorem remains true even when finitely many congruence conditions are imposed on B(Z): see
Section @ and Theorem .3l

1.2 Method of proof

Many results on the average size of Selmer groups of isogenies that are multiplication-by-n have appeared in
the literature in the past years, helped mainly by Bhargava’s striking new methods in geometry-of-numbers:
as seen for instance in [BS15a; [BS15b; Lag24], among many others.

The standard technique in “Bhargavology” is to parametrise the elements of the Selmer groups by integral
orbits of a representation (G,V) of a reductive group G defined over Z. Finding such parametrisations
is one of the main obstacles in obtaining more of these results. Previous experience suggests that many
representations used in arithmetic statistics actually arise from Vinberg theory, or in other words the study
of graded Lie algebras. In [Thol3], Thorne connected the Vinberg representations associated to the Z/2Z-
gradings of the simply laced Lie algebras (i.e. those of type A,, D, or E,) with certain families of curves
arising as deformations of simple surface singularities, in such a way that the orbits of the representation
should give arithmetic information about the constructed families of curves. This perspective has been used,
implicitly and explicitly, to obtain statistical results on the size of 2-Selmer groups in the past: all these
results have been unified and reproved in Laga’s thesis [Lag24]|, which gives a uniform proof of all such
results.

Other Vinberg representations have appeared in the literature, either coming from either non-simply laced
Dynkin diagrams or higher order gradings (or both). In [RT21], a Z/3Z-grading in Es is used to study the
3-Selmer group of odd genus 2 curves. In [BES20|, a Z/3Z-grading of G2 was used to study 3-isogeny Selmer
groups of the elliptic curves y?> = 2% + k, a perspective that was later generalised in [Bha-+19] for abelian
varieties. In |[Lag24], a Z/2Z-grading in Fj is used to study 2-Selmer groups of a family of Prym varieties, in
a manner that serves as a template for our results.

We now explain the structure of this paper. In Section we will construct the representation (G,V)
associated to the diagram Bs,, and we will describe its rational and integral orbits. We will also see how
this representation is connected to the geometric picture of . We now explain this more precisely. First,



we will observe that the ring of invariants Q[V]¢ is isomorphic to an affine space Q[pa,...,Pn], Where
p2; has degree 2i. Therefore, any element of V(Q) can be associated to the hyperelliptic curve Cy: y? =
2(2?" + pex® ! 4+ ... + p4y,), and consequently to the isogenies described in . Then, we will find an
embedding

Sl Jy < (GQ\V(Q) () 3V (2),

where Vj, denotes the subset of V' of elements having invariants b. Later, in Section [3] we will consider a
related representation (G*, V™), for which will have V* /) G* ~ V / G and a commutative diagram

Selw Jb —_— Sel¢ Ab

| |

GQ\V(Q) — G*(Q\V, (@),

where again the rightmost map is injective and every element in its image has a representative in %Vb* (2). It
turns out that the representation (G*,V*) is the Vinberg representation associated to the Z/2Z-grading on
Asp—1, which has already been studied in [SW18]. Therefore, in Section |4| we can use the counting results of
loc. cit. to prove Theorem [I.1}

We can compare the result of Theorem u with the Poonen-Rains heuristics in [PR12]. These heuristics
contain some predictions for Selmer groups of self-dual isogenies A: A — A" which come from some symmetric
line sheaf £ in A. This is the case for all of our isogenies ¢: A, — A): ¢ is self-dual by Lemma and the
obstruction for ¢ to come from a symmetric line bundle is measured by an element c, € H'(Ap[¢]), which
is zero in our case by |[PR11, Proposition 3.12(f)]. Then, [PR12, Theorem 4.14] identifies Sely JbE| with an
intersection of two maximal isotropic subspaces of an infinite-dimensional quadratic space over Fy. Then,
Theorem [I.T] appears to be consistent with the predictions of the Poonen-Rains heuristics: the upper bound
for our average size coincides with that of 2-Selmer groups of even hyperelliptic curves, which in both cases
account for the presence of a marked rational subgroup of the Selmer group.

We end by noting a limitation of our current methods. Namely, we cannot obtain an analogous result for the
average of Sely, J, using the representation (G, V). This is explained in detail in Section [5| where we discuss
the possibility that the average size of Sel, J, might be unbounded. We further elaborate how this compares
with previous results in the literature in the elliptic curve case, and the reasons why such an average might
be unbounded.

1.3 Acknowledgements

I wish to thank my PhD advisor Jack Thorne for many helpful comments and conversations. I also want to
thank Jef Laga for his useful suggestions.

2 Orbit parametrisation in B>,

2.1 The representation (G,V)

The representation (G, V) of interest will be the Vinberg representation associated to the stable 2-grading
associated to the root system of type Ba,. We now construct it explicitly: the reader can consult [Vin76}
Pan05; Ree+12] for more context on such representations.

IThe cited [PR12, Theorem 4.14] only identifies a quotient of Sely Jp, as an intersection, but that quotient is equal to Sely Jp
100% of the time by [PR12} Proposition 3.4], using the fact that A [¢] is isomorphic to the 2-torsion of the Jacobian of y2 = f(z).



Let J,,, denote the m x m matrix with 1s in the antidiagonal and Os elsewhere. Define SO(J,;,) = {A € SL,y, |
tAJA = J}. Throughout this paper, we will simply denote SO,, := SO(J,,). We will also fix a field K of
characteristic 0.

Let n > 1, and define G := SOg,, 11 X SO3,. This group acts on the vector space V = (2n+ 1) K (2n), whose
elements can be seen as (2n + 1) x (2n) matrices, by (g,h) - A = gAh™! for any g € SOa,,41, h € SOg,
and A € V. Given A € V, define its adjoint to be A* = Jo,'AJoy 1. If the (2n) x (2n) matrix A*A has
characteristic polynomial f(z) = 22 + pox®”~! + - + py,, then the (2n + 1) x (2n + 1) matrix AA* has
characteristic polynomial z f(x). The coefficients pa, . . ., p4n, are all invariants of the representation, satisfying
p2i(M) = Npy;(v) for all i = 1,...,n. Let B :=V J G = Spec K[V]% be the GIT quotient: the following
lemma holds by general facts of Vinberg theory (see [Pan05, Corollary 3.6]):

Proposition 2.1. We have that B = Spec K|[pa, ..., Pan]-

We will denote w: V' — B for the invariant map, and we will write V,(K) for those elements in V(K) with
invariants b € B(K). We will also denote the discriminant A of an element b € B(K) corresponding to the
polynomial f(z) = 22" + pox?"~1 + .- + p4, as the discriminant of the polynomial xf(x2), and similarly
define the discriminant of an element v € V(K) as the discriminant of m(v). The following result is also
well-known:

Proposition 2.2. An element v € V(K) is regular semisimple if and only if A(v) # 0.

We will use the subscript V™ to distinguish those elements that are regular semisimple, and we will also
denote B"® for m(V"¢), which is equivalently the set of elements of B with non-zero discriminant.

2.2 Rational orbits

In general, a G(K*®)-orbit of elements in V' (K*) might break up into multiple G(K)-orbits in V(K). We have
the following general result from arithmetic invariant theory (see [BG14, Proposition 1]) indicating how this
phenomenon can be studied with Galois cohomology groups:

Proposition 2.3. Let v € V(K). The set of G(K)-orbits in V(K) which are G(K?)-conjugate to v are in
bijection with the kernel of the map

H'(K,Stabg(v)) - HY(K,G)

of pointed sets.

We will now show how to construct all the rational orbits with given invariants from an element a €
ker(H'(K,Stabg(v)) — H'(K,G)). We start by constructing a “distinguished” orbit, and then we will
show how to obtain the rest from it.

2.2.1 A distinguished orbit

Let b = (pa2,...,psn) € B(K), and consider the polynomial f(z) = 22" + poz?"~! + .- + py,. Define the
K-vector space M = K|[z]/(xf(2?)) = K|[B], which is spanned by the K-linear combinations of 1,3, ..., 34"
Define the bilinear form (-,-): M x M — K by:

(\, i) = coefficient of 3% in Ap.

Let Ly = Klz]/(zf(x)) and let Ly = K[z]/(f(z)). Then, M is isomorphic to Ly @ SLo, where there is a
natural inclusion L; — M by sending = — 2. In other words, L; is the subspace spanned by {1, 32, ..., 84"}
and Ly is spanned by {3,3%,...,54"1}. Then, the form (-,-) splits as a direct sum of bilinear forms in



Ly and BLs. Using the explicit power bases, we can see that both quadratic forms on L; and Ly have
discriminant 1 and are in fact split, so we can isometrically identify L; with a quadratic space (W1, Japn+1)
of dimension 2n + 1 and Ly with a quadratic space (Wa, Ja,) of dimension 2n.

Let W be the quadratic space given by (W7y, Jan11) @ (Wa, Ja,), and consider the multiplication-by-/3 map
Ts: M — M, which can also be seen as a map from W to W. Given that T} is self-adjoint with respect to
(+,-), we get that the matrix of T on W is of the form

< O@nt)xnsny | A >
A* ‘ 02n><2n ’

where A € Mat(2,,41)x(2n). Thus, we get an element v € V(K) with invariants b € B(K) by construction.
We also observe the following;:

Proposition 2.4. Let v € V(K) be the orbit previously constructed, and assume that A(v) # 0. Then, the
stabiliser Stabg(v) is isomorphic to the kernel of the norm map Resr, /i p12 — 2.

Proof. Given that v is regular semisimple by Proposition the centraliser of T in GL(M) is M*. Since
the centraliser actually lies inside SO(M), this forces elements A € M* to satisfy A2 = 1. Moreover, because
A needs to preserve both L; and L2, we see that A € L. Finally, the fact that A € SO(W) x SO(W;) forces
Nz, /xk(A) =1 and NLZ/K(X) =1, where X is the image of \ in Lo.

The conclusion is that the stabiliser is in bijection with the elements of Resy, /i pi2 whose norm is 1 and whose
image in Lo also has norm 1. This can be identified with ker(Resy, JK M2 — 12), and so we are done. O

We will denote the kernel of the map Resy,/x 12 — p2 by (Resp,/x p2)N=1-

2.2.2 The other orbits

Let G’ = SOg;,41 X02,. We will start by explaining how to construct all the diferent G’(K)-orbits, and
then we will specialise to G(K)-orbits. Note that given v € V(K) with A(v) # 0, we have that Stabg: (v) =
Resr, /K p2, and that HK, Resy, /k p12) = Ly /LZXQ. We also observe that the pointed set H'(K,SO,,)
parametrises non-degenerate quadratic spaces of dimension m and discriminant 1, and that the trivial element
of HY(K,S0,,) corresponds to the (unique) split orthogonal space of dimension m. Similarly, the pointed set
HY(K,O,,) classifies non-degenerate quadratic spaces of dimension m, with a similar trivial element. The
map H'(K,S0O,,) — H'(K,O,,) has trivial kernel as a map of pointed sets, as can be seen from the usual
long exact sequence in group cohomology of

1 —— SO, — O, —%L5 {+1} —— 1.

In fact, H'(K,SO,,) — H'(K,O,,) is injective (cf. [Knu+98, §29.E]), but we will not need this fact.

Given a € (L3 /Ly*?) that maps to the trivial element in H' (K, G"), we will show how to construct a rational
orbit from it. An element o € LS can be lifted to an element of Ly = K* x LJ by simply considering
(1,a) € LY. Moreover, as in last section, we can naturally embed L; < M, so given a € (Ly/L5?)
we can naturally consider it as an element of M. Under this identification, consider the quadratic form
(y)a: M x M — K defined by

(A, it)a = coefficient of %" in o™ Apu. (2)

As before, this quadratic form splits as a direct sum of quadratic forms in Ly and SLo. If o has norm 1
(up to squares) in Lo, then both forms have discriminant 1, so they give a well-defined map to H!(K,G").
Unwinding the definitions similarly to [BG14, §5], the condition that « lands in the kernel of H(K,G’)
translates precisely to both forms (-,-)q|r, and (-,-)algr, being split of discriminant 1. Therefore, under



appropriate change of bases in Ly and Lo, the map T given an element of V(K) in the same way as in the
distinguished case.

Thus, given o € (L3 /L5 *)ny=1 which maps to the trivial element of H'(K,G’), we have constructed a
rational G'(K)-orbit.

We now turn our attention to G(K)-orbits. Following [BGW15, §4.3], there is a map H' (K, (Resp, /x p2)N=1) —
(L3 /LS*)n=1 which is either bijective or 2-to-1, according to whether f(x) has an odd degree factor over K
or not, which in turn happens depending on whether L [2] has an element of norm —1 or not. Therefore, a
G'(K)-orbit in V(K) splits in either one or two G(K)-orbits. In the case where f(x) does not have an odd
degree factor over K, we note that the stabiliser over K of the constructed v over SOg,,4+1 X SOq, is the same
as the stabiliser over SOy, 1 XOa,. By choosing h € Oy, (K) \ SOs,(K), we can obtain a new orbit by just
considering the element (1,h) - v. If f(z) has an odd degree factor over K, the constructed orbits coincide.
We summarise our results as follows:

Theorem 2.5. Let b € B(K) with A(b) # 0. Then, the set of G(K)-orbits in Vi, (K) are in bijection with the
set of equivalence classes («,s), where a € (LY )N=1 maps to the trivial element in H'(K,G) and s € K*
satisfies N(a) = s2. Two pairs (o, s) and (o, s') are equivalent if there exists ¢ € Ly such that o/ = c?a and
s' = N(c)s. The stabiliser of such an orbit is isomorphic to (Resy, x fi2) N=1-

It will be convenient for us later to introduce the notion of reducible and irreducible orbits:

Definition 2.6. Let v € V,(K) with b = w(v). We say that v is K-reducible if either A(b) = 0 or if v maps
to the trivial element in the composition

G(K)\%(K) — Hl(K, (RGSL2/K H2)N:1) — (LLXQQ) .
2 N=1

We say that v is K-irreducible if it is not K-reducible.

Equivalently, v € V4(K) is K-reducible if it is (SOzp4+1 XOgy,)(K)-equivalent to the distinguished orbit
constructed in Section Note that the notion of reducibility depends on the base field. If K is alge-
braically closed, every element is K-reducible. We will typically refer to Q-(ir)reducible elements simply as

(ir)reducible. We also note that there might be one or two K-reducible G(K)-orbits with a given invariant
be B"(K).

We will now give an alternative, more explicit description of reducibility. Recall that an element v € V(K)
corresponds to (2n + 1) x 2n matrix A, which can in turn be viewed as a linear map A: Ly — L;. Under
this convention, we can also view A* as a linear map A*: L1 — Lo.

Proposition 2.7. Let b € B™(K). An orbit v € Vy(K) corresponding to a (2n + 1) X 2n matriz A is
K -reducible if and only if there exists a K -rational space X C L1 of dimension n such that AA*X C X*.

Proof. Assume that b corresponds to the invariant polynomial f(z). From v € V(K) and its corresponding
matrix A, the matrix AA* is a (2n+1) x (2n+1) matrix with characteristic polynomial f(x), and the action of
(g9,h) € G(K) transforms AA* as (g,h) - (AA*) = gAA*g~! (noting that g~ = g*). Denoting G’ = SOg,,11
and V' = Sym?(2n + 1), we get a natural map G(K)\Vy(K) — G'(K)\V/(K). Note that (G’,V’) is the
representation studied in [BG13|. In there, an operator T: Ly — L; € VJ(K) is called distinguished if
and only if there exists an n-dimensional isotropic subspace X C L; with TX C X*. Furthermore, there
is an injective map G'(K)\V{(K) — (L7'/L{*)n=1 = (L3 /Ly?) under which the (unique) distinguished
G'(K)-orbit in V}/(K) maps to the trivial element. The proof concludes by observing that the diagram

GE)\Vy(K) —— G'(K)\V/(K)

| |

(L3 /L3 )n=1 — (L3 /L37)

is commutative, which follows from unpacking the definitions in [BG13]. O



2.3 Connection with hyperelliptic curves

Let b € B"(K) correspond to the polynomial f(z) € K[z] with deg f = 2n. Consider the hyperelliptic curve
Cy: y?> = xf(z) and its Jacobian Jj, := Jac(Cj). If the discriminant of xf(z) is non-zero, then the roots
20 = 0,21, ...,T2, of zf(x) over K are all different. If we denote P; = (x;,0) and oo is the point at infinity,
then J,[2](K) is generated by the elements (P;) — (00), with the only relation that ZZO((R) — (00)) = 0.

Consider the order 2 subgroup M C Ju[2] generated by T' = (0,0), and consider its orthogonal complement
M+ under the Weil pairing. Note that M < M+ and that M~ (K) has size 22"~!. We can construct some
isogenies as explained in the introduction, there are isogenies (see ([1f)).

Ty 245 Ay & AY D Ty,

with Jy[par] = M, if ¢ = ¢ o ¢pr then Jy[1)] = M+ and the whole composition is the multiplication-by-2
map.

Proposition 2.8. Let v € V(K) with A(v) # 0. Then, Stabg(v) =2 Jy[¢].
Proof. 1t suffices to show that J;[¢)] = (Resp, /k f12) N=1, which is an elementary computation. O

Note that we also have that we have the injective descent map Ay (K)/v(Jo(K)) < H' (K, Jp[¢]). It is then
natural to ask whether the elements of AY (K)/y(J,(K)) actually correspond to Gy (K )-orbits in V,(K).

Theorem 2.9. The natural composition
AY () [e(Jo() = HYK, J[v]) — H' (K, G)
is trivial.

Definition 2.10. We will say an element v € V"¥(K) is K -soluble if v € ny(A) (K) /¢ (Jp(K))).

It is not so obvious what an explicit description of the map A (K)/v¥(Jy(K)) — H' (K, Jy[1]) should be.
However, we can try to simplify the situation by trying to relate it to the 2-descent map Jy,(K)/2J,(K) —
HY(K,Jy2]). Consider the group G’ = SOs,41 xOs,: similarly to Proposition we can see that
Stabgr (v) = Resp, /i (12) = Jp[2]. We then have the following commutative diagram:

A (K) JY(Jp(K)) —— Jp(K)/2Jp(K)

Js Jo

HY(K, Jy[)]) —— H'(K, J,[2]) (3)

| !

HY(K,G) —— HY(K,G")

The map HY(K, Jy[2]) - HY(K,G') = H'(K,SO2,41) x H' (K, Os,) can be given using the same recipe as
in Section Explicitly, given o € H' (K, J[2]), which can be viewed both as an element of Ly /L? and
as an element of (L} /L{?)y=1 via o — (Np,/x(@),a) € K* x LY = LY, we obtain two quadratic spaces
(98 Ly x Ly — K and () Ly x Ly — K given by

(1, A = coefficient of 2" in o' p) (inside L)

[0

and
(1, \)® = coefficient of 42"~! in ! pX (inside L),

[0}



where we are writing L1 = K(1,(,...,3%") and Ly = K(1,3,...,3?""!). Alternatively, if we consider the
codimension 1 vector subspace 81L; of Ly, we have that for (-, ~)((12) is equivalent to a form (-, )&2 ). B1Ly X

B1L1 — K given by (B, SiN2) = (1, B\ (we can check that this is well-defined).

The image of any given o € H' (K, J,[2]) in H'(K,SO2,11) x H'(K, Oa,) is given by the quadratic spaces
(L1, (-, -)(al)) and (Lo, (-, ~)&2)), and these quadratic spaces will correspond to the trivial element if and only
if they are split of discriminant 1. We note that the discriminant of (-, ~)£3) is 1, while the discriminant of

(-, ~)82) is equal to Ny, k (c). Therefore, it is not necessarily the case that the composition J,(K')/2Jy,(K) 22,
HY(K, Jy[2]) - H*(K,G’) is trivial: it is a necessary condition that Ny, x(a) € K*2.

Recall that there is a surjective map H (K, Jy[¢)]) — (L5 /L5?) =1, which is either bijective or 2-to-1. Then,
the map ¢: HY(K, Jy[¢)]) — H' (K, J,[2]) = LS /Ly? is just given by the natural inclusion H'(K, Jy[¢]) —
(L3 /L3*)n=1 = Ly /L5

Lemma 2.11. Let [D] € Jy(K)/2Jy(K), and suppose that 62([D]) € Im(t). Then, the image of d2([D]) in
HY(K,G") is trivial.

Proof. We start by recounting the proof of [BG13, Proposition 5.2]. Consider the two quadrics in L; & K
given by
Ql(Aa a) = (>\7 )‘)81)7 QQ()‘v a) = ()\7 ﬁl)\)t(yl) + a2~

Then, it is shown in loc. cit. that there exists a rational n-dimensional subspace Y of L; @& K which is
isotropic with respect to both @1 and @s. In particular, given that the line 0 ® K is not contained in Y, we
see that the projection of Y to L; is an n-dimensional isotropic subspace of @1, thus showing that (-, .)((11) is
split.

Now, consider the subspace Y/ =Y N (L; @ 0), of dimension at least n — 1. We see that Y’ N f(61)L1 = {0},
as (f(ﬁl),f(ﬁl))(()}) = Np,/x (@™ )Np,/k(B1) # 0. Therefore, the subspace $1Y” of f1L; has dimension at
least n — 1, and it is also the case that for any Siu, S1A € 51Y’ we have that (58, 61/\),(12/) = (u,ﬁl)\)&l) =0

by construction. Therefore, (-, ~)((12) has a rational isotropic space of dimension n — 1 and thus, as a quadratic

space, we have that (Lo, (.’.)&2)) ~ g1 @ V', where H ~ <<(1) (1)>> But V' is a quadratic space of
2)

dimension 2 and discriminant 1 (by hypothesis), and therefore V' ~ H as well, showing that (-,-)s is split,
as wanted. O

Proof of Theorem[2.9. First, note that the map H'(K,G) — H'(K,G") has a trivial pointed kernel, which
is equivalent to H'(K,SOs,) — H'(K, O2,) having a trivial pointed kernel, as noted in Section Then,
the proof follows from Lemma and the commutativity of the diagram . O

Remark 2.12. Let AY[)] = {0,Ta}. Then, both 0 and T4 give distinguished orbits of G(K)\Vs(K).
Whether or not these two orbits coincide depends on whether Ty € (J,(K)).

Corollary 2.13. Let K be a number field, and let b € B(K) with A(b) # 0. Then, there is an embedding
Sely (Jp) = G(K)\Vp(K).
Proof. Consider the commutative diagram

A (E) [ (Jy(K)) ———— HYK, Jy[]) ——— H'(K,G)

| ! |

TT, AY (K /0(b(K)) —25 TT, HY (Ko, Jo[]) — T, HY(K., G),

where the product is taken over all finite places v of K. Recall that Sely(Jp) is defined as ker(H* (K, Jp[¢]) —
[T, B (Ky, Jp[¢])/(Im(dy,,))). Our statement then follows from the fact that the composition of maps in



the second row is trivial by Theorem and the fact that the map H'(K,G) — [[, H'(K,, G) has trivial
kernel (see e.g. [Lag24, Proposition 6.8]). O

2.4 Integral orbits

To prove our main theorems, we will require an integral version of Corollary 2.13] We remark that even
though we have originally constructed our representation over K, a field of characteristic zero, we could also
have constructed (G, V') over Z. In this case, we also have B = SpecZ[pa, . . ., Dan].

Theorem 2.14. The image of the map

Sely (Jp) = G(Q\V5(Q).
falls inside %Vb(Z)

Because G has class number 1 (cf. |Lag24] Proposition 7.2]), it will suffice to see that the map

A (Qp) /¥ (T(Qp)) = G(Qp)\VA(Qp)

falls inside %V(Zp) for all p. We start by giving an ideal parametrisation of integral orbits inside Z,, in
an analogous way to other results in the literature, such as [Shal9, Proposition 6.7]. For the proof of
Theorem we will need to know when a Z,-lattice L of dimension m with a given symmetric bilinear
form L x L — Z,, is isometric over Z, to an m-dimensional lattice L,, with matrix J,,. We summarise known
results on this next lemma:

Lemma 2.15. Let I be a Z,-module of rank m equipped with a symmetric bilinear form ¢: I x I — 7Z, of
discriminant 1.

o Ifp#2, then I is isometric to L, over Z,.

o Ifp=2and m=2m'+1, then I is isometric to L,, over Zs if I @ Qg is a split orthogonal space.

o Ifp=2andm=2m/, then I is isometric to L,, over Zs if I ® Qo is a split orthogonal space and I is

an even lattice (i.e. o(x,x) € 229 for all x € I).

In the last item, the condition that I is an even lattice is necessary, as (L, Jn,,) admits both an even and an
odd lattice over Zy. These two lattices can be transformed to one another via an element of O,,(Q2) with
coefficients in 17Z,.

Proposition 2.16. Let b € B(Z,) with A(b) # 0. Then, the set of orbits G(Z,)\Vs(Z,) is in bijection with
the equivalence classes of (I, Iz, s), where Iy is a fractional ideal of Ry, Is is a fractional ideal of Ra,
a € (LY )n=1 and s € K*; satisfying:

1. I} C aRy and N(11)*> = Np, g, (a), where a can be interpreted as an element of Ly = Q, x Ly via
o (N1, /g, (@), 0).

2. I3 C aRy and N(I3)? = Np, g, ().

3. Let I, denote the projection of I in Ly, and let Tl/ ={y €Ly |(0,817) € 1}. Then, I; C Iy C Tll.
4. The forms (-, -)&1) and (-, -)((12) are split of discriminant 1 over Q.

5. Iz is even with respect to (-, ~)((12).

6. NL2/QP(OI) = 82.



Two such tuples (I, Iz, s) and (I, 1}, /. s") are equivalent if and only if there exists an element ¢ € L
such that Iy = clf, Iy = cIj, o = ¢*a’ and s = Ny, g, (c)s'. An integral orbit (Iy, Iz, o, s) corresponds to the
rational orbit given by («, s).

Proof. First, we start with a tuple (I3, I2, o, s) and we construct an orbit in G(Z,)\V,(Z,). First, we note
that the forms (-, ~)((X1) and (-, ')1(12), when restricted to I; and I, respectively, take integral values and are split
of discriminant 1. Therefore, we can find Z,-bases for I; and I, such that the forms have Gram matrices
Jop+t1 and Ja, respecively. Then, also by construction we have that the matrix of T has values in Z,, so it
gives an element of V,(Z,).

Now, suppose that we start with an orbit in G(Z,)\V4(Z,). Theorem [2.5| gives («, s) and hence properties 4
and 6. We recall that such an orbit can be constructed as the matrix of T in M = Qy[z]/(zf(2?)). Given
a basis {e1,...,esnt1} of M, the action of Tjs realizes J = Zy(e1,...,eami1) as an R = Zy[x]/(zf(x?))-
submodule. Note that R = R; & SRy. The fact that T3 respects Ry and Ry implies that J = I) + §1; for
some fractional ideals I; in R; and I» in Ry, which necessarily satisfy I; C I C Tll. The fact that the forms
(-, ~)&1) and (-, ~)£¥2) have to be self-dual with respect to I; and Iy with matrices isometric to Jo,+1 and Jay,
over Zy, respectively, give the rest of the hypotheses.

These two constructions are inverse to each other, and so we are done. O

Proof of Theorem [2.17). Tt suffices to show that for every element of A,(Q,)/v(Js(Q,)) there is a tuple
(I1, I, o, s) satisfying the conditions of Proposition We note that splitness of the forms over Q,, follows
from Theorem [2.9] Furthermore, by [LT24, Lemma 4.9] (cf. [BG13| Proposition 8.5]), there exists a fractional
ideal I; in Ry such that I7 C aRy with N(I1)* = Ny, /g, ().

We can observe that when reducing to Ry, the lattices I; and Tll are dual to each other with respect to the

form (-, -)&2). This follows from observing that for any u, A € Ly with liftings p/, A’ € L; we have that

(1 N = (W, BN

Then, the process of finding a fractional ideal I with the required conditions reduces to finding a lattice
I, CcAC Tll which is self-dual and is stable under multiplication by (2, up to considerations at p = 2.
We further observe that any lattice A satisfying I, C A C IT/ is automatically stable under xfs, so it
automatically is a fractional ideal.

We split our the rest of our proof in the two cases p # 2 and p = 2, in a similar way to [Shal9, Propositions
6.9, 6.11].

e p# 2: By |Cas78, Lemma 3.4] we can find a basis (f;) of I; such that its Gram matrix with respect to
() is

up™

a2

Uzp pP2"

where the a; are non-negative integers and u; € Z;. By substituting f; by p*“?ij fi, we may assume

that a; € {0,1}, and the resulting lattice A still satisfies I; C A C Tll. Write A = Ag @ Ay, where A; is
the span of those f; with b; =4 (i = 0,1). Given that the discriminant of the form is 1 modulo squares,
the dimensions of both Ag and A; have to be even. We will now see that both Ag ® Q, and A1 ® Q,
are split quadratic spaces.

Let Ag be spanned by (fi,..., faq) and let Ay be spanned by (f2q+1,---, fan). Then, the discrimi-
nant of Ag ® Q, is (—1)* Hfiluz and the Hasse invariant is 1, as (u;,u;), = 1 for all u;,u; € Z.
On the other hand, the discriminant of Ay ® Q, is (1)~ H?;LQQH u; and its Hasse invariant is

10



(—1)(n—a)p=1)/2 Hf:2a+ L (“?) A straightforward computation shows that the Hasse invariant of
(Ao ® A1) ® Qp is equal to the Hasse invariant of Ay ® Q,, so both these invariants are equal to
1. Given that (—1)(»~®®=1/2 i5 equal to (—1)"~® up to squares (indeed, both these quantities are
equal to (—1)"® if p = 3 (mod 4) or equal to 1 modulo squares if p = 1 (mod 4)), this forces the
discriminant of A; ® Q, to be equal to 1. Since the discriminant of (Ag & A1) ® Q, is 1, and also the
product of discriminants in Ag and A, this implies that the discriminant of Ag ® Q) is also 1, proving

our claim that both Ag ® Q, and Ay ® Q,, are split quadratic spaces.

Thus, we can choose a basis of Ag such that its Gram matrix is Jo,, and we can choose a basis of Ay
such that its basis is pJo(—a). By replacing foai1,-- -, fon bY foat1/Ds- - farn/Ds farns1s - fon, We
get the matrix Jy(,_q). Therefore, we obtain a self-dual lattice A = Ag @ A; with the desired inclusion
conditions.

p = 2: In this situation, by [Cas78, Lemma 4.1] we can find a basis of I; such that its Gram matrix
with respect to (-, ~)&2) is
2@
292Q,

29 Qg

where a; > 0 and the Q; are either 1 x 1 matrices with an entry in Z; or 2 x 2 matrices of the form

o-(01) w ()

As before, we may assume that a; € {0,1}. For the 2 X 2 matrices, we may further assume that a; = 0:
if a; = 1, we may substitute e; for e;/2 to get a self-dual lattice. Therefore, we may assume that the

Gram matrix is of the form
2U

Q2

o

where U is a diagonal matrix of size 2a x 2a with unit entries, and the @; are either 1 x 1 or 2 x 2

. . . . . . . 2 0 .
matrices with unit determinant. Finally, we notice that for a matrix ( 81 2u ) with uq,uy € Z;,
2

the basis spanned by (e; +e2)/2 and (eq — e2)/2 gives a self-dual lattice. We can conclude that there

exists a self-dual lattice I; C A C 52_111.

It is not necessarily the case that I5 is even with respect to the form (-, -)&2), so it might not the case that

this lattice is isometric to (Lay,, Jon,) over Zg. However, it is the case that both lattices are isometric
under a matrix in Og,(Q2) with coefficients in %Zg. Thus, the given tuple (11, I, , s) yields an orbit
L1

in 5V(Z).

3 The resolvent form

As before, let K be a field of characteristic zero. Consider an element A € V(K) as a (2n+1) X 2n matrix with
entries in K and associated characteristic polynomial f(z). Then, A*A is a 2n x 2n matrix that is symmetric
along the antidiagonal and has characteristic polynomial f(z). We get an action of (g, h) € SOgy,41 X SOg,
act on A*A by (g,h) - (A*A) = hA* Ah*.

Let PSOs,, = SOy, /ua. Then, we define the representation (G*, V*) = (PSOs,,, Sym?(2n)), where Sym?(2n)
denotes the 2n x 2n matrices that are symmetric along the antidiagonal, and G* acts by conjugation on these
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matrices. This is (up to a trace zero condition) the same representation that was studied in [SW18|. The ring
of invariants of (G*,V*) is generated by the coefficients of the characteristic polynomials of the matrices of
V*, and hence we have an isomorphism between B* := V* J G* and B. We note, however, that the degrees
of the elements of B* are half the degrees of the corresponding invariants in B.

3.1 Rational orbits

We recall [SW18| Proposition 2.1].
Proposition 3.1. Let b € B"(K) with A(b) # 0. If the associated characteristic polynomial is f(z), write
L = Klz]/(f(z)). Then, if v e V;*(K), then Stabg-(v) = (Resy/x p2)n=1/p2-

Therefore, by Proposition if b € B™(K) the G*(K)-orbits in V;*(K) are in bijection with the pointed
kernel of
H'(K, (Resz/k po)n=1/p2) — H'(K,S04,).

Similarly to (G, V), there is a map H'(K, (Resy x po)n=1/p2) — (L*/K*L*?)y=1 which is bijective or
2-to-1 according to whether the norm map N: (Resp/x po)p2(K) — pp is surjective or not (see [SWIS,
Proposition 2.2] for a more explicit description).

Let 3 denote the image of x inside L, so that L has a K-basis 1,3,...,3*""1. Given a € (L*/K*L*?)y=1,
we can define the form (-,-)q: L x L — K by

(1, N) o = coefficient of "1 in a~!pA.
This form has discriminant 1, up to squares. Then, we have (cf. [SW18, Theorem 2.6)):

Theorem 3.2. There is a bijection between PO(K )-orbits in V;*(K) and elements o € (L*/K*L*?)n=1
such that (-,-)q is split. These PO(K)-orbits split into one or two PSO(K)-orbits according to whether the
norm map on (Resyk po)N=1/p2 is surjective or not, respectively.

Let b € B"*(K) correspond to the invariant polynomial f(z), and consider the hyperelliptic curve Cy: y? =
zf(z) with Jacobian J, = Jac(Cj,). We recall the setup of ([I):

Jb¢—M>Abi)Az/—>Jb

where Jy[pn] = M, Jy[¢p o ¢pr] = M+ and the whole composition J, — Jj, is multiplication-by-2. In
particular, we have that A[¢] is isomorphic to M- /M. First, we note the following fact:

Lemma 3.3. The isogeny ¢: Ay — Ay is self-dual.

Proof. As suggested by the notation, the abelian varieties Aj and A} are indeed dual to each other. It is a
general fact of principally polarised abelian varieties that (J/M)Y ~ J/M=, which follows from the properties
of the Weil pairing. Moreover, the finite group scheme M= /M is isomorphic to its own Cartier dual, so the
dual isogeny ¢¥: A, — AY can be identified with ¢. O

We also observe the following fact about the stabiliser:

Lemma 3.4. Under the above notation, we have (Resyx p2)n=1/p2 = M+ /M.

This follows immediately from Proposition 2.8 Therefore, we have a map

AY(K)/p(Ap(K)) — Hl(K, (RGSL/K po)N=1/H2)-
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Theorem 3.5. The composition
AY(K)/o(Ay(K)) = HY (K, (Res ik p2)n=1/p2) — H' (K, G)

1s trivial.

Proof. Note there’s a commutative diagram

Ay (K) /(Jo(K)) —— A (K)/¢(Ap(K))

| |

HY(K, Jy[¢]) ———— H'(K, Ay[¢])

| l

HY(K,G) ——— HY(K,G*)

Theorem shows that the composition in the first column is trivial. The map in the first row is surjective,
and the map in the last row is just the forgetful map H'(K, SOz, 1 x SO2,) — H(K,SOs,). The result
follows. 0

Therefore, for all b € B™(K) there is a map

AY () $(A(K)) % G (K)\V; (K), (4)

and similarly to the last section we will call a G*(K)-orbit in V,*(K) K-soluble if it intersects the image of
n;. If K is a number field, we say that an orbit is locally soluble if it is K, soluble for all completions K.
The same proof as in Corollary yields

Corollary 3.6. Let K be a number field. Then, for b € B"(K) we have

Selg(Ap) = G*(EK)\Vy'(K).

In [SW18], a G*(K)-orbit in V;*(K) is called reducible (or distinguished) if it maps to the element a =1 in
HY(K, (Resp i po)n=1/p2) = (L /K" L*?)y=1.

More precisely, in [SW18, §2.2] a distinguished orbit v, is constructed, and a PSOaq, (K )-orbit is called
distinguished if it is POy, (K)-equivalent to the constructed orbit vp. This corresponds precisely to the orbits
that map to 1 € (L*/K*L*?)n=1, of which there are at most two.

3.2 Integral representatives

We will prove the equivalent of Theorem [2.14] To do so, we will use the description of integral orbits in
[SW18| §2.4]. We note, however, that there is an oversight in loc. cit. in the case p = 2; the amended
statement should read like that:

Theorem 3.7. Let b € B"(Zy) with invariant polynomial f(x), and let L = Qa[z]/(f(z)) and R =
Zo|z]/(f(x)). There is a bijection between Og,(Zs)-orbits in V' (Z2) and equivalence classes of (I, o), where
a € L* and I is a fractional ideal of R satisfying I> C aR and N(I)?> = N(«a), which is even with respect
to the form (-,-)o. Two pairs (I, 1) and (12, a3) are equivalent if there exists ¢ € L™ such that Iy = cly

and a1 = Cas.

Remark 3.8. There’s a small convention difference in [SW18], where they take a~! where we take a.
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The condition of I being even with respect to the form is necessary, and in some cases the constructed ideals
in [SW18, §2.4] need not be even. In that case, it can only be guaranteed that the orbit will fall inside
1y/*

3V (Za2).

2

Theorem 3.9. Let b € B"*(Z). Every locally soluble orbit in V;*(Q) has a representative in 1V,*(Z).

Proof. As in the proof of Theorem [2.14] it is enough to see that for all p, the map

Ay (Qp)/(Ab(Qp)) = G (Qp)\V5'(Qy)

always intersects £V;*(Z,). For p # 2, this is immediate; if a (2n + 1) x 2n matrix A has entries in Z,, then
A* A also does. For p = 2, we note that by Theorem [2.14] and Proposition there exists an ideal called I
in there satisfying the hypotheses of Theorem [3.7] with the corresponding « of the rational orbit. O

4 Proof of Theorem [I.1]

To prove Theorem we will use Theorem in conjunction with the counting results of [SW18|] (which
are a particular case of |[Lag24] §8]). We start by noting the following result from |Lag23| Lemma 7.1]:

Lemma 4.1. Let K =R or Q, for some prime p, and write | - |x: K* — R for the normalised absolute
value of K. Let A be an abelian variety over K with dual abelian variety AV, and let \: A — AV be a self-dual
isogeny, which will have degree m?* for some m € Z>1. Then, the quantity

) o #A /N AK)
FAN(E)

satisfies ¢(N) = 1/|m| k.

In particular, for our map of interest ¢: A, — A}/, we will have that

2-(=1) if p = 0,
cp(dp) = 2070 ifp =2,
1 otherwise.

We turn our interest into counting G*(Z)-orbits in V*(Z). We will do so imposing infinitely many congruence
conditions:

Definition 4.2. A map w: V*(Z) — [0, 1] is said to be defined by infinitely many congruence conditions if
for each prime p there exist functions wy,: V*(Z,) — [0,1] such that

o wy is G(Z,)-invariant;

o w), is locally constant outside the subset {v € V*(Z,) | A(v) = 0};
which additionally satisfy w =[], wp.

Consider a G*(Z)-invariant subset A C V*(Z), and let w: V*(Z) — R be a function defined by infinitely
many congruence conditions. We denote

NyAX) = Y w(v)

UEG*(Z)\A<X # Stabc* (Z) (’U)
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Recall that a G*(R)-orbit in V;*(R) is called R-soluble if it falls in the image of n; in (4). Observe that the
number of G*(R)-soluble orbits in V;*(R) is #A4) (R)/¢(Ap(R)). Then, analogously to [Lag24, Theorem 8.18]
we get that

Nj(4,X) < ( o

/ w(v)dv) |VVE| vol(G*(Z)\G*(R)) vol(B(R) « x) +O(XdimV*)’
vEV(Zp)

P
where W7 € Q% is a fixed scalar number, and where w = Hp wp are the congruence conditions defining w.

To estimate the size of Sel,(Ap), we note that the non-trivial torsion point Ty, € AZWA}] generates a subgroup
St in Sely(Ap) of order dividing 2. In the map

Sely(Ap) = G*(K)\Vy' (K),

the elements of Sel,(Ap) which intersect the reducible orbits correspond exactly to the subgroup Sr, and
the complement of St falls entirely in the irreducible orbits. Given that #Sp < 2, it suffices to bound
Sely(Ap) \ St by looking at irreducible orbits.

We can prove our results in higher generality by imposing congruence conditions on B. We say that a set
B C B(Z)"® is defined by finitely many congruence conditions if it is the preimage of the reduction map
B(Z)™* — B(Z/NZ) for some N > 1. We will prove the following:

Theorem 4.3. Let B C B(Z) be defined by finitely many congruence conditions. Then,

i ZbeB, ht(b)<X #(Sely(Ap) \ ST)
Xheo  #{be B|ht(b) < X} =

Proof. Let By, denote the closure of B inside B"*(Z,). For our counting result, it will suffice to count those
irreducible G'*(Z)-orbits in V*(Z) corresponding to Selmer elements, as given by Theorem Given that we
are only guaranteed to have orbits in £V*(Z), and that Selg(Ap) ~ Sely(Ax.5) for any A € Q% it will suffice
to look at orbits with invariants in 2 - B, for which Selmer elements will always have integral representatives.
We choose the counting function

(Z # Stabgx () (v') ) B
w(v) = v EGH (Z\(G*(Q)vNV*(2)) FStabgr (2 ()

0 otherwise.

if m(v) € 2- B and v is locally soluble,

This is defined by congruence conditions by the functions

(Z # Stabgx (@) (v") > -
wy(v) = § \ 2w €6 @\ G @) v+ (2,)) FStabgm oy (7)

0 otherwise,

if m(v) € 2- B, and v is soluble,

by an analogous argument to [BS15a), Proposition 3.6]. The last part of |[Lag24l Lemma 8.5] gives

_ Vo * #Al\;/ (Qp)/¢(Ab(Qp))
LEV(ZP) w(v)dv = Wil vol(C (Zp))/beZB,, #Ap[0](Qp)

= |Wilp vol(G*(Zy)) |27(n71) |p|2n(2n+1) |p vol(By),

db

using Lemma in the last line. Under this counting function, we have that for any given locally soluble
v € V*(Z) with w(v) € B:

Z w(v') B 1
/ - .
wea(@unv-(z) T Stabe-@) (V) # Stabe @) (v)

100% of the time, this quantity is equal to 1 by [SW18| Proposition 23]. Thus, we have that
> #(Sels(A) \ S1) = Ny(VH(Z)" NV (R)*™,2X) + o(X"(40),

beBx
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With an elementary point-counting argument, we can see that
I vol(B,) vol(B(Z)<ax)
im
X5oo  #{be B|ht(b) < X}
Putting it all together, we have that
N (VH(Z)"™ N V/(R)*, 2X)
#{be B | ht(b) < X}

— 2n(2n71) )

< vol(G*(Z)\G™(R)) H vol(G*(Zy)),

which equals the Tamagawa number of G* = PSQs,,, which is 4. This concludes the proof. O

Theorem then follows from Theorem since St has size at most 2.

5 Further heuristics

It seems natural that an analogous result to Theorem @ should hold about the average size of Sely, Jp, using
the representation (G, V) and Theorem m However, following the results in [KL14] for the analogous
family in genus 1, there is a reasonable expectation that the average size of Sely Jp is unbounded, as long
as one assumes that genus 1 phenomena generalises well to higher genus (as has been case with Sely of the
complete families, like in [BS15a] and [BG13]). We will now explain what can be said about Sely, J;, with the
tools we have at our disposal.

Using a standard diagram chase (cf. [Bha+19, Lemma 9.1]), we get the following exact sequence:
Ap[0)(Q)/Par (H[P)(Q)) —— Selgy, Jo —— Sely Jp —— Sels Ap. (5)

Moreover, we observe that Ay[¢](Q) ~ ML /M, and that the size of M+/M is bigger than 1 only if the
corresponding polynomial f(x) is reducible, something that should happen 0% of the time, asymptotically
(cf. [BSW22, Proposition 4.3]). If Selfp Jy denotes the subset of elements in Sely, J, having non-trivial image
in Sely Ay, then we have the bound

# Sely Jy < # Sely,, Jy + #Sel’, Ji,

We can obtain information about Selfb Jp using the irreducible orbits of the representation (G, V'), which we
now define. Recall that there is a map G(K)\V,(K) — (L*/L*?)n=1.

Definition 5.1. Let b € B(K). We will say that a G(K)-orbit in V;,(K) is reducible if A(b) = 0 or if it maps
to 1 in the map

G\ (K) = (KLL)N_

Otherwise, we will say that the orbit is ¢rreducible.

Alternatively, an orbit is reducible in (G, V') if and only if it maps to a reducible orbit in (G*, V*). Under these
definitions, a G(K)-orbit corresponding to an element of Sely, J; is irreducible if and only if it corresponds to
an element of Seli Jp; and the orbit is reducible if and only if it is in the image of Sely,, J inside Sely, Jp in

. Therefore, if we want to determine the average size of Sely Jp, it would suffice to understand both the
reducible and irreducible orbits of (G, V).

Counting irreducible orbits can be done analogously to previous cases in the literature, following e.g. |[Lag24l
§8]. For instance, the analogue of |[Lag24l Proposition 8.10] would hold: namely, if w: V(Z) — [0, 1] is some
function defined by congruence conditions w = Hp wp, if we define

NV@TX) =Y vl

VEG\V (Z)iry, # Stabg () (v)
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then we expect that
N (V(Z)" X)) ~ / w(v)dv | X2+ (6)
veV (Zyp)

for some constant C' > 0 which can be made explicit. Equation [(] can indeed be proven with < instead of an
equality as in [Lag24l Theorem 8.18]. Analogously to Section |4} we can sieve the counting to Selmer elements
by imposing congruence conditions. We note, however, two important differences with the arguments in that
section:

o If b € B"(Z), then Stabg(qg)(v) always has at least two elements.

¢ The Selmer ratio
oy — FALU )
P #p[V](K)

for K = Q, or R might not be constant like in Lemma because 1 is not self-dual.

The end result is the following:

Theorem 5.2. The average size of Selfb Jy, when b varies in B(Z), is at most

Joen®) Coo(tPp)db [ ) Cp(tp)db

ht(b)<1 bEB(Zp
T T
@ ey ®

The factor of 8 is a product of the Tamagawa number of G, which is 4, and the mentioned minimum size of
the stabiliser, which is 2. We note that this result is similar to the main results in [BES20; Bha+19], and
that similarly to loc. cit., the average size of SelEp Jp depends very much on the family in which b € B(Z),
and that imposing congruence conditions on B(Z) would yield different upper bounds.

To count reducible orbits, we can follow the methods of [Sha+24], generalised in [Ol125]. In there, for
the Vinberg representations associated to the Z/2Z-gradings of type ADE, we observe that the number of
reducible orbits is of the order of X4™ V' In our By, case, the computations can be slightly reworked to show
that N(V(Z)74, X) ~ Cpeg X227+ Jog X for some constant C,.y > 0. In particular, the representation
(G,V) appears to answer |Sha+24, Question 2] in the negative, given that the number of reducible and
irreducible orbits are of different orbits.

Following these computations, one may obtain the (rather weak) bound that the average size of Sely, Jj, is
< log X as X — oo. Imposing congurence conditions to obtain a meaningful bound for the “reducible” part
of Sely, Jp, seems hard to do using uniquely geometry-of-numbers methods. For instance, it is unclear whether
the product of the p-adic densities in the classical squarefree sieve would diverge to 0 in this situation, which
would require more advanced techniques. If Sely Jp is actually unbounded, it would be interesting to see
whether the contribution of [5.2] would correspond to a second-order term in the counting.

In any case, the possible unboundedness of Sely J, seems to come from the 2-isogeny Selg,, Jy. In the case
of elliptic curves (which we have excluded from our analysis), it is predicted by Kane and Klagsbrun (as
mentioned in [KL14, §1]) that the average size of the 2-Selmer group of a 2-isogeny over the curves of the
form y? = 23 + ax® + bx is of the order of y/log X as X — oco. Similarly, in [CHL19] it is proven that the
average size of the 2-Selmer group tends to infinity in the family of elliptic curves with full Z/27Z x Z/87Z-
torsion. In both cases, these results are deduced from the unboundedness of the Tamagawa ratio, which for
an isogeny A: A — B of abelian varieties is defined as

_ #Seli(4)
T(4/B) = #Sel,\;\(BV)'
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Both in [KL14] and |[CHL19], they prove that the average of the Tamagawa ratio of an associated 2-isogeny
is unbounded, from which the unboundedness of the corresponding ¢-Selmer group (and therefore of the 2-
Selmer group) follows. In our situation, for the isogeny ¢nr: Jp — Ap, the Greenberg-Wiles formula [NSWO08|
Theorem 8.7.9] in our case states that

) = H #Ap(Qp)/On1 (Jp(Qy))

T(J/Ap) = [] eolénrn 5 ,

p<oo p<oo
and if 2 # p < oo, then by [Sch96, Lemma 3.8], we have that

c ((,bM b) _ #Ab(@P)/Ab,O(QP)
P ’ #Jb(Qp)/Jb’O(Qp)
If J, has good reduction at an odd prime p, then c,(¢a ) = 1. However, given that ¢ is not self-dual,

it could happen that c,(¢arp) # 1 if J, does not have good reduction at p. Heuristically, let us assume the
following:

o Over the b € B(Z,) with p | A(b), the expected value of ¢,(¢ar,p) tends to a constant o > 1.

o The values of ¢,(¢rr) behave independently for each prime p.

It is not unreasonable to expect that the average value of ¢,(¢parp) over the b’s of bad reduction is larger
that 1: if, for instance, the proportion of b with c¢,(¢ar) = 2™ was positive and equal to the proportion of
cp(Parp) = 1/2", that would be a contribution of (227 4-1)/2"*1 > 1 to the expected value. The independence
of different primes would give that

E[] [ ep(dnrp)] = a0,

P

where w(A(b)) denotes the number of distinct primes dividing A(b). As the height of b grows, we can expect
the average of a*(2(®) to be unbounded, provided the heuristics are valid. More precisely, the expected value
of a@(AM) jg e2(a—Dloglog X " which recover the aforementioned predicted value of v/Iog X if o = 5/4. This
phenomoenon is, very roughly, what happens in [KL14] and [CHL19].

The phenomenon in which the unboundedness of the average of Selmer groups comes from the unboundedness
of the average of Tamagawa ratios has been widely observed: other than the aforementioned [KL14; |(CHL19],
a similar phenomenon was noted by Smith in [Smi23, Proposition 2.5]. Smith has also asked to which extent
the converse is true: whether the average of Selmer groups is unbounded if and only if the Tamagawa ratio
of some related isogeny is unbounded. We wonder whether how the constructions in this article fit into this
framework.
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