PUNCTURED LOGARITHMIC MAPS

DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

ABSTRACT. We introduce a variant of stable logarithmic maps, which we call
punctured logarithmic maps. They allow an extension of logarithmic Gromov-
Witten theory in which marked points have a negative order of tangency with
boundary divisors. These are constructed with several applications in mind.
First, they appear naturally in a generalization of the Li-Ruan and Jun Li
gluing formulas, with punctured invariants playing the role of relative invari-
ants in these classical gluing formulae. Second, they provide key enumerative
invariants for constructions in mirror symmetry.
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1. INTRODUCTION

Logarithmic Gromov-Witten theory, developed by the authorsin | L1
[ |, has proved a successful generalization of the notion of relative Gromov-
Witten invariants developed in | ], [Li01], [Li02]. Relative Gromov-Witten
invariants are invariants of pairs (X, D) where X is a non-singular variety and D
is a smooth divisor on X; these invariants count curves with imposed orders of
tangency with D at marked points. Logarithmic Gromov-Witten theory allows D
instead to be normal crossings, or more generally, allows (X, D) to be a toroidal
crossings variety.

One of the main intended applications of the theory considers degenerations
X — B where B is a non-singular curve with a point by € B such that (X, D) —
(B, by) is a toroidal crossings morphism, i.e., is log smooth. Thus the fibre X,
over by may be quite singular, but nevertheless logarithmic Gromov-Witten theory
makes sense on X relative to by. One then wishes to describe the Gromov-Witten
theory of the general fibre in terms of the logarithmic Gromov-Witten theory of
the special fibre. In the case that X is the normal crossings union of two divisors,
this leads to the gluing formulae of [ | and [L.i02], which have proved to be
immensely useful tools in the Gromov-Witten toolkit. However, a practically
useful generalization of this gluing formula has proved somewhat elusive.

In | |, we initiated a program generalizing these classical gluing for-
mulae. Given a class of logarithmic curve for a log smooth target space X/B,
we obtain a moduli space of stable log maps .#(X/B, ) which fibres over B.
The fibre of this map over 0 is .Z(X,/bo, 5), and this was shown to have a “vir-
tual irreducible decomposition” into components indexed by rigid tropical curves.
However, there still remains a problem of describing these virtual irreducible com-
ponents and calculating their virtual fundamental classes.

Put simply, the next problem which arises is as follows. Suppose given a
stable log map f : C/W — X, and suppose given a closed subscheme C” of the
underlying scheme C of C' which is a union of irreducible components of C'. As
f € — X is required to be an ordinary stable map, f|cs is also an ordinary
stable map provided we mark those non-singular points of ¢’ which are double
points of C. However, if we restrict the log structure of C' to C’ to obtain a log
scheme C’ and a log morphism f|o : C" — X, this morphism fails to be a stable
log map for the very simple reason that C’ — W is not a log smooth family:
the log structure at those non-singular points of ¢’ which were double points
of C' is not the standard one at marked points. Further, if we replaced the log
structure at those points with the standard marked point log structure used in
log Gromov-Witten theory, the morphism to X may not exist.

The solution presented here is to broaden the treatment of marked points to
allow more interesting log structures. While we delay precise definitions until §2,
we explain briefly how these new log structures differ from old-fashioned marked
points. Consider a logarithmic curve 7 : C — W with W = Spec(Q — k) a
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logarithmic point. In ordinary log Gromov-Witten theory, the stalk of the ghost
sheaf M of C' at a non-special point is @, at a marked point is Q®N, and is more
complicated at a node. In punctured theory, we allow more complicated choices of
monoids at marked points, which we now call punctured points or punctures. At
such a point, the stalk of the ghost sheaf is a fine (but not necessarily saturated)
monoid Q° C ) & Z containing ) & N. The possible choices of )° are somewhat
restricted by the need that this be the stalk of a ghost sheaf of a log structure,
but nevertheless this still allows a range of possible choices. We have chosen
here to restrict the possible choices by imposing an additional condition which
we call pre-stability, which only makes sense in the presence of a log morphism
f:C — X. Here, if p € C is a punctured point, we then obtain an induced
morphism on stalks of ghost sheaves

fiMxjp) = Meop=Q° CQOZ.

Pre-stability then is the condition that @)° is the submonoid of () & Z generated
by Q @& N and the image of f°. Essentially, we are choosing the smallest possible
monoid for which the morphism f exists.

Crucially, the composition of f* with the projection Q & Z — Z gives a homo-
morphism

(11) Up :MX,f(p) — Z,

called the contact order of the punctured point. In ordinary log Gromov-Witten
theory, this homomorphism would take values in N and record the order of tan-
gency of the curve at the marked point with various boundary divisors. Thus
in punctured theory, this is viewed as giving the possibility of negative contact
order.

More specifically, suppose that the log structure on X arises from a normal
crossings divisor D = Dy + .-+ + D, of X, with D; irreducible. If f(p) lies
in the intersection of irreducible components D; for ¢ € I an index set, then
Mx i) = N', and for i € I, the i component of u, indicates the contact order
of the map f with D; at p. If this contact order is negative, then the irreducible
component C’ of C' containing p should satisfy f(C') C D;, see Remark 2.19.

At this point the reader may reasonably wonder why such punctured invariants
do not appear in the original Li-Ruan and Jun Li gluing formulae. In those
theories, the Gromov-Witten theory of the central fibre X, = Y, UY, is described
in terms of relative Gromov-Witten invariants of the pairs (Y, D), (Y,, D) with
D =Y,NnY,. In fact, there are two log structures on Y,: the restriction of the
log structure of X to Y;, which we write as Y;T, and the divisorial log structure
coming from D C Y, which we write as Y;. There is a canonical morphism
Y;T — Y, given by inclusion of log structures, hence inducing by composition a
morphism .2 (Y;' /by, ) — .# (Y;, ). One can show in this case that this induces
an isomorphism of underlying stacks and obstruction theories (although the log
structures are necessarily different). In particular, in the proof of the classical
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gluing formulas, given a stable log map f : C' — X lying in one of the virtual
irreducible components of .Z (X, /by, 3), there is a way of splitting C = C, UC,
so that f|c, can be viewed as a morphism to YZ-T, and hence by composition with
the morphism YZ-T — Y;, we obtain a stable log map. The moduli of stable log
maps to Y; is closely related to the Jun Li moduli space of stable relative maps
to the pair (Y, D) and gives the same numerical invariants, see | ].

On the other hand, in more complicated gluing situations, such as when the
central fibre X, has a triple point, there can be stable log maps f : C — X, with
some components of C' mapping to the triple point, and there is no reasonable
way to view this component as mapping to a specific irreducible component of X|,.
For an example of this, see the extended example of | |, §6.2, especially
§6.2.4, in which the curve component C; may not be viewed as a relative curve
in any irreducible component. Thus any reasonable generalization of the classical
gluing formula will need to take into account some more complicated invariants.

This is the first reason that punctured invariants are useful to us. The sec-
ond is that soon after discussions amongst the four of us began on this project
in 2011, the last two authors of this paper realised that it was likely that such
invariants were exactly what was necessary for describing holomorphic versions
of certain tropical constructions in | ], 1 | which appear naturally in
the Gross-Siebert mirror symmetry program. This has now led to a general mir-
ror symmetry construction, announced in | |, in which certain punctured
Gromov-Witten invariants are used to define the (homogeneous) coordinate ring
of the mirror. The proofs of many of the announced results of [ | are now
available in | | and depend crucially on this paper. The notion of Gromov-
Witten invariants with negative orders of tangency is absolutely essentially, while
the proof of associativity of the product rule relies crucially on the gluing formal-
ism developed in §5 of the current paper.

We note also that | | also constituted an announcement of this paper, and
followed an early draft of this preprint which was made public in 2016. However,
the reader familiar with that draft or | | will note that in fact the definition
of a punctured point has changed. The original definition given in these older
references dealt with the possible non-uniqueness of the log structure at punctured
points by taking the limit over all possible punctured log structures, resulting
in a non-finitely generated stalk of the ghost sheaf at a puncture. With more
experience, we have found the formulation in this paper to be technically simpler,
as fine log structures are better understood. However, despite the apparently
different formulation, the theories are equivalent, and we give a brief discussion
of this older theory in Remark 2.3.

We now turn to the structure of the paper, and outline novel features of the
theory. §2 introduces the notion of a punctured log structure, specializing quickly
to the case of a punctured point on a curve. This allows us to generalize the notion
of stable log map to that of stable punctured map. Once the notion of punctured
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log structure is introduced, there are no surprises in the definition of a punctured
log map. From there, much of the theory is developed analogously to that of
ordinary log stable maps, with notions of combinatorial types of punctured maps
and basic punctured maps precisely as in the usual case.

The first important difference between the punctured theory and the ordinary
theory occurs in §2.5. There, we explain how any family f : C'/W — X of punc-
tured log maps induces a natural idealized log structure on W, in the sense of
[ |, ITI §1.3. Crucially, this structure encodes certain combinatorial obstruc-
tions to deforming punctured log curves which do not exist in the ordinary case.
Intuitively, for example, suppose the target is a normal crossings pair (X, D) with
D = > D; the decomposition into irreducible components. If C' has an irreducible
component C’ containing a puncture with a negative contact order with some D;,
then we must have f(C’) C D;, see Remark 2.19. Thus no deformation of this
punctured map may deform the image of C’ away from D;, and in particular, if
C has a node g with ¢ € C’, this node may not be smoothed if the other branch
C" of C containing ¢q has f(C") € D;. The idealized structure effectively encodes
such purely combinatorial, local obstructions to deforming. As we shall see, this
becomes especially important when one wishes to build a virtual fundamental
class on moduli space of punctured maps.

The next subtlety involves defining families of contact orders. For an individual
punctured map over a log point, we have the notion of contact order of (1.1).
However, to obtain finite type moduli spaces, we need to impose contact orders
at marked points, and as the point f(p) varies in a connected family, we need
to understand how contact orders vary. This turns out to be much more subtle
than in the ordinary case. In §2.6, we explore this issue, leading to a classification
of possible contact orders. However, at this point, contact orders are only well-
behaved if My is generated by its global sections, i.e., ['(X, Mx) — Mx, is
surjective for each x € X. Otherwise, it is possible that even a connected family
of contact orders may have an infinite number of irreducible components, making
it difficult to prove that moduli spaces are of finite type. Thus this assumption is
made in many places in this paper to obtain a good theory. Note this assumption
always holds when the log structure on X arises from a normal crossings divisor.

In §2.7, we generalize the tropical point of view of | I, [ | to the
punctured case, showing how to interpret various aspects of the theory tropically.
In particular, under tropicalization, punctured points become line segments or
unbounded rays. The vanishing locus of the puncturing ideal also has a simple
tropical interpretation, see Remark 2.53.

We turn to §3. Following the point of view of | |, if given a target X — B,
one lets Ay be the relative Artin fan for X — B (see | | for an exposition
of Artin fans): this is equipped with a morphism Ax — Ap to the Artin fan of
B. We set X := Ay x4, B. We define stacks ., ,,(X/B) and M, (X/B) of
punctured maps to X, X respectively, with their basic log structure. Here one



6 DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

considers domain curves of genus g with n punctured points, and note that for
Myn(X/B) we impose the condition of stability, i.e., that the underlying map
of schemes is a stable map, but this cannot be imposed in the case of punctured
maps to X.

We also define the notion of a class § of punctured map to X /B, which includes
the data of an underlying curve class, genus, number of punctured points, and
contact orders at the punctures. This gives sub-moduli spaces .Z(X/B, ) and
M(X /B, ), the latter moduli space forgetting the underlying curve class of f.

The main results of §3 are summarized by:

Theorem 1.1. Suppose given a target X — B with X Zariski. Then:

(1) The stack M, ,(X/B) of stable punctured maps of genus g with n punc-
tured points and target X/B is a logarithmic Deligne-Mumford stack lo-
cally of finite presentation.

(2) Let B be a class of punctured log curve, and suppose that Mx is generated
by global sections and X — B finite type. Then #(X/B,3) — B is of
finite type.

(3) The forgetful map 4 (X/B,B3) — #(X/B, ), where 3 just remembers
the class of underlying curve, the genus, and number of marked points,
satisfies the weak valuative criterion for properness.

These three items are Theorems 3.1, 3.7 and 3.12 respectively. In particular,
in the case that X is proper over B and My is generated by global sections,
M (X/B, ) is in fact a proper Deligne-Mumford stack over B.

The proofs of these are essentially the same as in the ordinary log Gromov-
Witten case, and we only note when additional care must be taken at the punc-
tures.

§4 then develops the relative obstruction theory for .Z(X/B) — 9MM(X/B).
Again, the punctures do not play any particular role here, but some care is taken
in the development of the theory to allow for a clean gluing statement later in
the paper. The main results, from Proposition 4.2 and Theorem 4.5, are:

Theorem 1.2. Suppose X — B is log smooth. Then:

(1) There is a perfect relative obstruction theory for M, ,(X/B) — M, (X /B).

(2) The natural forgetful morphism M, (X /B) — M,,, x B is idealized log
smooth, where Mg ,, denotes the Artin stack of pre-stable log curves with
the basic log structure. Here M, ,(X /B) is idealized via its puncturing log
ideal, while My ,, x B carries the empty log ideal.

The second statement is very important. In the ordinary stable log map case,
[ | showed that M, ,, (X /B) was in fact log étale over My, x B, and hence
is log smooth over B. For example, if B = Speck, then this tells us that smooth
locally, M, (X' /B) looks like a toric variety. On the other hand, if we are consid-
ering punctures, then M, (X /B) is only idealized log smooth over B. Again, if
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B = Speck, this means that smooth locally, 9, ,,(X/B) looks like a scheme de-
fined by a monomial ideal in a toric variety. While idealized log smoothness means
that it is easy to control the local structure of M, ,, (X /B) from a combinatorial
point of view, it need not be equi-dimensional, see Example 4.7. This means that
there is not a virtual fundamental class in general, and in any particular situation
where we wish to extract numbers, one must apply virtual pull-back to a suitably
chosen cycle on MM(X /B, ). This depends on the particular application one may
have in mind. However, it is very natural to consider virtual pull-backs of strata
of M, (X /B) selected out by certain tropical data. For example, such has been
done in the proposed construction of the canonical scattering diagram in | ].

§5 begins the exploration of gluing using punctured maps. We first justify the
original motivation of punctured curves: splitting a stable log map at a node
produces a curve with two punctures. We then reverse the procedure, explaining
how to glue curves. Unfortunately, this is rather more technical than one might
hope. For ordinary stable maps, suppose given two families of stable curves
f C,/W,. — X, along with marked points x; : W, — C,. Suppose further
we wish to glue these two families by identifying x; and x,. Of course there are
evaluation maps ev, = L o x; at x;, which we may use to form a fibre product
W, xx W, parameterizing the glued family.

If instead we had two families of punctured curves f; : C;/W; — X, with
punctures x;, to be able to glue we first need the contact orders at x; and x5 to
be the negative of each other in an appropriate sense. We define the notion of
opposite contact orders in Definition 2.47 to make this precise. Unfortunately, one
does not in any event have evaluation maps ev; : W; — X, as the log structure
on W; and the log structure on x;(W,) don’t agree. However, if we define W,
to be the saturation of the log scheme (W, zfMyg,), then there is an evaluation
map ev; : W — X. This allows us to form the product W= Wl X x W2 in the
category of fs log schemes. Again, W is not quite the right thing: it does in fact
parameterize the glued family, but it does not carry the basic log structure, even
if Wi and W5 do. Instead, one can show that there is a sub-log structure of W
which gives the glued family.

The precise statement in all generality is Theorem 5.12. We do not give the
statement in the introduction, as it requires a rather detailed setup.

After having constructed the glued moduli spaces, the remaining question we
address is compatibility of gluing with the relative obstruction theories con-
structed in this paper. The culmination of this are Theorems 5.15 and 5.17.
Again, these statements are quite technical, and even worse, at this point are
quite difficult to use. It is worth emphasizing one of the basic sources of this
difficulty is the fact that the underlying spaces of fibre products in the fs log
category do not agree with the fibre products of underlying spaces. This means
that naive attempts to make use of Fulton-style intersection theory are bound
to fail. Nevertheless, despite this difficulty, [ | has managed to apply the
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gluing techniques introduced here to a quite general situation. We anticipate
that a great deal of future work will be devoted to making Theorems 5.15 and
5.17 broadly usable in practice. Indeed, a sequel paper to this one will explore
these gluing techniques further, showing how to adapt gluing in the degeneration
situation.

We end this introduction to discuss related work. First, our approach owes a
great deal to Brett Parker’s program of exploded manifolds, | ]. We have of-
ten found ourselves trying to translate Parker’s results in the category of exploded
manifolds into the category of log schemes. Indeed, some of the original versions
of the definition of punctured invariants, as well as the approach to gluing, arose
after discussions with Parker,

After the earlier manuscript version of this paper was distributed, Mohammed
Teherani [ ], in developing a symplectic analogue of stable log maps, found
that punctures were naturally described in the theory. Even more recently,
[ | used rubber invariants to define negative contact order Gromov-Witten
invariants relative to a smooth divisor. While it is not yet clear what the precise
relationship between these invariants and those of this paper are, very likely they
can be defined as the virtual pull-back of certain cycles in M, (X /B).

Besides the immediate applications of punctures already mentioned above,
punctures also have been used by Hiilya Argiiz in | | to build a logarith-
mic analogue of certain tropical objects in the Tate elliptic curve related to Floer
theory.

Finally, we also mention recent work of Dhruv Ranganathan | | taking a
different point of view on gluing in log Gromov-Witten theory using an approach
closer in spirit to the expanded degeneration picture of Jun Li.

1.1. Acknowledgements. Research by D.A. is supported in part by NSF grants
DMS-1162367, DMS-1500525 and DMS-1759514.

Research by Q.C. was supported in part by NSF grant DMS-1403271, DMS-
1560830, and DMS-1700682.

M.G. was supported by NSF grant DMS-1262531, EPSRC grant EP/N03189X/1
and a Royal Society Wolfson Research Merit Award.

We would like to thank Dhruv Ranganathan and Brett Parker for many useful
conversations.

1.2. Convention. All logarithmic schemes and stacks are defined over an alge-
braically closed field k of characteristic 0. We follow the convention that if X is a
log scheme or stack, then X is the underlying scheme or stack. We almost always
write M x for the sheaf of monoids on X and ax : Mx — Ox for the structure
map. If P is a monoid, we write PV := Hom(P,N) and P* = Hom(P,Z).

2. PUNCTURED MAPS

2.1. Definitions.
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2.1.1. Puncturing.

Definition 2.1. Let Y = (Y, My) be a fine and saturated logarithmic scheme
with a decomposition My = M@= P. Denote £ := MDox P and € := £/O*.
A puncturing of Y along P C My is a sub-sheaf of monoids

Myo CE =M Bpx PP

containing My with a structure map apy,., : Myo — Oy such that

(1) The inclusion p° : My — My~ is a morphism of fine logarithmic struc-
tures on Y.

(2) For any geometric point Z of Y let s; € Myo ; be such that s; & M;Box
Pz. Representing s; = (mgz,pz) € Mz @ox PE, we have apm,.(sz) =
aM(mg—c) = 0 il’l Oy@.

Denote by Y° = (Y, My-). We will also call the induced morphism of logarithmic
schemes p : Y° — Y a puncturing of Y along P, or call Y° a puncturing of Y
along P.

We say the puncturing is trivial if p is an isomorphism.

Remark 2.2. In all examples in this paper, the condition ay(mz) = 0 is re-
dundant. Indeed, suppose P is a DF(1) log structure, i.e., there is a surjec-
tive sheaf homomorphism N — P. For sz = (mg,pz) € Mz ox P, suppose
Qpmyo(sz) = 0. Note that the DF(1) assumption implies that p;' € Py, so
am(mz) = ay(mz, 1) = apyo(sz - p5 ') = 0. More generally, the same argument
works if P is valuative.

Remark 2.3. Puncturings M° of M ©px P are not unique. In a widely dis-
tributed early version of this manuscript as well as in | |, we found it instruc-
tive to work with a uniquely defined object M7 we call here the final puncturing.
It may be defined as the direct limit
MP = hﬂ M°,
MOEA

over the collection A of all puncturings of M @nx P. This exists in the category
of quasi-coherent, not necessarily coherent, logarithmic structures. It has the
advantage of being independent of any choice. Its disadvantage, apart from not
being finitely generated, is in that its behavior under base change is subtle.

2.1.2. Pre-stable punctured log structures. In case a puncturing is equipped with
a morphism to another fs log scheme, there is a canonical choice of puncturing.
The following proposition follows immediately from the definitions.

Proposition 2.4. Let X be an fs log scheme, and 'Y as in Definition 2.1, with
a choice of puncturing Y° and a morphism f : Y° — X. Let Y° denote the
puncturing of Y given by the subsheaf of My generated by My and f°(f*Mx).
Then

(1) We have My, is a sub-logarithmic structure of My-o.
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(2) There is a factorization

Y°\\—/>X

(3) Given Yo — Yy — Y with both Y2, Y5 puncturings of Y, then Y = Y.

Definition 2.5. A morphism f : Y° — X from a puncturing of a log scheme Y" is
said to be pre-stable if the induced morphism Y° — Y° in the above proposition
is the identity. In particular, one has f = f.

Corollary 2.6. A morphism f :Y° — X is pre-stable if and only if the induced
morphism of sheaves of monoids f*Mx ® My — My is surjective.

2.1.3. Pull-backs of puncturings.

Proposition 2.7. Let X and Y be fs log schemes with log structures Mx and
My, and suppose given a morphism g : X — Y. Suppose also given a log
structure Py on Y and an induced log structure Px := g*Py on X. Set

X' = (X, Mx Doy Px), Y' =, My Dox Py).
Further, let Y° be a puncturing of Y' along Py. Then there is a diagram

xo L Ly

L,

X 7 Ly

L

XT>Y

with all squares Cartesian in the category of underlying schemes, the lower square
Cartesian in the category of fs log schemes, and the top square Cartesian in the
category of fine log schemes. Furthermore, X° is a puncturing of X' along Px.

Proof. We define X° to be the fibre product X’ Xy Y° in the fine log category.
The bottom square is obviously Cartesian in all categories. Thus it is sufficient
to show (1) the upper square is Cartesian in the ordinary category, i.e., the
underlying map of X° — X’ is the identity and (2) X° is a puncturing of X".

Note that the fibre product X’ xy~ Y in the category of log schemes is defined
as (X,M = Mxr @gepy., g*/\/lyo). This push-out need not, in general, be
integral, so we must integralize. Note there is a canonical isomorphism

M = M, @ e pyir, " M = M,

given by (s1,s2) = 81+ (¢')"(s2), where (¢')" : g* M — ME, is induced by ¢'.
The integralization M™ of M is then the image of M in ./\/lgp, which thus can
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be described as the subsheaf of M%), generated by My and (¢)°(g*My-). Note
My and (¢')’(g* My-) both lie in My Box PY s so we can replace M8 with
this subsheaf of M®P in describing M™.

It is now sufficient to show that we can define a structure map a : M™ — Oy
compatible with the structure maps ax : Mx: — Ox and ay. : g*My. — Ox.
If s € M™ is of the form s, - (¢')’(s3) for 51 € My and sy € g*Myo, then
we define a(s) = axs(s1) - ay-(s2). We need to show this is well-defined. If
sy € g* My, then (¢')°(s2) € My, and thus as ¢ is a log morphism,

a(s) = axi(s1) - aye(s2) = ax:(s1)ax:((9) (s2) = ax:(s).

In particular, a(s) only depends on s, and not on the particular representation
of s as a product, provided that s, € g* My-.

On the other hand, if 5o € (g*Myo) \ (¢*My~), then ay-(s2) = 0 by definition
of a puncturing. So in this case a(s) = 0. Hence to check that « is well-defined,
it is enough to show that if s = s1 - (¢/)’(s2) = s - (¢)°(s,) with sy € g* My~ but
sh & g* My, then ax:(s1) - aye(s2) = 0. Writing s; = (m;, pi), s; = (m, p}) using
the descriptions M x» = My Dox Px and g* Myo C g* My Dox PP, we note that
we must have m;g°(my) = m!g’(mb). As sh & g* My, by condition 2.1(2) we
necessarily have ay(m}) = 0. Hence ax(m)g’(m})) = 0, so ax(mig’(msy)) = 0.
We deduce that ax(s1(g')’(s2)) = 0, as desired. This shows « is well-defined.

Finally, it is clear from the above description that X° is a puncturing. [

Definition 2.8. In the situation of Proposition 2.7, we say that X° is the pull-
back of the puncturing Y °.

Proposition 2.9. Consider the situation of Proposition 2.7, and suppose in ad-
dition given a pre-stable morphism f : Y° — Z. Then the composition f o g° :
X° — Z 1s also pre-stable.

Proof. This follows immediately from the definition of pre-stability and the con-
struction of X° in the proof of Proposition 2.7. [

2.1.4. Punctured curves. Essentially throughout the paper, we will only be inter-
ested in puncturing along logarithmic structures from designated marked points
of logarithmic curves. Let m : C' — W be a logarithmic curve in the sense of

[ : J

(1) The underlying morphism z is a family of usual prestable curves with
disjoint sections py,...,p of m.

(2) 7 is a proper logarithmically smooth and integral morphism of fine and
saturated logarithmic schemes.

(3) IfU C C is the non-critical locus of 7 then M¢|y = ﬂ*ﬂw@@le Pix Ny

We write a¢c : M — O¢ for the structure map of the logarithmic structure on
C. We call a geometric point of C' special if it is either a marked or a nodal point.
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Definition 2.10. A punctured curve over a fine and saturated logarithmic scheme
W is given by the following data:

(2.1) (C°i>CL>W',p:(p1,...,pn))
where
(1) C — W is a logarithmic curve with a set of disjoint sections {p1,...,pn}.

(2) C° — C'is a puncturing of C' along P, where P is the divisorial logarithmic
structure on C' induced by the divisor |J;_, p;(W).

When there is no danger of confusion, we may call C° — W a punctured curve.
Sections in p are called punctured points, or simply punctures. We also say C° is
a puncturing of C' along the punctured points p.

If locally around a punctured point p; the puncturing is trivial, we say that the
punctured point is a marked point. In this case, the theory will agree with the
treatment of marked points in | 11 1Ll ].

Examples 2.11. (1) Let W = Speck be the point with the trivial logarithmic
structure, and C' be a non-singular curve over W. Choose a point p € C' and a
puncturing Mc. of C' at p. Then M¢co = P, as Mo C P8P can have no sections
s with age(s) = 0. Thus, in this case the only puncturing C° — C' is the trivial
one.

(2) Let W = Spec(N — k) be the standard logarithmic point, and C' be a non-
singular curve over W, so that My, = Oy;,@N, where N denotes the constant sheaf
on C' with stalk N. Again choose a puncture p € C. Let M¢go C m* My, Dox pep
be a puncturing. Let s be a local section of Mo near p. Write s = ((go,n),tm)
with ¢ € OF, n € N. If m < 0, then Condition (2) of Definition 2.1 implies that
O (M) (s 1) = 0, so we must have n > 0. Thus we see that

Meco, C{(n,m) e N®Z|m >0 if n = 0}.

Conversely, any fine submonoid of the right-hand-side of the above inclusion which
contains NN can be realised as the stalk of the ghost sheaf at p for a puncturing.
Note the monoid on the right-hand side is not finitely generated, and is the stalk
of the ghost sheaf of the final puncturing, see Remark 2.3.

(3) Let W = Speck][e]/(e"*1), and let W be given by the chart N — k[e]/(e**1),
1 — €. Let Cy be a non-singular curve over Speck with the trivial logarithmic
structure, and let C' = W x Cj. Choose a section p : W — (', with image locally
defined by an equation ¢ = 0. Again Condition (2) of Definition 2.1 implies that a
section s of a puncturing Mo near p takes the form ((ap, n), tm) where ¢ € OF,
and 0 < n < k implies m > 0. In particular,

Mo, C{(n,m) eN®Z|m >0if n <k},

and any fine submonoid of the right-hand side containing N ® N can be realised
as the stalk of the ghost sheaf at p of a puncturing.
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2.1.5. Pull-backs of punctured curves. Consider a punctured curve (C° — C' —
W, p) and a morphism of fine and saturated logarithmic schemes h : T" — W.
Denote by (Cp — T, pr) the pull-back of the log curve C' — W via T'— W. By
Proposition 2.7, we obtain a commutative diagram

Cy —C°

S

CT—>C

T w
where the bottom square is cartesian in the fine and saturated category, and

the square on the top is cartesian in the fine category, and such that C7 is a
puncturing of the curve Cr along pr.

Definition 2.12. We call C3. — T the pull-back of the punctured curve C° — W
along T'— W.

2.1.6. Punctured maps. We now fix a morphism of fine and saturated logarithmic
schemes X — B.

Definition 2.13. A punctured map to a family X — B over a fine and saturated
logarithmic scheme W consists of a punctured curve (C° — C — W, p) and a
morphism f fitting into a commutative diagram

oL x

I

W ——B

Such a punctured map is denoted by (C° — W, p, f).

The pull-back of a punctured map (C° — W, p, f) along a morphism of fine and
saturated logarithmic schemes 7' — W is the punctured map (C$ — T, pr, fr)
consisting of the pull-back C7 — T of the punctured curve C' — W and the
pull-back fr of f.

When there is no danger of confusion, we may write f : C° — X/B or f :
C° — X for the punctured map.

Definition 2.14. A punctured map (C° — W,p, f) is called pre-stable if f :
C° — X is pre-stable in the sense of Definition 2.5.

A pre-stable punctured map is called stable if its underlying map is stable in
the usual sense.

Proposition 2.15. Let (C° — W, p, f) be a punctured map over W.

(1) The locus of points of W with pre-stable fibers forms an open sub-scheme
of W.
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(2) If f : C° — X is pre-stable, then the pull-back fr : C° — X along
any morphism of fine and saturated logarithmic schemes T — W 1is also
pre-stable.

Proof. The punctured map f : C° — X induces a morphism of fine logarithmic
structures

fb@pb D ffMx @Oé Mo — Mceeo.
The pre-stability of f is equivalent to the condition that f° @ p® is surjective
by Corollary 2.6. Statement (1) can be proved by applying Lemma 2.16 below
to the neighborhood of each puncture. Statement (2) follows immediately from
Proposition 2.9. 'y

Lemma 2.16. Let Y be a scheme, and 1> : M — N be a morphism of fine log
structures on Y. Assume that M® and N** are torsion-free. Then the locus
Y' C Y over which v’ is surjective forms an open subscheme of Y.

Proof. Note that the surjectivity of 1/” can be checked on the level of ghost sheaves.
Since the statement is local on Y, shrinking Y, we may assume that there are
global charts ¢ : M, — M and ¢y : N, = N for some point y € Y; indeed
as My and N , are torsion free, | , 1T, Proposition 2.3.7| applies. Consider
another point ¢ € Y specializing to y. Denote by

E={ec ﬂy | apmodm(e)ls € Oy} and F = {e GJT/'y | axoon(e)l: € Oy}

Denote by E~*M,, C ﬂip (respectively E~*N,, C N ip) the submonoid generated
by E#* and M, (respectively F&" and N,). We have the following commutative
diagram

0 Eep E~'M, M, 0

J Wz lwi

0 Fep F7IN, N, 0
where the vertical arrows are induced by v°, and the two horizontal sequences are
exact by [ , Lemma 3.5(i)]. The surjectivity of 1” at y implies the surjectivity

— . N — — )
of ¢,. It follows that E®P — F*®P is surjective, hence (1 )Z is surjective, and so is

t,. This proves the statement. [
Example 2.17. The intuition behind punctured curves is that it allows points
with negative orders of tangency to divisors. To see this explicitly, let X be a
surface, D C X a non-singular rational curve with self-intersection —1 inducing
the divisorial log structure X on X. Let C' — W be the punctured curve of
Examples 2.11, (2), with C = P!. Let f : C — X be an isomorphism of C' with
D. This can be enhanced to a puncture_d map C° — X as follows.

We first define f” : fﬂx =N — Mg C € =NadZ, by 1+ (1,-1), where Z,
denotes the sky-scraper sheaf at p with stalk Z. Note that 1 € I'(X, M) yields
the O%-torsor contained in M x corresponding to the line bundle Ox(—D), and
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thus 1 € T'(C, f*Mx) yields the Oj-torsor corresponding to O (1), using —D? =
1. On the other hand, note that the torsor contained in Mo corresponding to
(1,0) is the torsor of O¢ and the torsor corresponding to (0, 1) is the torsor of
the ideal Oc(—p). Hence (1,—1) € I'(C, Mce) corresponds to O¢(1). Choosing
an isomorphism of torsors then lifts the map f° to a map f : fMx — Mceo
inducing a morphism f: C° — X.

Note this morphism does not lift to C" — W’ = Spec(k[e]/(€?*)) as in Examples
2.11, (3), since we can’t even lift f* at the level of ghost sheaves. Indeed, (1, —1)
is not a section of the ghost sheaf of (C”)°.

2.2. Combinatorial Types. Now assume the target X — B has the logarith-
mic structure Mx defined in the Zariski site, and B = Speck with the trivial
logarithmic structure. The combinatorial structure of punctured maps is similar
to the case of logarithmic maps in | , , | except at the punctured
points. We explain the combinatorial structure below.

2.2.1. Induced maps of monoids. Suppose given a punctured map (7 : C° —
W,p, f:C° = X) over W. We write M := f*Mx. Taking the corresponding
morphisms of sheaves of monoids, we have

(2.2) (My, Mo, : T My — Mo, p: M — &)
where ¢ = @ and ¢ is given by the composition M — M¢o C € := Mg EBffgp.

2.2.2. The ghost sheaf category GS(M). Just as in | |, we may focus on the
combinatorial structure, and define the category GS(M) as follows.

Let C' — W be a family of underlying pre-stable curves with markings p, and
let f: C — X be a morphism, hence M := f*My. An object of GS(M) is
abstractly a collection of data (2.2) such that

(1) The data (My, Mc, 9 : m* My — M) come from a log curve C' — W.
(2) The pair of morphisms (¢, @) satisfies the descriptions in Sections 2.2.3

and 2.2.4 below over each geometric fiber.

A morphism of objects in GS(M)
(Mw,1, Mg, b, 1) = (Muwz, Mo, 12, 02)

is given by a pair of local homomorphisms' My, — Mo and Mc; — M
with the obvious compatibilities with ¢; and ¢;, 1 = 1, 2.

Note that the descriptions in Sections 2.2.3 and 2.2.4 below are only necessary
conditions for an object (2.2) to be induced from a punctured map. The category
GS(M) is, roughly speaking, the collection of objects of the form (2.2) which
satisfy these necessary conditions. Similarly as in | ], Discussion 1.8, these
descriptions determine an object of GS(M).

We next describe the pair (¢, @) over geometric fibers, and assume W =

Spec(Q — k).

'A homomorphism of monoids ¢ : P — Q is local if e HQ*) = P*.
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2.2.3. The structure of 1. The morphism ¢ is an isomorphism when restricted
to the complement of the special (nodal or punctured) points of C°. The sheaf £
has stalks Q @ Z and Q ®y N? at punctured points and nodal points respectively.
The fibred sum in the nodal point case is determined by a map

(2.3) N—=Q, 1~ p,

and the diagonal map N — N? (see Def. 1.5 of | ). The map v at these
special points is given by the inclusions of () into the first components of the
direct sums Q @ Z and Q @y N2.

2.2.4. The structure of p. For any point y € C° and its algebraic closure y — v,
the morphism ¢ induces a well-defined morphism ¢ : P, — Mce ; C &; for
P, =M,

as the logarithmic structure M is Zariski. Away from the punctured points, the
description of ¢ is identical to the case of stable logarithmic maps. Following
Discussion 1.8 of | |, we have the following behavior at points on C°:

(i) y = n is a generic point, giving a local homomorphism of monoids

9077 . Pn — Q
(ii) y = p is a punctured point. We have u, the composition
(2.4) uy : P,25Q @ 2227,

The element u, € Py is called the contact order at the puncture p.
(ili) y = ¢ is a node contained in the closures of 7y, ne. If x; : P, — P, are the
generization maps, there exists a homomorphism

uq,: Py — Z,
called the contact order at ¢, such that

(2'5> Pz (XQ(m)) — Pm (Xl(m)) = UQ(m) " Pq>

with p, # 0 given in Equation (2.3), see | |, (1.8). These data completely
determines the local homomorphism ¢, : P, — @Q @y N2.

The choice of ordering 7,7, for the branches of C' containing a node is
called an orientation of the node. We note that reversing the orientation of
a node ¢ (by interchanging n; and 1) results in reversing the sign of u,.

Remark 2.18. If u, € B/, i.e., takes values only in N C Z, then a punctured
point behaves precisely like marked points as previously considered in | ,

, |. Indeed, in this case pre-stability implies that M and M. agree
along p. Thus there is no need to distinguish between punctured points and
marked points previously considered in the above references. However, we will
use the convention that a punctured point with contact order u, € va is called a

marked point.
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Remark 2.19. Let f : C°/WW — X be a punctured map with W = Spec(Q) — k).
Suppose p € C'is a punctured point which is not a marked point, and let C’ be
the irreducible component containing p, with generic point 1. Then, intuitively,
(' has negative order of tangency with certain strata in X, and this forces C’ to
be contained in those strata.

Explicitly, if § € P, with u,(d) < 0, then we must have pr; op,(J) # 0, as
there is no element of Mce, C Q @ Z of the form (0,n) with n < 0. Thus if
X : P, = P, denotes the generization map, we must have u;'(Z<o) N x~"(0) = 0.
This restricts the strata in which f(C’) can lie.

For example, if X = (X, D) for a simple normal crossings divisor D with
irreducible components Dy, ..., D,, then P, = @i:f(p)eDi N. The value u, on the
generator of P, corresponding to D; is the contact order with D;. Then f(C")
must lie in the intersection of D; that have negative contact order at p.

2.2.5. Dual graphs and combinatorial types. To describe the combinatorial struc-
ture of nodal curves and their maps, a graph G will consist of a set of vertices
V(G), a set of edges E(G) and a separate set of legs or half-edges L(G), with
appropriate incidence relations between vertices and edges, and between vertices
and half-edges.

Let G'¢ be the dual intersection graph of the underlying curve C. This is the
graph which has a vertex v, for each generic point n of C, an edge E, joining
Up, , Uy, for each node ¢ contained in the closure of 1, and 7,, and where E, is
a loop if ¢ is a double point in an irreducible component of C'. Note that an
ordering of the two branches of C' at a node gives rise to an orientation on the
corresponding edge. Finally, G¢ has a leg L, with endpoint v, for each punctured
point y contained in the closure of 7.

Definition 2.20. Given an object in GS(M) of the form (2.2) over a geometric
point W, its combinatorial type is a pair (G¢,u = {u,} U {u,}) such that

(1) G¢ is the dual intersection graph.
(2) u, € Py is the contact order corresponding to each punctured point in p.
(3) uq € Py is the contact order corresponding to each oriented node of C.

Given a combinatorial type (G¢,u), denote by GS(M, u) the full subcategory
of GS(M) with objects of type (Gg,u). Note that the dual intersection graph
G is determined by the underlying curve C.

The combinatorial type of a punctured map over a logarithmic point is the

combinatorial type of its associated object in GS(M).

2.2.6. Generization of combinatorial types. We consider a punctured map (C° —
W, p, f) over an arbitrary fine and saturated logarithmic scheme W.

Lemma 2.21. Let (G,u) and (G',u’) be the combinatorial types of the punctured
map at two geometric points w — W, W' — W with w € cl(w'). Fory € Cg,
y' € Cy withy € cl(y'), let xy , : Py — Py be the generization map of the stalks
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of f*Mx. Then if y,y' are punctured or nodal, we have
Uy = Uy O Xy y-

Proof. The proof is exactly as in | |, Lemma 1.11, with punctures being
treated like marked points in that proof. [ )

2.3. Basicness.

2.3.1. Construction of the monoid. We follow Construction 1.16 of | ]. Sup-
pose given C — W with W a geometric point. Let (G,u) be a combinatorial

type for GS(M) and assume GS(M, u) is non-empty.
Consider the following monoid

(2.6) N=]]P x[]N

where 1 runs through all the generic points of irreducible components, and ¢
runs through the nodes of C'. For a node ¢ € C and two generic points 7,7
corresponding to the two branches meeting at ¢, denote by x,, , : P, — P, the
two generization maps. For each m € F,, let

ag(m) = (( o Xog(M)s ooy = Xag(m), ), (o ug(m), - )) c N®P

be the element with all vanishing entries except the indicated ones at places 1y, 7o
and ¢q. Let R C N® be the subgroup generated by a,(m) for all nodes ¢ € C and
m € P,, and R*" be its saturation in N#. The natural map

N& /R — N& /R

is the quotient by the torsion subgroup of N&P / R. Hence N®P / R* is torsion
free.
Denote by N / R** the image monoid of the following composition

N < N& — N /R,

Define the basic monoid @ to be the saturation of N/R*" in N& /Rs* By
definition, the monoid @) is fine and saturated.
The inclusions of the various factors define homomorphisms

<p,7:Pn—>HanHN—>Q,
n q

(2.7)
N—>HP,7><HN—>Q, 1+ pg,
n q

The element a,(m) is precisely the difference of the two sides of (2.5), so (2.5)
holds for these choices of ¢; and p, with the given u,. Thus the data @, p,, and
¢n define a distinguished basic object (Q, Mc, 1, ¢) of GS(M, u), except that we
don’t know that Q* = 0, so that all relevant morphisms are local.
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2.3.2. Basic families.

Proposition 2.22. If GS(M,u) # 0, then it has as an initial object the basic
object (Q, Mc, v, @) from Section 2.3.1.

Proof. This is identical to | |, Proposition 1.19. 'y

Definition 2.23. A pre-stable punctured map (C/W,p, f) is called basic if for
any geometric point w — W the induced object of @(ﬁbﬂx, u) is initial, i.e.
the basic object. Here u is given by the combinatorial type of (C'/W, p, f) at w.

Proposition 2.24. Let (C/W,p, f) be a pre-stable punctured map. Then
O :={w e |W| ‘ {w} xw (C/W,p, f) is basic}
is an open subset of |W]|.

Proof. This is identical to | |, Proposition 1.22. [ )

Proposition 2.25. Any pre-stable punctured map to the target X arises as the
pull-back from a basic pre-stable punctured map with the same underlying ordinary
pre-stable map. Both the basic pre-stable punctured map and the morphism are
unique up to a unique isomorphism.

Proof. The proof is similar to | |, Proposition 1.24, however some care must
be taken at the punctures. Let (C' — W,p, f) be a pre-stable punctured map.
For each geometric point w € W, one obtains a combinatorial type (Gg, ug) by
restriction, and these types are compatible under generization by Lemma 2.21.
Following the argument of Lemma 1.23 of | |, one has an initial object of the
full subcategory GS (ﬂ, (uw)) of objects of GS(M) that have type u; over the
geometric point w. Write this universal object as (MW,ba&MC,bas, Ubass Pbas) -

On the other hand, write the object of GS(M) determined by the given pre-
stable punctured map as (M, M¢, 1, p). Recall the notation ¢ : M — € and
Opas : M — Epas from (2.2). Furthermore, as we have a map Epas — &, the basic
object being the initial object in the category, we then define Mco7bas C Epas tO
be the fine sub-sheaf generated by the image of quas AM = Epps.

We observe that the composition Mco,bas s Epas — &€ factors through Mco.
Indeed, the composition ﬂqbas — Epas — & factors through Me C Mco, and
the composition M — Epas — € factors through M — Mo — &.

As in the proof of | ], Proposition 1.24, we can now define

My pas =Mw X737, Mwbas,
M pas =M X557, M bas,
Mo bas =Mce X 31, Mco pas-

Each of these is a log structure with the structure map being the composition
of the projection to the first factor followed by the structure map for that log
structure.
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The inclusion Mg — Mo induces an inclusion of log structures Mcpas —
Mo pas. Furthermore for any local section s of Mo pas, if § € M pas then the
image of s via Mo pas — Mo is not contained in Mc, hence apq.,,. (s) =
0 € O¢. Thus, using Remark 2.2, we have a puncturing Cg,. = (C, M¢o pas) —
(C, M pas) along the sections of p. As in the proof of | |, Proposition 1.24,
this now allows us to define a basic punctured map fpas : Cp, — X over Wy,s =
(W, Mwpas). Since MCO,baS is generated by the image of ﬂqbas DM = Epa,
the map f.s is pre-stable.

Denote by frasw : Cﬁas,w — X the pull-back of the punctured map fy.s via
W — Whas. Since fras is pre-stable, fuasw is also pre-stable. Observe that
the morphism M — Mo factors through Mce ~— Mo, hence the pre-stable
punctured map f : C° = Y factors through fia.s w. By Proposition 2.4, the two
punctured maps f and fp.sw are isomorphic. Thus, f is the pull-back of the
basic map fias- [

Proposition 2.26. An automorphism ¢ : C°/W — C°/W of a basic pre-stable
punctured map (C°/W,p, f) with ¢ = idge is trivial.

Proof. This is identical to | ], Proposition 1.25. [ )

2.4. Family of targets. More generally, we consider a relative target X — B
with M x defined in the Zariski site.

Definition 2.27. A pre-stable punctured map to the family X — B is called
basic if the induced pre-stable punctured map to the target X is basic.

Proposition 2.28. Any pre-stable punctured map to the family X — B arises
as the pull-back from a basic pre-stable punctured map to X — B with the same
underlying ordinary pre-stable map. Both the basic pre-stable punctured map and
the morphism are unique up to a unique isomorphism.

Proof. Consider a pre-stable punctured map (C° — W, p, f) to the family X —
B. Forgetting the morphism to B, denote by fp,s : Cp,s — X the corresponding
basic punctured map over W),s as in Proposition 2.25. We have a canonical
commutative diagram of solid arrows as follows:

f
el

J/ Jlias fbas )\[
w B.

We will show that there is a canonical dashed arrow hy,,s making the above dia-
gram commutative, hence the desired basic punctured map to X — B.

Since the underlying morphism W — W, . is an isomorphism, pulling back to
W it suffices to show that the morphism A*Mp — My factors through My,
canonically.
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Pulling back to C, we observe that the composition Mp|c — Mx|c — Mceo
factors through Myy|c. Thus, the contact order of any elements in M is trivial
at all nodes and punctures. Consequently, the composition Mp|c — Mx|c —
Mcﬁas factors through My, |c. Since ghost sheaves are constructible, and the
fiber of C — W is connected, the morphism Mp|c — My, _|c descends to a
morphism £}, : Mzlw — M,

To see that h?, lifts to a morphism of logarithmic structures, notice that any

global section § of Mp, viewed as a global section of Mg|c, maps to a global
section fP,(0) of My, lc € Mce . As the family C — W is proper, f7,,(6) is

constant over each fiber of C — W, hence descends to a section h?__(5) of My, .

This defines the desired morphism h’ [

bas*

2.5. Puncturing log-ideals. The punctured points which are not marked points
impose extra important constraints we now describe. This is a key new feature of
the theory. Given a monoid ) and a punctured log map over W = Spec(Q — k)
with puncture p contained in a component with generic point 7, consider the
commutative diagram

(2.8) P,—5Qe
Xnvpl lxgv,p
P, P 0

where vertical arrows are generization maps. The morphism X;”, is the projection
to the first factor. Then ¢, is given by

(29)  me oy(m) = (930 xup(m), up(m) € Mee, C Q& Z.

Suppose that u,(m) < 0. By (2) of Definition 2.1, any lifting of ¢,(m) to Mce
has its image in O¢ vanishing in a neighborhood of p. By the commutativity of
the above diagram, we thus have ¢;; o x,, ,(m) # 0. We summarize the constraint
of ¢ around p as follows:

(2.10) for any m € P, such that u,(m) < 0, we have ¢; o x;,,(m) # 0.
Denote by K C @ the ideal
(2.11) (g7 0 xpp(m) | there is a puncture p and m € P, such that u,(m) < 0)

and call it the puncturing ideal of the punctured map.
Given a fine log scheme W, a sheaf of ideals K C Myy is called coherent if for
any w,w’ € W with w € cl(w'), the generization map K, — Ky is surjective.

Lemma 2.29. The fiber-wise constructed ideal in Equation (2.11) glues to a
coherent sheaf of ideals IKCyy C My .

Proof. 1t suffices to verify the construction in (2.11) is compatible with gener-
ization. More explicitly, consider two geometric points w — W, w’ — W with
w € cl(w’). Denote by K and Kz the two puncturing ideals associated to the



22 DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

corresponding fibers of punctured maps. We need to show that the image of the
composition Kz — WW@ — MW@/ generates Kg.

Take a punctured point p over w and a punctured point ' over @’ such that
p € cl(p)). Write Qy = My and Qu = M. Lemma 2.21 implies the
following commutative diagram

u, (Zco)—— P, Qo ®Z —— Qu
L
U;,I(Z<0)( Pp/ Q@/ @ Z —_— Q@/

where all the vertical arrows are generization maps. By the construction in (2.11)
the puncturing ideals K and Ky are generated by the images of u,,; YZ <o) — Qu
and u;l(Z<0) — Qg respectively for all punctures. It remains to show that
u, (Zco) = ury' (Zg) is surjective.

Consider the sub-monoid F' = x.,.(0) C P,. Denote by F~'P, C P& the
submonoid generated by P, and F€. Then the quotient h : F~'P, — P, by
F# yields an isomorphism F~'P,/F® = P,. For any a' € uy(Z-g), choose
a € F7'Py such that h(a) = o/. Note that if a € P, then a € u;'(Z) by
Lemma 2.21. Suppose a ¢ P,. Then it is of the form a = b — ¢ for some b € P,
and ¢ € F. Observe that u,(F) = 0. Thus, we have b € u;'(Z<o) and h(b) = a’.
This proves the desired surjectivity. [

Recall (see e.g., | ], III §1.3) that a log-ideal K over a fine log scheme W
is a sheaf of ideals IC of My,. A log-ideal K over W is called coherent if for any
points x,y € W with z € cl(y), the generization map Kz — Kj is surjective.

Given a morphism of fine log schemes h : T'— W and a log-ideal I over W,
the pull-back f*K is the log-ideal over T generated by the image of f~1K —
f My — Mr. The pull-back f*(K) of an ideal K C My is defined similarly.

Observe that if K (respectively K) is coherent, the pull-back f*/C (respectively
f*K) is coherent as well.

For any pre-stable punctured map f : C° — X over W, let Ky C My be
the coherent sheaf of ideals introduced in Lemma 2.29. Consider the log-ideal

Kw = My XHEW C Myy. The coherence of Ky implies the coherence of Iy

Definition 2.30. The coherent log-ideal KCy, is called the puncturing log-ideal
associated to the pre-stable punctured map f : C° — X over W. The log-ideal
Kyw is said to be basic if f is basic.

Proposition 2.31. Let f : C° — X be any pre-stable punctured map over W,
and fr : C3. — X be the pull-back of f via h : T — W. Then f*Kyw = Krp. In
particular, Ky is the pull-back of the corresponding basic puncturing log-ideal.

Proof. Tt suffices to show that h*Ky = K, and it suffices to check this at each
geometric point. We may assume that both T" and W are geometric points. For



PUNCTURED LOGARITHMIC MAPS 23

each punctured point p, let u, : P, — Z be the contact order at p. We have the
following commutative diagram:

oo _
U (Zeco) — Py —1 My @ Z —— Moy

RN

u Y (Zeo)— P, — My & Z — Mr.

The puncturing ideals Ky and ICp are generated by the images of compositions
of the top and bottom arrows respectively for all punctures, see (2.11), and hence
the statement follows. ' Y

The puncturing log-ideal is a new phenomenon for punctured maps compared
to log maps which puts extra constraints as follows.

Theorem 2.32. Let f: C° — X be any pre-stable punctured map over W, and
Kw be the corresponding puncturing log-ideal. Then we have apy,, (Kw) = 0.

Proof. Since the statement can be checked locally on W, shrinking W we may
assume given a chart ~ : Mw,w — My for some geometric point w € W. Since
Kw is coherent, it is generated by v(Kw.,). It suffices to show that aa, o
V(EWJU) =0. _

Let p € C;, be a puncture with contact order u,. For any 6 € u,'(Z<) C P,,
denote by ej its image via the following composition

Jﬂ7 A PT1 %7
P, — Mw., ®@Z — Myy,.

Let ez be a local section of My, over e;. It suffices to note that by Definition 2.1,

(2), anry (e5) = 0. L
This demonstrates that the base of a family of punctured maps is naturally an
idealized log scheme (or stack). We recall from | , 11T Def. 1.3]:

Definition 2.33. An idealized log scheme is a log scheme (X, M) equipped
with a sheaf of ideals Ky C My such that Ky C ayx'(0). A morphism of
idealized log schemes f : X — Y is a morphism of log schemes such that f* maps
f_l(]Cy) into IC)(.

Corollary 2.34. In the situation of Theorem 2.32, the triple (W, My, Kw) is a
coherent idealized log scheme.

2.6. Contact orders. For a target X, consider the following étale sheaves over
X:

ﬂ;/( = Hom(Myx,N) and My = Hom(My,Z) = Hom(M?%, 7).

Definition 2.35. A family of contact orders of X consists of a strict morphism
Z — X and a section u € I'(Z, M) satistying the following condition. Let
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u: My — My 3 7 be the composite homomorphism associated to u. Then the
map « : Mz — Oz sends u™'(Z ~ {0}) to 0.
We call the ideal Z,, C M generated by u='(Z ~. {0}) the contact ideal asso-
ciated to u, and denote by Z,, the corresponding ghost contact ideal in M.
The family of contact orders is said to be connected if Z is connected.

For simplicity, we will refer to u as the contact order when there is no con-
fusion about the strict morphism Z — X. Given a family of contact orders
u € I'(Z, M) of X, the pull-back of u along a strict morphism Z’ — Z defines
a family of contact orders u’ € I'(Z', M,).

Example 2.36. To motivate this definition, consider a punctured map f: C° —
X over W, and a section p € p. Take Z := W, and give Z the log structure given
by pull-back of Mx via f op, so that Z — X is strict. Let u be the following
composition

__ b _ __
(2.12) My L p Moo c My @7 — 7.

where the last arrow is the projection to the second factor.

We claim that u defines a family of contact orders of X. Indeed, let 6 € My
and represent f°(8) = (e5,0%®), where o is the element of M¢ corresponding
to a local defining equation of the section p.

If u,(6) > 0 then

az(8) = prac(f(9)) = prac(e;) - prac(e**?) = 0
since p*ac(o) = 0.
If u,(§) < 0 then f°(8) ¢ M and hence, by Definition 2.1 (2) we have a(d) =
0.

2.6.1. Family of contact orders of Artin cones. Let u € I'(Z, M*Z) be a family of

contact orders of X. For any strict morphism X — Y, u is naturally a family of

contact orders of Y via the composition Z — X — Y. Thus we may parameterize

contact orders of the Artin fan Ay instead of X. We first study the local case.
Consider a fine saturated sharp monoid ¢ and the Artin cone

(2.13) A, = [Spec(a” — k[c"])/ Spec(k[c*])].

Choose an integral vector u € o#P. Let I, be the ideal of ¢V generated by u=(Z~
{0}). This generates a k[o*]-invariant ideal in k[o"], defining a closed substack
Zuo C As. We proceed to construct a family of contact orders parametrized by
2o

For each face 7 < o, denote by Z,., C A, the locally closed sub-stack where

the fiber of ﬂ;w is identified with 7.
Lemma 2.37. We have (Z,4)rea = U Z. .5 CAs.

Proof. Working with monoid ideals, we want to show that /I, coincides with the
monoid ideal I(Urer5,Z,<,) of monomials vanishing on the union U eps, 2, <,

T8P Y
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Note that I(Z,2,) = ¢V~ (t- NoY). The ideal v/I,, defines some union of strata
and we identify those strata Z, ., on which it vanishes. If u ¢ 78P there is an
element p € 7+ N oY such that u(p) # 0. Therefore p € I, but the monomial 2?
does not vanish at the generic point of Z,.,. If u € 78, and if p € u=Y(Z . {0}),
then p ¢ 7+ N oV, hence 2P vanishes along Z,_,. [

As MZM and Z are constructible, we have
D(Zu0 Mz, ) = T(Zuo)reas Mz, .0)-

We define an element u,, of this group by defining it on stalks in a manner
compatible with generization. For a point z € Z.., the condition u € 75P
guarantees that u : 0¥ — Z descends to u: Mz, , . = (6¥ +74)/7+ — Z. Being
induced by the same element wu, this is compatible with generization. Note that
the scheme Z,, was defined in such a way so that az, ,(Zy,,) = 0, so that Z,,
acquires the structure of an idealized log stack.

Thus u defines a family of contact orders of A,

(2.14) W, € T(Z,0, Mz, ).

It is connected since the most degenerate stratum Z,_, is contained in the closure
of Z, ., for any face 7.

Lemma 2.38. For any connected family of contact orders u € T'(Z, M) of A,
there exists a unique u € o8 such that : Z — A, factors uniquely through 2, 5,
and u,, pulls back to u.

Proof. The global chart ¥ — M, over A, pulls back to a global chart ¥ —
My over Z. The composition 0¥ — M, — Z defines an integral vector
u € o%P. Consider the sheaf of monoid ideals J, C M4, generated by I,. By
definition of the contact ideal Z,, we have Z,, = ¢*7,. Since az(Z,) = 0 we have
the factorization Z — 2, , = V (a4, (Ju)) of ¢, with u the pull-back of u,,. @

We can now assemble all the Z, , by defining

ZO’ - H Zu,aa

u€o8P

and write ¢, : Z, — A, for the morphism which restricts to the closed immersion
Zus — A, on each connected component Z,, of Z,. Then the u,, yield a
section u, € I’ (Za,ﬂzg), giving the universal family of contact orders over A,,
as follows immediately from Lemma 2.38 by restricting to connected components.

Lemma 2.39. For any family of contact orders u € I'(Z, M) of Ay, 1 : Z —
A, factors uniquely through Z,, and u, pulls back to u.

Lemma 2.40. If 7 is a face of o, viewing A, naturally as an open substack of
A, we then have Z. = ¢ (A;), and the section u, € F(ZU,M*ZU) pulls back to

g

the section u, € F(ZT,M*ZT).
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Proof. Note that the open immersion A, C A, is induced by the open immersion
of toric varieties Speck[o¥ +71] C Speck[oV]. From Lemma 2.37, it follows that
ZuoNY 1 (AL) is non-empty if and only if u € 780, If u € 78P, then Z, . is defined
by the monoid ideal in oV + 71 generated by u=(Z ~ {0}), and this coincides
with the extension of the monoid ideal in ¢¥ defining Z,,. Thus in this case
Zur =0 (A) N 2,4, giving the first claim.

Let u € o® be the vector corresponding to a component u,, of u. Observe
that if v ¢ 78, then the image of Z,, — A, avoids A, C A,. Furthermore, if
u € 78, then u,, pulls back to u,, by the construction of (2.14). Therefore,

u, € F(Za,m*za) pulls back to the section u, € F(ZT,M;). [

2.6.2. Family of contact orders of Zariski Artin fans. We now consider the case
of an Artin fan Ax. Recall that Ax has an étale cover by Artin cones, and
was constructed in | , Proposition 3.1.1], as a colimit of Artin cones A,,
viewed as sheaves over Log.

Definition 2.41. We say that the Artin fan Ax is Zariski if it admits a Zariski
cover by Artin cones.

It was shown, for example, in | , Lemma 2.2.4], that if X is log smooth
over k then Ay is Zariski.

Over a Zariski Artin fan, one can construct Z as the colimit of the Z, viewed
as sheaves over Ayx. Indeed, Z is obtained by gluing together the local model Z,
for each Zariski open A, C Ax via the canonical identification given by Lemma
2.40.2

We then have

Proposition 2.42. There is a section uy € (2, M) making Z into a family
of contact orders for Ax. This family of contact orders is universal in the sense
that for any family of contact ordersu € I'(Z, M*Z) of Ax, ¥ : Z — Ax, there is
a unique factorization of ¢ through Z — Ax such that u is the pull-back of uy.

Proof. It A, — Ax is a Zariski open set, then by the construction of Z,
Z X Ax .AU = ZU.

By Lemma 2.40, the sections u, glue to give a section uy € I'(Z ,M}), yielding
a family of contact orders in Ay.

Consider a family of contact orders Z — Ay, u. To show the desired factor-
ization, it suffices to prove the existence and uniqueness locally on each Zariski
open subset A, — Ax, which follows from Lemma 2.39. '

Definition 2.43. A connected contact order for X is a choice of connected com-
ponent of Z.

%It should be possible to carry this process out for more general Artin fans. However, given
how rarely one needs more general Artin fans in practice, it did not seem to be worth the extra
technical baggage to carry this out.
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We end this discussion with a couple of properties of the space Z of contact
orders.

Proposition 2.44. Suppose that the Artin fan Ax of X is Zariski. There is a
one-to-one correspondence between irreducible components of Z and pairs (u, o)
where o € X(X) is a minimal cone such that u € o®P.

Proof. Since we are interested in classifying irreducible components of contact or-
ders, we may assume Ay = A,. Then the statement follows from the description
of Z,, in Lemma 2.37. [ )

Remark 2.45. Note that if w € 0 or —u € o0, then Z,, is already irreducible,
being the closure of the stratum Z, -, where 7 C ¢ is the minimal face containing
u. Further, the ideal generated by u='(Z~ {0}) is precisely ¢ \ 7+, so that Z,,
is reduced. In the case that u € o, this is the case of contact orders associated
to ordinary marked points, as developed in | 1l 11 |. The situation
for more general contact orders associated to punctured points may be more
complex, and in addition, even in the Zariski case, there may be monodromy.

For example, consider the three-dimensional toric variety Y (not of finite type)
defined by a fan consisting of the collection of three-dimensional cones

YB = {Roo(n,0,1) + Rog(n +1,0,1) + Rxg(n, 1,1) + Reg(n + 1,1,1) | n € Z}

and their faces. Projection onto the third coordinate yields a toric morphism
Y — Al After a base-change ¥ = Y x4 Speck[[t]] — Speck[[f]], one may
divide out Y by the action of Z defined as follows. This action is generated by
an automorphism of Y induced by an automorphism of Y defined over A'. This
automorphism is given torically via the linear transformation Z* — Z3 given by
the matrix

1 0 ¢
0 -1 1
0 0 1

where /¢ is a fixed positive integer. We then define X = }A// Z, with log structure
induced by the toric log structure on Y. Then X — Speck][t]] is a degeneration of
the total space of a G,,-torsor over an elliptic curve, the torsor corresponding to a
2-torsion element of the Picard group of the elliptic curve. Aslongas ¢ > 2, X has
a Zariski log structure. Further, (X)) is a cone over a M&bius strip composed of
¢ squares. If one takes u = (0,1,0) € o8 for any three-dimensional cone in 3(X),
then the twist in the Mo6bius strip identifies v with —u. The connected contact
order corresponding to such a u is then a cycle of 2¢ copies of P!, mapping 2 to
1 to the cycle of ¢ copies of P! contained in the central fibre of X — Speck][[t]].

In fact, there exist examples where this kind of monodromy (even in a Zariski
log smooth situation) produces connected contact orders which have an infinite
number of components, and then one does not expect well-behaved moduli spaces.
Thus, additional hypotheses are usually needed to obtain good control of these
spaces. For example:
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Proposition 2.46. Suppose Mx is generated by its global sections. Then ev-
ery connected component of contact orders of Ax has finitely many irreducible
components.

Proof. Denote by ¥ = I'(X, Myx). Suppose u € I'(Z, M>) is a connected
component of contact orders of Ay. Denote the composition 0¥ — Mz —— 7Z
by v. As My is globally generated, for each irreducible component of Z, its
corresponding vector u as in Proposition 2.44 is uniquely determined by v. By
Proposition 2.44 again Z has finitely many irreducible components, as (X ) has
finitely many cones. o

2.6.3. Opposite contact orders. When we proceed to gluing punctured log curves,
we may only glue punctures p and p’ to form nodes when u, = —u, . It is useful
to formalize this as follows.

If o is a fine saturated sharp monoid, u € o®P, then Z,, = Z_,, as closed
substacks of A,, as they are defined by the same ideal. Thus there is a natural
involution

opp : Z, = 2,
defined over A, taking Z,, to Z_,, for any u € o®P. If Ay is a Zariski Artin
fan, we can then patch this involution over each A, C Ax to obtain an involution

opp: Z2 — Z.

Definition 2.47. We say two connected contact orders Z;, Z, C Z are opposite
if opp(21) = 2.

Remark 2.48. A connected contact order can be opposite to itself, as is the case
in the example given in Remark 2.45. However, an irreducible contact order is
only opposite to itself if the contact order is trivial, i.e., u = 0.

2.7. The tropical interpretation. The construction of the basic monoid in
[ | was motivated by a description of the dual of the basic monoid as a moduli
space of tropical curves. The tropical interpretation of a stable log map over the

standard log point is described in [ , §1.4], and the tropical interpretation
of the basic monoid is given in | , Remark 1.18]. This is expanded on at
length in | , 62.1.4]. Here we discuss briefly how punctures affect this
interpretation.

Recall from [ , Appendix B], or more generally | , §2.1.4], the trop-
icalization functor. In [ , §2.1.4], we associate to any Deligne-Mumford fs

log stack X a generalized polyhedral complex ¥(X). For 7 the generic point of a
stratum of X, we have an associated cone

oy = Hom(ﬂxﬁ, R>o),

(a cone is viewed as also carrying an integral structure from the lattice M;ﬁ)
Then Y(X) is the cone complex presented by a diagram of these cones with
morphisms between them the inclusions of faces dual to generization maps. In
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particular; a stable log map (C/W,p, f) gives rise via functoriality of ¥ to the
diagram

(2.15) s(0) 2 w(x)

E(ﬂ)l

(W) —— X(S)

This is then interpreted as a family of tropical curves, with each fibre of ()
being a graph, and Y(f) restricted to a fibre defines a map to (X ). In the case
that W = Spec(Q) — k) is a log point, the basicness of (C'/W, p, f) is then seen
to be a kind of universality of this family of tropical curves.

The same approach works in the punctured case: all we need to do is modify
the treatment of a marked point in | , §2.5.4(iii)] to punctured points as
follows:

(iii’) If p € C is a punctured point, then we describe o, = Hom(Mce ,, R>0)
as follows. Let P, = My j() and Q = My (). Denote the dual of the
homomorphism f° : P, — Mge, by (f°)!. Then

o= (MBI QeN)),.

Indeed, the stalk of the ghost sheaf at p of the prestable punctured loga-
rithmic structure is the smallest fine submonoid of () & Z containing both
Q@ Nand f°P,.
The map 3(7) : 0, — Qf is the projection. Its fiber over an element
q € Qpis
{n=0](f)(q,0) + 1y € (P))r}.

Here ¥(f)(q, 0) is the image of the vertex corresponding to the irreducible
component containing p, and pre-stability means that this is either a ray,
when u, € PI)/ , namely p is a marked point, or a segment whose image
extends as far as possible in the cone (PpV)R, if p is genuinely a puncture.

Note the fibres 3(m)~!(z) of X(m) for z € Int(Qy) can be identified with the
dual graph G¢ of C, with the proviso that the legs of G¢ corresponding to
punctured points are either closed line segments or rays. If x instead lies in the
boundary of Qy, X(m)~!(z) is obtained from G¢ by contracting some edges and
legs of G¢ whose lengths have gone to zero.

Note the language of tropical curves from | |, Definitions 2.5.2 and 2.5.3
can be easily adapted to the current setting, as follows. We consider connected
graphs G with sets of vertices V(G), edges E(G) and legs L(G). However, unlike
in the marked point case, a leg may be a compact interval or a ray. In either
case, a leg has only one endpoint in V(G). A tropical curve I' = (G, g, /) of
combinatorial type (G, g) is the choice of a genus function g : V(G) — N and a
length function ¢ : E(G) — Ry
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We summarize the definition of a tropical curve in 3(X) as given in | ,
Def. 2.5.3], with the slight modification from punctures. We recall from | ,
§2.1] that a cone o € ¥(X) is equipped with a lattice of integral tangent vectors
N,. A tropical curve in (X)) is then data of (1) a tropical curve I'; (2) a map

o V(G)UE(G)ULG) — £(X),

thinking of ¥(X) as a set of cones; (3) a bijection between L(G) and a marking set;
(4) for each edge E,; € E(G) with an orientation a weight vector uq € No(g,) (the
lattice of integral tangent vectors to the cone o(E,)); (5) for each E, € L(G) an
element u, € Ny(g,); (6) a continuous map f : |[I'| = |[E(X)|. This data satisfies
conditions enumerated in | ], Definition 2.5.3, with one modification due
to punctures: if E, € L(G) is a leg with vertex v, it holds that f(Int(E,)) C
Int(o(E,)) and f maps E, affine linearly to the ray or line segment

In other words, a leg E, with vertex v associated to a punctured point is mapped
to the longest possible line segment in the cone o (F,) with one endpoint f(v)
with tangent direction u,. Thus if u, lies in the cone o (E,), in fact this line
segment is a ray, which is the case more clasically for marked points.

We also recall that if vy,v, are vertices of an edge E, from v; to vy, then
F(Int(,) € nt(a(E,)),

(2.17) fva) = fvr1) = U(Ey)uy,

and f maps E, affine linearly to the line segement joining f(v;) and f(vs).
A combinatorial type of tropical map to 3(X) is all of the above data except
for the contiunous map f and the length function /.

2.7.1. The balancing condition. The above discussion fits well with the tropical
balancing condition at vertices of the dual graph of C°. In fact, the statement
[ , Proposition 1.15] holds unchanged. There is no balancing condition at the
endpoint of the segment described above. As we will need the balancing condition
to prove boundedness, we review this statement here.

Suppose given a stable punctured map (C'/W,p, f) with W = Spec(N — k)
the standard log point over a field. Let g : D — C be the normalization of
an irreducible component D with generic point 1 of C. One then obtains, with
M= fﬂx, composed maps

X T(D,g"M) — PicD *5 7

¢ T(D,g"Mcgo) — Pic D 87
with the first map on each line given by taking a section of the ghost sheaf to
the corresponding Og—torsor. These are compatible: the pull-back of f* to D,
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0 g°M — g*Mco, induces ¢ : g*M — g*Mco, and hence a commutative
diagram

F( —> F D g*MCo

\J

The map TX is given by f and M, so is dependent on the geometry of f:C°—
X; however 1f S contracts D, then T = 0. On the other hand, 7' is determined
using the notation in | , §1.4]. EXphCltly, for each point ¢ E D over a node
of C we have M¢o g = S, the submonoid of N? generated by (0, ¢,), (e4,0) and
(1,1). The generization map x, : Mce 5 — Mco; = N is given by projection to
the second coordinate: x,(a,b) =b. We then have

(D,g*Mee) € T(D,g*E),

where

r0.58) = {(m)es

ng € Se, and Xq(nq> X (ng')
for ¢,¢ € D @ Z

We then obtain, with proof identical to that of | , Lemma 1.14]:

Lemma 2.49. 75 (((ag,0)yeps (Mp)pen)) = — Doped Mp + Doged -

q

The equation 7';7’( = 7'770 o is a formula in Np := F(D,g*ﬂgp)*, which is
described in | , Equations (1.12), (1.13)] as follows. Let ¥ C D be the set of

special points p,q in D, that is mapping to a special point of D. Then

Np=1lmP; = (P P; /N
xeD IEGE

where for any a € P and any z,2" € ¥,
(0,...,0, tay(a),0,...,0) ~ (0,...,0, t5.0(a),0,...,0).

Here v, : Py — P, is the dual of generization, and the non-zero entries lie in
the position indexed by  and z’ respectively.
We then have, exactly as in | , Proposition 1.15], the balancing condiiton:

Proposition 2.50. Suppose (C/W,p, f) is a stable punctured map to X/S with
W = Spec(N — k) a standard log point. Let D C C be an irreducible component
with generic point n and ¥ C D the preimage of the set of special points. If
T € T(D, g*M™)* is represented by (7,)zes, then

(ux)xEZ + (Tx)xEZ =0
m ND = F(D,g*mgp)*.

The following is an encapsulation of balancing which gives easy to use restric-
tions on curve classes realized by punctured maps with given contact orders.
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Proposition 2.51. Suppose given a punctured curve (C' /W, p, f) with W a log
point, p = {p1,...,pn}. Fors € I'(X, ﬂ%?), denote by L the corresponding
torsor, i.e., the inverse image of s under the homomorphism M5 — M%?, and
write L for the corresponding line bundle. Further, the stalk of s at f(p;) lies in
PeP and hence defines a homomorphism Py — Z, which we write as (-,s). Then
degf‘ﬁs = Z<upi’ S)'
i=1

Proof. First, by making a base-change, we can assume W is the standard log
point. Note f*L, must be the line bundle Lz, associated to the torsor corre-
sponding to f(s).

Now the value of the total degree of L, can be calculated using Lemma 2.49
and details of the proof of | , Proposition 1.15]. Let D be the normalization
of an irreducible component of C' with generic point 7, g : D — C' the obvious
map. Then

deg(fog) Ly = degg L

=17, (¢(s))
1
= 3 (V) Vi) = )
geD * zi€D
in the notation of [ , Propositions 1.14,1.15], and the last equality coming
from the proof of | , Proposition 1.15]. Summing over all irreducible com-

ponents, the left-hand side becomes deg f*£, and on the right-hand side, all the
contributions from the nodes cancel, giving
deg i*(ﬁs) - - Z<urw 8>7

as desired. PN

2.7.2. The puncturing ideal. We end this subsection by giving a tropical inter-
pretation for the puncturing ideal Iy associated to a punctured map.

Proposition 2.52. Suppose given a sharp toric monoid @), and a collection of
sharp toric monoids P, , ..., P, along with monoid homomorphisms ¢, : B, —
Q @ Z with uy,, := pryop,,. Let ev; := (pryop,, )t : Qf — (Pp,)g. Let the ideal
I C Q be the monoid ideal

I = (pr, op,,(m) | there is an i such that m € P,, and u,,(m) < 0).

For o a face of the cone Qy, let Z, = Speck[ot N Q] be the closed toric stratum
of Speck[Q] corresponding to o. Then there is a decomposition

SpeckQ)/VI =) Z,

where the union is over all faces o of Qy such that if x € Int(o), then ev;(z) +
euy, € (P,,)5 for € > 0 sufficiently small and 1 <i <.
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Proof. Let I,, C Q be the monoid ideal
L, = (pry opy,(m) |m € P, satisfies u,,(m) < 0).

Of course V(I) =,V (1,,). We first show that if o satisfies the given condition,
then Z, C V(I,,) for each i. The monomial ideal defining Z, is @ \ (o N Q),
so it is enough to show that o+ N I,, = . Choose an x € Int(c). Let q € I, be
a generator of I, i.e., there exists an m € P, such that ¢ = pr;(¢,,(m)) and

up,(m) < 0. Since m € P,, and ev,(z) + eu,, € (P,,)} for some € > 0, we have
0 < (evy(z) + euy,, m).

Thus (u,,, m) < 0 implies (ev;(x),m) > 0, or (z, pry(p,,(m))) = (x,q) > 0, as
desired.

Conversely, suppose that Z, C V(1) for some face o of Q, but there exists an
i and some z € Int(o) such that ev;(z) + eu,, & (Pp,)§ for any € > 0. Then there
exists an m € P,, such that (ev;(z)+eu,,, m) < 0for all e > 0. Since (ev;(z), m) >
0, we must have (ev;(z), m) = 0 and u,,(m) < 0. Thus ¢ = pr,(¢,,(m)) lies in I,,,.
We have (z,q) = (ev;(x),m) = 0, so ¢ € o+. In particular, z¢ does not vanish on
Z,, contradicting Z, C V(). [

Remark 2.53. The above proposition gives an immediate tropical interpretation
for the zero locus of the puncturing ideal, ignoring the scheme structure. Indeed,
suppose that the data in the above proposition arises from a punctured curve
f:C° — X with C defined over W = Spec(Q — k), with punctures py, ..., p,.
Tropicalizing gives a family of tropical curves (2.15). Fixing z € (W) = Qg
yields a tropical curve X(f) : I' — X(X). Let n be the generic point of the
irreducible component of C' containing the punctured point p;, and v, the vertex
of T corresponding to 1. Then ev; can be viewed as the evaluation map ev; :
(W) — 3(X) of X(f) at the vertex v,. The condition in the above proposition
on ¢ then says that for x € Int(o), the affine length of the leg of I" corresponding
to each p; is non-zero.

3. THE STACK OF PUNCTURED MAPS

3.1. Algebraicity.

3.1.1. The set-up and the statement. We fix a morphism locally of finite pre-
sentation and separated logarithmic schemes X — B as the target with My
Zariski.

Denote by .#,,(X/B) the category of stable punctured maps to X — B
with genus g, m-marked punctured curves fibered over the category of fine and
saturated logarithmic schemes. By Proposition 2.25 this is the pullback of the
corresponding category of basic stable punctured maps fibered over the category
of schemes.

Let #,,(X/B) be the algebraic stack over B parameterizing usual stable
maps to the family of underlying schemes X — B. We view ./, (X/B) as
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the logarithmic stack equipped with the canonical log structure of its universal
curves.
The morphism X — X induces a morphism of fibered categories

(3.1) Myn(X/B) = My, (X/B).
We will prove the following theorem:

Theorem 3.1. The morphism (3.1) is representable by logarithmic algebraic
spaces locally of finite presentation. In particular, M, ,(X/B) is a logarithmic
Deligne-Mumford stack locally of finite presentation.

Lemma 3.2 and Proposition 3.3 below will imply that the morphism is repre-
sented by logarithmic algebraic stacks, locally of finite presentation. The repre-
sentability property is a consequence of Proposition 2.26.

3.1.2. Reduction to the case of universal target. Denote by Ax the relative Artin
fan associated to X — B, see Corollary 3.3.5 of | . Write X := Ax X 4,
B. Then the morphism X — B uniquely factors through a strict morphism
X — X. We may replace X by X', and form the fibered category of pre-stable
punctured maps M, ,(X/B), and the stack of usual pre-stable maps M, ,,(X/B).
Again, we view M, ,,(X/B) as a logarithmic stack with the canonical log structure
of its universal curve. Similarly, the morphism X — X induces a morphism

(3.2) Myn(X/B) = My (X/B),

and the strict morphism X — X induces a morphism

(3.3) Myn(X/B) = M, (X/B).

Furthermore, the underlying morphism X — X induces a morphism of stacks

(3.4) Myn(X/B) = Myn(X/B).

Lemma 3.2. There is a canonical isomorphism of fibered categories
Moy X[B) = Mon(X/B) X, ,x/5) Mgn(X/B),

where the fiber product is in the fine and saturated category.

Proof. The morphism in the statement is given by (3.1) and (3.3). To see the
isomorphism, observe that giving a stable punctured map f : C° — X/B over
W is equivalent to giving an underlying stable map f : C — X/B over W
and a morphism of logarithmic structures f” : f*Mx — Mce compatible with
the arrows from Mpg. The latter is equivalent to a pre-stable punctured map
C° — X /B whose underlying map is given by the composition C' - X — X. &

Lemma 3.2 and Proposition 2.26 reduces Theorem 3.1 to the following:

Proposition 3.3. The morphism M, ,,(X/B) — M, (X/B) as in (3.2) is a
morphism between logarithmic algebraic stacks locally of finite presentation.
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3.1.3. Moduli of punctured curves with a fixed log curve. Let m : C — W be
a genus ¢, n-marked logarithmic curve over W. Define WP to be the fibered
category over W-schemes defined as follows.

For any strict morphism 7" — W, the objects in W?(T') are punctured curves
C7 — Cp — T with punctures given by the markings of Cp. Here Cp = C Xy
T — T is the pull-back of the logarithmic curve C' — W. Pull-backs in WP are
defined as pull-backs of punctured curves along strict morphisms over W.

In other words, WP parameterizes punctured curves with the logarithmic curves
given by C' — W. We prove that

Proposition 3.4. The tautological morphism WP — W obtained by removing
the punctured curve is, locally on WP, a locally closed embedding.

Proof. For any object C% — Cr — T in WP?(T'), we will construct a strict and
locally closed immersion V' — W with the punctured curve C§, — Cy — V
such that 7" — W factors through V, and Cj3 — Cp — T is the pull-back of
Cy — Cy — V. Furthermore, we will show that such an object Cy, — Cy — V
is universal with respect to the above property.

Since the statement is local on both W and T, shrinking both W and T, we
may assume there is a chart A : Q) = ﬂW,w — My which pulls back to a chart
hr:Q = ﬂm — M for a point w € W and a fixed point t € T" over w.

For each puncture p and a generic point n in C, with p € cl(n), consider the
generization map X, : mcgap — ﬂn = (. Let Z, C Q be the ideal generated by
the image Xn,p(ﬂc%t . Mg,) for each puncture p € p;. Since both MC%,,S and
M, are fine monoids, the ideal Z, is finitely generated. Using the chart h, the
ideal Z, C @ generizes to a coherent sheaf of ideals Zyy and Zy.

Let Zy :== Mw X33, Iy and Zp := My mefT be the corresponding coherent
log-ideals on W and T respectively. It follows from the construction that Zp is
the pull-back of the log-ideal Zy, via T" — W. Denote by V' — W the strict closed
immersion defined by the ideal aq,, (Zw ). Further shrinking 7' if necessary, by
(2) of Definition 2.1 the image ap,.(Zr) is the zero ideal. Thus T" — W factors
through V' C W. Denote by ¢ the morphism 7" — V.

We next construct the punctured curves Cy}, — Cy — V. To construct the
sheaf of monoids ﬂc‘o/, first notice that the inclusion MCV - ﬂc‘o/ is an iso-
morphism away from the points of p. For each puncture p, € p, over w, we
define ﬂ%,pw := Mg p, using the fiber over the fixed point ¢. Further shrink-
ing T', we may assume there is a chart Mce ,, — Mcol,, along the puncture
pr € p. Shrinking W hence V accordingly, we may assume that there is a chart
Mecyp = Meylp,- We may then extend the fiber Mce ,, along the punc-
tured marking py via generization. This defines the subsheaf of fine monoids
MC‘O/ C ﬂipv.

Consider Mee, = M%pv XM ﬂc‘o/. Observe that Mc,, C Mcs,. We define
the structure morphism oy ey Mce — Oc, as follows. First, we require



36 DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

aMc‘O/|MCV = QMg - Second, for a local section § of Mce not contained in
M, , we define a o (0) = 0. This defines a monoid homomorphism. Indeed, if
we use the decomposition Mce € M ©px PeP, writing § = §'- 0" with ¢’ the pull-
back of a section of My, it is sufficient to check that ay (6’) = 0. However, this
follows from the definition of the defining ideal of V. This defines a logarithmic
structure Mco over Cy,. The inclusion of logarithmic structures M¢, C Mce
is a puncturing, hence defines the punctured curve Cj, — Cy — V.

We check that C. — Cp — T is the pull-back of C}, — Cy — V viai: T — V.
Since Cr — T is given by the pull-back of Cyy — V, it suffices to show that
i*Mco, = Mg as sub-sheaves of monoids in ./\/lngT . Away from the punctures,
the equality clearly holds. Along each puncture p € pr, we have the equality
z‘*ﬂca,pw = ﬂ(;%pt at p; which extends along the marking p by generization.
This proves the desired equality.

Finally, consider another closed immersion V' — W and a family of punctured
curves CY, — Cy» — V' such that Cy = C xy V’, the morphism T — W
factors through V', and C — Cr — T is the pull-back of C}, — Cyr — V.
Then aq,,, (Zw|v) is the zero ideal on V' as it contains the punctured curve over
t € T. Hence the inclusion V' — W factors through V. The same construction
above shows that CY, — Cy» — V' is the pull-back of C§, — Cy — V. This
proves the desired universal property. [

3.1.4. Proof of Proposition 3.5. By | , |, the morphism X — B is
locally of finite presentation, quasi-separated, and having affine stabilizers. By
[ , Theorem 1.2], the stack M, ,,(X/B) is an algebraic stack locally of finite
presentation. Recall that 9, ,(X/B) is viewed as a logarithmic algebraic stack
equipped with the canonical log structure of its universal curve.

Consider a strict morphism W — 9, ,,(X/B). We will show that the product
in the fine and saturated category

W =M, . (X/B) xan, . x/m W

is represented by a logarithmic algebraic stack locally of finite presentation.

Consider Olsson’s log stack V' := Logy,, . p asin | ].% Pulling-back the uni-
versal families via the composition of logarithmic stacks V — W — 9, ,,(X/B),
we obtain a family of underlying pre-stable maps f : € — &X/B over V, and a
logarithmic curve C' — V over C' — V. Denote by U := V? the logarithmic stack
over V introduced in Section 3.1.3. By Proposition 3.4, the stack U is a logarith-
mic algebraic stack. Pulling-back the universal families, we have an underlying
pre-stable map iU : Cyy — X/B over U, a punctured curve Cf; — Cy — U, and
a morphism U — B.

3Departing from Olsson’s notation, we write Logy, for the stack parameterizing only fine
and saturated logarithmic structures.
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Denote by M := fUMX ®m, My in the category of coherent logarithmic
structures. Consider the fibered category

H := Homge, v (M, Mcs)

which associates, to each strict morphism 7" — U, the category of morphisms
of logarithmic structures M|ce — Mcg where C7 = Cp xy T. By | ,
Proposition 2.1], the projection H — U is representable by algebraic spaces
locally of finite presentation. Hence H is a logarithmic algebraic stack locally of
finite presentation. The universal morphism f, : Mg, — Mo, and the pull-
back f . : Cy — X/Bof f: C — X /B defines a punctured map fy : Cz; — X'/B
over H.

The universal punctured maps define a tautological morphism 20 — H. By
the construction of H and the universal property of basic objects in Proposition
2.28, this morphism identifies 20 with the sub-stack of H parameterizing pre-
stable basic punctured maps. By Proposition 2.15 and Proposition 2.24, 27 is
identified with an open sub-stack of H. Therefore, 20 is a logarithmic algebraic
stack locally of finite presentation.

This completes the proof of Proposition 3.3.

3.2. Boundedness.

3.2.1. The classes of punctured maps. In what follows, we will need to make
a choice of a notion of degree data for curves in X; we will write the group
of degree data as Hy(X). This could be 1-cycles on X modulo algebraic or
numerical equivalence, or it could be Hom(Pic(X), Z). If we work over C, we can
use ordinary singular homology Hy(X,Z). In general, any family of stable maps
f: C/W — X should induce a well-defined class f [Cy] € Hy(X) for w € W
a geometric point. If W is connected, this class should be independent of the
choice of w.

Definition 3.5. A class of stable punctured maps to X/B with Artin fan Ax
Zariski consists of data f = (g, Up = (W, )p;ep, A) where:

(1) g is the genus of the source curve.

(2) uy, is the connected component of contact orders of Ax along the j-th
punctured point p;.

(3) A € Hy(X) is a curve class.

Similarly we call §/ = (g, ﬁp) a class of punctured maps to X'/B.

For simplicity, we may write i = t,. We also introduce the notation § =
(g, k, A) for the discrete data of underlying stable maps to X /B, where k is the
number of punctured points.

Since contact orders in U are given by connected components of contact orders,
we obtain a decomposition
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Lemma 3.6. There are decompositions by disjoint unions of open and closed
substacks

M(X/B)=| |.#(X/B,B) and IM(X/B)=| |M(x/B,B)
B B’

where A (X/B, 3) and M(X /B, B') parameterize punctured maps with the given
classes 8 and ' respectively.

We state our result on boundedness:

Theorem 3.7. Suppose the underlying family X — B is projective, the Artin
fan Ax is Zariski, and the sheaf My is generated by its global sections. Then
the projection M4 (X/B, ) — B is of finite type.

Proof. We split the proof into several steps. This theorem will follow from Propo-
sitions 3.10 and 3.11. [

Remark 3.8. We remark in the case where all points are marked rather than
punctured, | ] proved this result without any hypotheses on My. Here,
this hypothesis is used in two ways. The first way is similar to its use in | 1,
Theorem 3.8 to bound the numbers of types of tropical curves. Here, we do this
in Proposition 3.11. The second use is to apply Proposition 2.46: if a connected
contact order has an infinite number of irreducible components, then it may well
be that a moduli space of stable punctured maps with such a contact order at a
punctured point is not of finite type.

Even if this second issue did not potentially cause problems, we would still
be unable to prove the stronger finiteness result of | | because we have
not shown an analogue of the invariance of punctured invariants under log étale
modifications shown in the ordinary marked case in | |. Indeed, the story
seems to be rather more subtle in the punctured case, and we leave this to future
work.

3.2.2. Boundedness of #(X/B,j3).

Definition 3.9. A class 3 is called combinatorially finite if the set of types (see
Definition 2.20) of stable punctured maps of class [ is finite.

Proposition 3.10. Suppose 3 is combinatorially finite. Then the forgetful map
M(X|B,B) = M (X/B, B) is of finite type.

Proof. The strategy of the proof is similar to those in [ , Section 3.2] and
[ , Section 5.4] by showing that each stratum with constant combinatorial
structure is bounded. The proof is largely the same, with extra care needed only
in the proof of | , Prop. 3.17]. Let f = (C/W,p, f) be a combinatorially
constant (in the sense of | , Def. 3.15]) ordinary stable map over an integral,
quasi-compact scheme W. Then W x_,(x/p g #(X/B, ) classifies punctured
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enhancements of the ordinary stable maps parameterized by W. As the combi-
natorial type of a log curve is locally constant, we have a decomposition

W X.ax/ps #(X/B,B) = [ [ #(X,f,u)

into disjoint open substacks according to the type u. If 8 is combinatorially finite,
this is a finite union, and hence it is sufficient to show quasi-compactness of each
A (X, f,u). As in the proof of | , Prop. 3.17], it is sufficient to construct a
quasi-compact stack Z with a morphism Z — .# (X, f,u) which is surjective on
geometric points.

To do so, set Q; := N*, where k is the number of nodes of any fibre of C — W.
By Section 2.3.1 and the fact we have fixed the type u, the basic monoid @
is constant on .Z (X, f,u). Then there is a canonical morphism @Q; — @ (see
Section 2.3.1), which induces a morphism of Artin cones Agv — Agqy. We equip
W with the canonical log structure coming from the family of nodal pre-stable
curves C — W, and consider Z; = Agv X Agy W. Pulling back the universal
family from W, we obtain a family of log curves C; — Z; and a usual stable map
f:C, — X/B. Observe that there is a global chart ) — M,. By Theorem 3.1
the morphism (3.1) is locally of finite type, and therefore we can replace Z; with
its reduction.

The type u prescribes, for each puncture p € p, an element u,, which determines
over each geometric point of Z; a commutative diagram (2.8). Further observe
that the commutative diagram (2.8) varies globally constantly along Z;. We thus
obtain a monoid ideal £ C Q as in (2.11) by taking into account all punctures
in p. Denote by K = K XMy, My, where the arrow on the left is given by

the composition X — Q — My, with the last arrow the global chart. Noting
that to obtain a family of punctured stable maps of type u over Z; then requires
that az, (K) = 0 by Theorem 2.32. Thus in particular if 0 € K, then there are
no punctured maps of type u and we can ignore such a u; otherwise, as 7 is
reduced and M, is locally constant with stalk Q, necessarily ay, (K) = 0.

We now construct a punctured family of curves C7 — Z;. First, the ghost
sheaf ﬂc{) is identical to M, away from punctures. Along each puncture p € p,
we take Mce, C ﬂgcphp to be the smallest fine submonoid generated by M, ,
and the image of ¢, as in (2.8). As all the characteristic sheaves and morphisms
between them are globally constant along Z;, this yields a well-defined sheaf of
monoids Mc{», hence Mce := Mcf X ./\/lgcp1 over (.

We define the structural morphism a co Mce — Oc, as follows. First, we

require oy csl Mo, = Qme, - For a local section ¢ of Mce not contained in M,
we defined oy o (0) = 0, as away from punctures it generizes to a section in I,
hence is the zero section in O¢,. This defines a logarithmic structure ./\/lcf, hence
the desired punctured curve C7 — Z;.

The remainder of the proof is now identical to that of | , Prop. 3.17]. &
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3.2.3. Finiteness of the combinatorial data. In order to complete the proof that
A (X /B, ) is finite type, it remains to bound the combinatorial data.

Proposition 3.11. Suppose My is generated by its global sections. Then any
class B is combinatorially finite.

Proof. 1t is sufficient to show that for any combinatorially constant family of
ordinary stable maps (C/W,p, f) in the sense of | , Def. 3.15], there are
only finitely many combinatorial types of liftings of such a family to a punctured
log curve of type 5. This is essentially identical to the proof of | , Thm.
3.8], However, there are two small points of difference. First, in following the
argument of [ , Thm. 3.8], we must fix the u,’s, as the positivity argument
to obtain boundedness for any choice of u,’s does not apply, as the u, need not be
positive. Thus we must use the fact, shown in Proposition 2.46, that a connected
contact order only has a finite number of irreducible components to obtain a finite
number of possible choices for u, for each p € p for the given family of ordinary
stable maps. 'y

3.3. Valuative criterion. We now show stable reduction for basic stable punc-
tured maps, which allows us to conclude properness of the moduli spaces of such
maps. Recall that for a given class § = (g, u, A) of stable punctured maps to
X — B, we have the class 8 = (g, k, A) for usual stable maps to X — B by
removing contact orders. We will show that

Theorem 3.12. The tautological morphism removing all logarithmic structures
AM(X|B,B) = M (X/B, )
satisfies the weak valuative criterion for properness.

Proof. In what follows, we assume given R a discrete valuation ring over B with
maximal ideal m, residue field k = R/m, and fraction field K. Suppose we have
a commutative square of solid arrows of the underlying stacks:

Spec K —— #(X/B, )

-~
-
//

Spec R —— M (X /B, B).

We want to show that possibly after replacing K with a finite extension K and R

by an appropriate discrete valuation ring in K, there is a dashed arrow marking

the above diagram commutative, and is unique up to a unique isomorphism.
The top arrow of the above diagram yields a stable punctured map

(rg : Cx — Spec(Qx — K), Pk, fx)

over the logarithmic point Spec(Qx — K). The bottom arrow of the above
diagram yields a usual stable map (C'/Spec R, p, f) with its generic fiber given

by the underlying stable map of fx. To construct the dashed arrow, it suffices
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to extend the stable punctured map fx across the closed point 0 € Spec R with
the given underlying stable map f. The task is to then extend the logarithmic
structures and morphisms thereof. The proof is almost identical to that of | 1,
Theorem 4.1. Since that proof is quite long, we only note the salient differences.

Section 4.1 of | ] accomplishes this extension at the level of ghost sheaves;
in particular, | |, Proposition 4.3, which states that the type of the central
fibre is uniquely determined by the type of the generic fibre, carries through with
u, for a puncture p determined as for marked points. Indeed, if p is a punctured
point on C, in the closure of the punctured point px on Cj, then we must have
u, being the composition

(3.5) P,— P, 517,

where the first map is the generization map (f*Mx), — (f"Mx)p,. In particu-
lar, the contact orders u, and u,, are contained in the same connected component
specified in 5.

By Definition 2.14 and Section 2.2, the type of the central fibre then determines
the extension Mgo of M(;% and a map f* : S *Mx — Mcgo extending the
corresponding map on the generic fibre. Here Mo is defined at punctures via
Corollary 2.6.

Next, | |, §4.2 shows that the logarithmic structure on the base Spec R is
uniquely defined. In this argument, marked points play no role, and the argu-
ment remains unchanged in the punctured case. In particular, this produces a
unique choice of logarithmic structure Mgz on Spec R, which in addition comes
with a morphism of logarithmic structures M% — Mp where MY is the basic
logarithmic structure (pulled back from the moduli space of pre-stable curves
M with its basic logarithmic structure, see | |, Appendix A) associated
to the family C' — Spec R. In particular, one obtains a logarithmic structure
(C,Mp) = (Spec R, MR) X (spec rm2,) (C, M), where Mg is the logarithmic
structure pulled back from the basic logarithmic structure of the universal curve
over .# (X /B, B). The logarithmic structure My, then has logarithmic marked
points along the punctures p, but there is a sub-logarithmic structure M¢c C Mg,
which only differs in that the punctures are no longer marked.

By Corollary 2.6, there is a natural inclusion Mgo C (M’C)gp. We form
Mo = Mo X (R, e (M7)eP.  We then define a structure homomorphsim
ace 1 Meo — Og by ace|pm, = acr and ags(Mee ~ M) = 0. To show
that this is a homomorphism, it is enough to show that if s € M¢o, \ My,
writing s = (s1,$2) as a stalk of Mg Dox PP, then ac(s;) = 0. But nec-

essarily (51,5;) = f°(m) for some m € P, with u,(m) < 0. Write for points
z,2' € C with x in the closure of 2’ the generization map x, ., : P» — Py.
Then uy, (Xprp(Mm)) = uy(m) by (3.5). Thus u,, (Xpep(m)) < 0 and necessar-
ily acy (s1]oi) = 0. But since C' is reduced and Cf is dense in C, this implies
ac(sy) =0, as desired. Thus we have a punctured log scheme C°.
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We can now extend f : frMx — Mo to ' f*Mx — Mco as in §4.3 of
[GS13]. ®

4. THE PERFECT OBSTRUCTION THEORY

Throughout this section, we fix a log smooth morphism X — B with My
Zariski and n € N. As in §3.1.2, X — B factors over its relative Artin fan
X = Ax x4, B. Denote by #,(X/B) and by M, (X /B) the stacks of n-
punctured maps to X — B and to X — B, respectively. In §§4.1 and 4.2,
we construct two perfect relative obstruction theories, in the sense of | ,
Def. 4.4], one for #,(X/B) — 9M,(X/B) and one for a related morphism
My (X/B) — MY (X /B), where the latter space incorporates data of maps to
X at a set of special points on the domain curve, see (4.12). Working over
M (X /B) is crucial for understanding gluing at a virtual level in §5.2.4.

Finally in §4.3, we explore the local structure of 9, (X /B) and in turn the
local structure of M (X /B), the latter being smooth over 9, (X /B). This is
done by studying the forgetful morphism 9, (X /B) — M x B, where M is the
Artin stack of prestable basic log curves. In the case that there are no punctures,
that is, all points are marked, then in fact this morphism is log smooth, as was
shown in | . Now, however, the morphism is only idealized log smooth,
with the idealized structure given by the puncturing log ideal. This tells us that
smooth locally 9,,(X /B) looks like a closed subscheme of a toric variety defined
by the puncturing ideal. We give examples showing that 91, (X /B) need not be
pure dimensional. Thus the relative obstruction theorydoes not in general define
a virtual fundamental class on ., (X/B), but rather a virtual pullback map

AN, (X/B)) = Au(Mn(X/ B))
via | -

4.1. Obstruction theories for logarithmic maps from pairs. All cases of
interest fit into the following general setup. Let S be a log stack over B and
assume we are given a proper and representable morphism of fine log stacks

Y — S,

with underlying map of ordinary stacks ¥ — S flat and relatively Gorenstein.
The fibres of this morphism serve as domains for a space of logarithmic maps. In
the application, Y is either the universal curve over S = 9, (X /B) or a union
of sections in this universal curve with induced log structure. To avoid adjusting
for shifts of dimension in the formulas, we denote by w, the relative dualizing
complex of a relatively Gorenstein morphism 7, that is, the complex with the
invertible relative dualizing sheaf shifted to the left by the relative dimension. As
a target, we take a composition of log smooth morphisms of fine log stacks

V — W — B.
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We assume further given an S-morphism Y — W defining a commutative square

Y —W

Lo

S——B

Let M be an open algebraic substack of the stack over S with objects over an
affine S-scheme T' commutative diagrams

I,
G

S——B

l

l
m

where the square formed by Y7, T, S and Y is cartesian. Thus we are interested
in lifting the map ¥ — W to V fibrewise relative S.* We endow M with the
log structure making the morphism M — S strict. The pull-back of Y to M
defines the universal domain 7 : Y, — M. We have the following 2-commutative
diagram of stacks

f

~L

e

—
—
Functoriality of log cotangent complexes | , 1.1(iv)] yields the morphism

(4.3) [*Quw = Lf*Lyyw — Ly,, )y = 7" Lays.

The equality on the left holds by [ , 1.1 (iii)] since V' — W is log smooth,
while the equality on the right follows since Lys/s = Ly /s and Ly, )y = Ly, /vy by
strictness of M — S | , 1.1(ii)] and then using compatibility of the ordinary
cotangent complexes with flat pull-back by 7*.

Since Y — S is relatively Gorenstein by assumption, so is Y ,;, — M and
we have a natural isomorphism of exact functors 7' = 7* ® w,. Thus (4.3)

“In the application, M is the stack of punctured maps of interest, S is a stack of punctured
maps to the relative Artin fan X of X — B and V — W — B is the composition X — X — B.
Thus our deformation theory fixes both the domain of the punctured map to X and the map
to the relative Artin fan X. In this case, V' — W is strict and we could indeed work with
ordinary cotangent complexes throughout, but for possible other applications we do not make
this assumption.
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is equivalent to a morphism f*Qy/w ® wy — W!LM/S, which by adjunction is
equivalent to a morphism

with E = Rm.(f*Qv/w ® wr). The most transparent proof that ® is a perfect
obstruction theory for M over S is based on the fact that the construction of ® is
functorial. For lack of reference we provide a proof for this well-known property
in the following lemma. If T"— M is any map, denote by

(I)T . ET — LT/S
the morphism in (4.4) constructed from (4.1) instead of (4.2).
Lemma 4.1. The construction of ® in (4.4) is functorial in the following sense:

Let T — M be a morphism of stacks. Denoting T — M the associated strict
morphism of log stacks, we obtain the commutative diagram

fr

T,

Yr Y,

—

I
Nl

with the two squares of domains cartesian. Then we have a commutative square

Lh'E —2% Lh* Ly s

b, ]

T

Er —— Lyys,

with left-hand vertical arrow a natural isomorphism and the right-hand vertical
arrow defined by functoriality of cotangent complezes.

Proof. Naturality of the base change map [ , Rem. 07A7] applied to f*Qy/w®
wr — Ly, /vy @ wy together with f o h = fr and h*'w, = wy,, leads to the
commutative square

Lh*RTF*(f*QV/W ® Wr) — Lh*RT(*(LYM/Y ® wr)

| N
RWT*(f;QV/W ® wﬂ'*r) — RWT*(Lh*}LYM/Y & WWT)-

Now Ly,, /v =~ m*Lyys, as remarked after (4.3), and hence the adjunction counit
R, — 1 applied in the construction of ® in (4.4) is given by the projection
formula followed by the trace isomorphism,

R?T*(W*LM/S ® wﬂ) i) ]LM/S ® R?T*((UW) M ]LM/S
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Thus the upper horizontal sequence composed with Lh* of this adjunction counit
isomorphism yields Lh*®.

Similarly, extending the lower horizontal arrow by the map induced by functo-
riality of cotangent complexes,

Lil*}LyM/y — LYT/Y = W;LT/S-

composed with the adjunction counit isomorphism R7p, (77 Lr/s ® way) =~ Lpys
for mp retrieves the definition of ®r. By compatibility of both the projection
formula | ., Lem. 0B6B| and the trace morphism | , Lem. 0E6C] with
base change, the induced map Lh*ILy;/s — LL7/s agrees with the map defined by
functoriality of cotangent complexes. This establishes the claimed commutative
diagram.

The claim on J follows from the general base change statement | , Lem. 0A1K]
applied to 7 : Ypy — M, with f*Qyy for the object in Dgoon(Oy,,) and with w,
as complex of m-flat quasi-coherent sheaves. [

Proposition 4.2. The morphism ® : E — Lyys constructed in (4.4) is an

obstruction theory for M — S in the sense of | , Def. 4.4].

Proof. We check the obstruction-theoretic criterion | , Thm. 4.5.3], applied
in the setting relative to .S, similarly to ordinary logarithmic maps carried out in
[ , Prop, 5.1].

Assume given a morphism h : T — M, a square zero extension 7' — T with
ideal sheaf J and a morphism T — S, with log structures turning all three
morphisms strict. This situation leads to the following commutative diagram:

fr
L ;V/
|
T M
+ .
T S B.

All sides of the cube on the left are cartesian, but not in general the bottom and
top faces.

The obstruction class w(h) € Ext'(Lh*Lyys,J) for extending h to a map
T — M is the composition

Lh*Lyys — Ly — m>lpyp = J[1]

with the first arrow defined by functoriality of the cotangent complex, see | ,
Prop. 2.24] with Xo =T, X =T, Yy =Y = M and Zy = Z = S. Because
all morphisms are strict we can use the log cotangent complex in this definition

(01505, 1.1(i1)].
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Now ®*w(h) is the composition of this morphism with Lh*® : Lh*E — Lh*LLy/s.
By functoriality of our obstruction theory (Lemma 4.1), this composition also has
the factorization

X @
Er = Rrr. (f7Qvw @ wey) — Lyys — T>1Llpz = J1],
which by adjunction is equivalent to the composition
f;Qv/W ® Wrp — LYT/Y (029 Wrp — TZ—lﬂ-!T]L’T/T = W;j[l] X Wy

Up to tensoring with w,,. this is the obstruction class for extending f7 : Yy — V
to Y7, as a morphism over W. By our assumption on the objects of M, this
extension exists if and only if T — M extends to 7. This shows the part of the
criterion concerning the obstruction.

A similar argument shows that once w(h) = 0 the space of extensions form a
torsor under Ext®(Lh*LLy, /s, J ), showing the second part of the criterion. [

After this recapitulation of obstruction theories for logarithmic maps with
proper and relatively Gorenstein domains, we are now in position to bring in
point conditions. Abstractly we consider a composition of proper, representable
morphisms of fine log stacks

(4.5) 7 Y — S,

with maps of schemes underlying Z — S and Y — S flat and relatively Goren-
stein as before. Note that while : may not be flat and hence cannot be considered
relatively Gorenstein following the usual convention, one can still define a relative
dualizing sheaf

(4.6) W, = wz/s ® L*wgi/s.

fulfilling relative duality, hence defining a right-adjoint functor ¢' to Ri,. This
works as in the case of smooth morphisms discussed e.g. in | , §3.4].

We now have another algebraic stack N over S with objects given by diagrams
as in (4.1) with Y replaced by Z. We assume that composition with ¢ : Z — Y
defines a morphism of stacks

(4.7) e: M — N.

As in (4.4) we now obtain two obstruction theories, one for M — S, the other
for N — 5,

(4.8) O:E— Lys, V:F— Lys.

In our application, ¥ — S is some universal curve and Z — Y a strict closed
embedding with morphism to S scheme-theoretically étale. In this case, ¥ is a
trivial obstruction theory for a number of points in V/W and in particular, étale
locally F can be taken as the direct sum of the pull-back of Qv by scheme-
theoretic maps from N to V.
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Proposition 4.3. The two obstruction theories ® and ¥ in (4.8) fit into a com-
mutative square

Le'F Y% LetLys

l |

E —— Lys,
with the right-hand vertical morphism given by functoriality of the cotangent com-
plex.

Proof. Consider the following commutative diagram with the left four squares
cartesian.

The left column is the given morphism (4.5) of domains, the lower horizontal row
contains the restriction morphism ¢ from (4.7) and the morphism to the base
S, while f: Yy — V and g : Zy — V are the respective universal morphisms
defined on the universal domains Yy — M and Zy — N.

The obstruction theory ¥ in (4.8) was defined by applying Rp.(. ® w,) to
g Qvyw — Ly, 2z = p*Linys. By functoriality of obstruction theories (Lemma 4.1),
the pull-back Le* WV is similarly obtained by applying Rpas, (- ® wp,,) to

(49) h*Qv/W — Lé*LZN/Z = Lé*p*LN/s = p}kwLé?*]LN/s,

followed by the adjunction counit Rpy,ph, — 1 using py, = pi; @ wy,,. Now
consider the composition of the morphism in (4.9) with p}, of the functoriality
morphism Le*LLy/s — Ly s and take the tensor product with w,,, to obtain

(4.10) h*Qv/W Q Wpy — p}‘wLeE*ILN/S Q Wpy — p!MLM/S-

Adjunction turns this sequence into the composition of the upper horizontal and
right vertical arrows of the commutative square in the assertion:

(411) Le*F = RpM*(h*Qv/W X pr) Lei)ll Lé?*]LN/S — ]LM/S

On the other hand, observing h = fouyr, wy,, = th;w,Qw,,, and iy, = L}, Q@w,,,,
we can rewrite domain and image of the morphism in (4.10) as

h*Qv/W X Wpy = L*Mf*QV/W X L*Mwﬂ X Wiy = L']\/[(f*QV/W ® wﬂ)
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and

PrLlnrs = PiLls @ wpy, = thy (T Lagys ® wy),
respectively. The adjunction counit Riy,th, — id applied to (4.10) thus produces
the commutative diagram

RLM*(h*QV/W ®pr) B RLM*(p!MLM/S)

| H

Ruarthy (f*Qvyw ® wy) Runrathy (m*Lpyys ® wy)
I*Qvyw @ wy — T L/s ® wr.

The claimed morphism of obstruction theories now follows by (4.11) from the
result of applying Rm, to the outer square of this diagram, observing Rpy;, =
Rm.Ruy,. [

4.2. Obstruction theories with point conditions. We are now in position
to define obstruction theories for moduli spaces of stable logarithmic maps with
prescribed point conditions. Recall the log smooth morphism X — B and its
factorization over the relative Artin fan X — B from the beginning of this section.
We want to work relative a stack S of stable punctured maps to X'/B. Adopting
the notation used otherwise in the paper we now write 9 instead of S for the
algebraic stack of domains together with the tuple of points to impose point
conditions at. For example, 9t could be M(X /B, 3) as introduced in Lemma 3.6
or a similar moduli space of nodal curves with nodes labelled in addition to
punctured points. Then Y — S = 9 is the universal curve, Z — Y a union of
sections, one for each point condition, which we assume to be ordered, and we

have a universal diagram
Yy — X

]

m —— B.
As our target we now take the composition

X — X — B.

Note that X — B is log étale and X — X is strict and log smooth. Hence
X — X is smooth as a morphism of schemes and we have a sequence of canonical
isomorphisms
Lx/p = Qx/p = Qx/x = Qx/ax = Lix/x.

For easier reference later on we also write .Z instead of M for the algebraic stack
of punctured maps to be considered.

For the moduli space N of point conditions we take the space of factorizations
of the composition Z — Y — X via X — X. Thinking of these factorizations as
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providing evaluation maps 9 — X at the marked points given by the sections
Z of Y — S, we denote the stack of such factorizations by 91°V. This stack is
algebraic by the fibre product description

(4.12) MY = M Xy xprx (X xp... x5 X).

Here the map 9 — X xp ... xp X is defined by composing the sections 9t —
MM — Z with the composition Z — Y — X in the given order of the marked
points.

With this notation, the composition M — N — S considered in the proof of
Proposition 4.3 reads

M MY — M.

In §4.1 we recalled the construction of obstruction theories for .# /9% and for
M /M, which in the situation at hand are perfect of amplitude contained in
[—1,0], and showed their compatibility (Proposition 4.3). As in | , Con-
str. 3.13], this situation provides perfect obstruction theories for .Z /9 by
completing the compatibility diagram in Proposition 4.3 to a morphism of dis-
tinguished triangles:

(4.13) Le'F E G Le*F[1]
|
|

LD l

Léf*]Lgmcv/gﬁ — L//[/gﬁ — }L////gmcv — LE*Lgmcv/gm[l]

Note that while the isomorphism class of G is unique, the dashed arrow is not, so
this recipe potentially provides several different obstruction theories for . /9.
Uniqueness holds, however, for the induced obstruction theories in the sense of
Wise | |, and hence we can ignore this subtlety in the following.

For being explicit and for later use we now work out G. For simplicity of
notation write C' — .# for the pull-back Y , of the universal curve ¥ — N
to ., while in disagreement with the general discussion write ¢ : Z — C' for
the closed subscheme of special points rather than Zs. Since Z — Y is the
inclusion of a union of sections of the family of nodal curves Y — 91, we can
write Z = Z' 11 Z” with Z" contained in the critical locus of C' — .# and Z’
disjoint from it. Recall also from the setup that each connected component of Z
maps isomorphically to a connected component of .#. Denote by r : C' — C the
partial normalization of C that normalizes C' along Z”, but otherwise leaves C
untouched. Write 7 = 7ok :C = .4, f=for:C — X and Z = k 1(Z).

Lemma 4.4. For the tangent-obstruction bundle in (4.13) it holds
G ~ Rﬂ'* (f*Qx/B ®l‘€*(w7~r(2))) ~ R7~T* (f*Qx/B ®w7}(2)) ~ (Rﬁ'*‘f*@x/B(—Z))v

Moreover, G is perfect of amplitude [—1,0].
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Proof. The second isomorphism follows by the projection formula, the third iso-
morphism by relative duality.

For the first isomorphism we start with the following exact sequence of com-
plexes, all concentrated in degree —1:

(4.14) 0 — wy — Ky (wW(Z)) — 1,0z[1] — 0.

On the complement of the nodal locus Z”, this sequence is defined by
0 — wr — we(Z') — wr Qo t:Oz(Z") — 0

by means of the canonical isomorphism
Wr Qo t:Oz(Z") = 1.1 wr ®o,, W) ~ 1,0z[1]

coming from the definition of w, in (4.6), with the first equality arising from the
projection formula and the fact that t*w;, /s = Oz (7). Explicitly, the homomor-
phism w,(Z’) — Oz/[1] takes the residue along Z’. Near the nodal locus, (4.14)
is defined by

0 — wy AN Ko (wW(Z)) — 1,Ozn[1] — 0.

To obtain this sequence, recall that étale locally wy = Qcyo[1] with Qc/on the
sheaf of relative logarithmic differentials for C'/91, while wz = Qg on[1] With Qp oy
the sheaf of relative ordinary differentials for C /9. In fibrewise coordinates z, w
for the two branches of C' along Z” on an étale neighbourhood, €2c o is locally
generated by 2z 'dz = —w~'dw, hence pulls back to ordinary differentials with
simple poles along x~'(Z"”) C Z. The map to Oy takes the difference of the
residues of such rational differential forms on C' along the two preimages of the
nodal locus.” This establishes sequence (4.14).

Now apply Rm, to (4.14) tensored with f*Qx/p, and observe w,, ~ Oy since
Z — M is étale, to obtain the claimed distinguished triangle

E G Le*F[1]

| | |

R (f*Qx/p ®wr) — Rr(f*Qx/p ® 5wz (2))) —— poa (0" Qxyp)[1]

Taking cohomologies, this diagram also shows the statement about the amplitude

of G. A

5Note that this map depends on an order of the two branches along each connected component
of Z". This local ambiguity of sign is irrelevant for our purposes.
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4.3. Idealized smoothness for MM(X/B) — M x B. Denote by M the moduli
stack of pre-stable curves over the ground field k with any number of marked
points or genus, along with its basic log structure. See | , Appendix A] for
details. There is a natural forgetful morphism

(4.15) MAX/B)— M x B
which remembers only the domain curve as a family of marked curves over B.

Theorem 4.5. If M x B is given the idealized structure with ideal sheaf the empty
set, then the forgetful morphism (4.15) is idealized log étale.’

Proof. We use short-hand 9t := 9(X/B). According to the definition of ideal-
ized log étale, it is sufficient to consider a diagram of solid arrows

(4.16) Ty —=— M

| .|

T/ﬁMxB

where Ty — T is an idealized strict closed embedding defined by a square-zero
ideal J over T'. We wish to show that there is a unique dashed arrow making the
above diagram commutative.

Let Kz, € My, K C My be the ideals of the idealized log structure on Tj
and 7. By strictness, Kp pulls-back to the ideal K7,. Let K be the puncturing
log ideal on M. Necessarily ¢3(K) C Kr,.

Denote by fr, : Cp, — X the punctured map over T corresponding to the
morphism go. Let Cr, — Tp be the family of log curves underlying C7, — Tp.
The morphism T — M x B also induces a family C7 — T of log curves such that
CT X7 TQ = CTO-

We then lift C7 to a punctured curve over T lifting C7, as follows. Consider
the Cartesian diagram

(4.17) M —— Mg

| T

gp gp
Mg, — MCTO

where the two vertical arrows are inclusion of sheaves of monoids. We next show

that M’ is a puncturing along markings in p.

Indeed, as Ty — T is a square-zero extension, the induced morphism ./\/lgcl'; —
w5 . . . / A A
Mg, is an isomorphism. Observe that Op, C M', and write M := M /OE,...

. .= -— . . .
Then the induced morphism M — Mce is also an isomorphism. Now the
0
inclusion M¢,, — Mg implies an inclusion Mc, < M/’ and the isomorphism
0
T ,
(MC'%OHC'TO\I) = MCTO|CTO\I) implies M |CT\p = MCT|CT\P'

For the definition of idealized log étale, see | , IV §3.1].
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We then check that the structure morphism M, — Or extends to oy :
M — Op. Let O‘M’|MCT = M, Let e be a local section of M’ around a
puncture p € p which is not contained in M. Then its image € in M = WC%O is
not contained in MCTO‘ By Corollary 2.6, the section € is of the form e = a+ f;"po (6)
for some local section a € MCTO and 0 € f7 My such that u,(d) < 0. By (2.11),
J3(8) = b+ u,(6)z, for some b € ¢°K C Ky, and 7, € MCTO corresponding
to the local coordinate of the puncture p. As the morphism Kr — Kg, is an
isomorphism, we see that any lift b € My of b is contained in K7 whose image in
Or is zero. We thus define apy(e) = 0. This makes C° := (Cp, M’) a punctured
curve over 1" extending C7, — T.

Consider the commutative diagram of solid arrows

. Imo
To X

A
v
l//le

Cy; — B

To construct the unique dashed arrow in (4.17), it remains to construct a unique
dashed arrow fr lifting fr,. Since X — B is log étale, by the infinitesimal lifting
property of log étale morphisms, such fr exists and is unique. This completes
the proof. 'y

Remark 4.6. Of course M x B is log smooth over B. Thus Theorem 4.5 implies
that M(X'/B) is idealized log smooth over B. This implies by | ], IV Vari-
ant 3.3.5, that locally in the smooth topology, the morphism 9MM(X/B) — B is
modelled on a morphism of the form Speck[Q]/K — Speck[R]. Here B locally
has a chart given by a morphism to Speck[R]. In particular, if B = Speck, we
may take R = 0, in which case a smooth neighbourhood of a point z of M(X/B)
is smooth over Speck[Q]/K, where @ is the basic monoid at z and K C @ is
the puncturing ideal. Thus the puncturing ideal gives a key local description for
M(X/B).

Example 4.7. Take B = Speck, and consider X a smooth surface with log
structure coming from a smooth rational curve D C X with D? = 2. Consider a
type of punctured curve of genus 0, underlying curve class [D], and four punctures,
P1, - .., P4, With contact orders —1, —1, 2 and 2 respectively. Consider a punctured
curve f : C° — X where C' = C; U CyUC(C}5 has three irreducible components and
two nodes ¢ = C1 N Cy, g = C1 N C3. We have p1,p3 € Cy, po, ps € C3. Finally,
f identifies C; with D and contracts Cy and C5. It is not difficult to check such
a curve exists with Ug, = Ugy = 1.

The corresponding tropical curve I' has three vertices, vy, vo, vs, edges Ey,, Ey,,
and legs £, , ..., E,,. The moduli space of tropical curves of this combinatorial
type is R%O, with coordinates p, /1, {5, where p gives the distance of the image of

vy from the origin of ¥(X) = Rs¢, and 1, {5 give the length of the edges E,,, E,,.
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In particular, the basic monoid for this punctured log curve is Q = N2, generated
by PO, gl, 62.

In this case we may easily calculate the puncturing ideal. We have contributions
from each of the two punctures. Using the definition (2.11), we note that at
the puncture p;, © = 1 or 2, the map ¢z 0 Xyp, : P, = N — @ is dual to
evi: Qf — (Py,)Y = Rx¢ evaluating the tropical curve parameterized by a point
at Qp at v;, see Proposition 2.52. Thus for m € Qy, evi(m) = p(m) + £;(m).
Dually @5 0 xpp : P — Q is given by 1 — p+(;. As u, (1) = =1, i = 1,2,
we see the puncturing ideal K is generated by p + (1, p + €y, Writing k[Q] =
k[z,y, z], with the three variables corresponding to p, {1, {5 respectively, we see
Speck[Q]/K = Speck|[z,y, z]/(xzy, xz), which has two irreducible components of
differing dimension.

To understand why it is natural to have two irreducible components, let us
assume that D can be deformed inside X to a curve transversal to D. We then
have two ways to deform the map f. By smoothing one or both of the nodes, we
obtain a (partial) smoothing of the domain, with at least one pair p;, p3 or pa, py
now being distinct points on the component of the domain mapping surjectively
to D. Since this component now contains a negative contact order point, its
image cannot be deformed away from D by Remark 2.19.

On the other hand, if one keeps the domain of f fixed, one may deform the
image of Cy away from D, so that it meets D transversally in two points (provided
the geometry of X allows this). The remaining components Cy and C3 are then
contracted to the points of intersection of f(Cy) with D. It is then no longer
possible to smooth the nodes.

The point of the puncturing ideal is that it captures these intrinsic singularities
of the moduli space: the example given above may well be unobstructed.

5. SPLITTING AND GLUING

5.1. Splitting punctured log maps. The origin of the notion of puncturing
arises from the fact that a stable log map, split at a node, can no longer be viewed
as a stable log map. Thus punctured maps are the correct category in which to
work.

Definition 5.1. Suppose given a family of punctured curves © : C° — W. A
nodal section q : W — C of 7 is a section with image a node, so that étale locally
near the image of ¢, C takes the form Spec Oy [z, y]/(zy). The normalization of
C at q is a morphism v : C — C which is an isomorphism away from ¢(W) and
is given étale locally at the image of ¢ by

Spec Ow [z] 11 Spec Oy [y] — Spec Ow [z, y]/(xy).

Note that v~ (q(W)) — q(W) is an étale double cover, and we say that the node
q is of splitting type if v (¢(W)) = q(W) IT g(W).
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Proposition 5.2. Let (C'— W, p) be a family of punctured curves equipped with
nodal sections qi, . .., q, of splitting type. Let v : Q — C be the normalization of
C at the nodes qu, . .., qn. Setting Mg, = v*Mce, we obtain a family of (possibly
disconnected) punctured curves

(CO — W7p7p117p127"'7pn17pn2)7
with vop;; =¢q for1 <i<mn.

Proof. For each nodal section g;, we have distinct sections p;1, pi : W — Q with
vop;; = ¢;. To show that C° > Wisa punctured curve with the given punctures,
we first note that this is obvious away from the images of the p;; in C.

At an image of p;;, note that étale locally along the node ¢;, M¢e- is generated
by m*Mw, s, and s,, where s;,s, are local sections of M¢e near the node
induced by the coordinates z,y. These are subject to the relation s,s, = s, for
some section sp of m* My, and hence 7* My, s, locally generate MZ. as a group,
with s, = s,s, . Pulling back to C’ along the branch x = 0, (with y = 0 giving
the image of the section p;;), we have (V*Meo)®P locally generated by m* My,
and v*s,. Further, v*s, is also a section of P, the divisorial log structure given
by pij, and the image of v*s, in P generates P as a monoid. Thus locally near
Pijs

™ My EBOg P Cv'Mee Cm* My @Og Pep.

Further, any element of v* Mo not contained in 7* My, EBOX P can be written in

b

the form s%s ySW with @ > 0, b > 0 and sy a section of W*MW Since a(sx) =0

when x = 0, we see that a applied to any such element is zero. Thus Cis a
punctured curve at p;;. [

Proposition 5.3. Let (C — W p, f : C° — X) be a pre-stable punctured map
equipped with nodal sections qi,...,q, of splitting type. Let v : C — C be the
normalization of C at the nodes q1,...,q,. Then there is an induced pre-stable
punctured log map (with possibly disconnected domain)

(60 — I/Vapapllapl% <+ 3y Pnl,Pn2, f)a

and v o p;; = ¢ for 1 < i < n. Further, there is a canonical isomorphism

M, = (V" Mco)®. If f is stable, so is f.

Proof. We first . apply Proposition 5.2 to split the domain; we obtain a strict
morphism v . C° — (C° which we may compose with f to obtain f : c° = X.
This may not be pre-stable in the sense of Definition 2.14, but we can replace
Mgz, with a smaller log structure with the same group using Proposition 2.4 and
obtain a pre-stable morphism. '

5.2. Gluing punctured log maps.
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5.2.1. The general setup. We now want to reverse the procedure described in §5.1.
To do so, we fix a target space X. For the purposes of this discussion, X will
be a Zariski log scheme. However, all statements go through mutatis mutandis
when X is replaced by a Zariski Artin fan X = Ay, or, in the case of a family
of targets X — B, by X = Ax X 4, B, where Ay is the relative Artin fan of X
over B.

For this discussion, we fix a combinatorial type of a gluing situation:

Definition 5.4. A combinatorial type of a gluing situation is a tuple (G, g, u, A),
where

(1) G is a connected graph, with a set of vertices V(G), a set of edges E(G),
and a set of legs L(G).

(2) g: V(G) — N assigns a genus to each vertex of G;

(3) A:V(G) — Hy(X) assigns an underlying curve class to each vertex.

(4) wu assigns to each flag v € E € E(G) U L(G) a connected component of
contact orders u, g. We require that if £ € E(G) with vertices v, v, then
Uy, 5 and u, g are opposite contact orders in the sense of Definition 2.47.

Note that given a combinatorial type of gluing situation, associated to each
vertex v we have a class of stable punctured curve 8(v). This includes the under-
lying curve class A(v), the genus g(v), and the collection of contact orders u, g
for each flag v € E € E(G) U L(G).

In such a situation, we can define a glued class of stable punctured curve 3%
whose underlying curve class is A = 7 ) A(v), underlying genus is g =
bi(G) + > ,cc8(v), and with one puncture for each £ € L(G), with contact
order u, g.

Definition 5.5. Given a combinatorial type of a gluing situation, we define a
gluing situation to be the additional data of fs log schemes or fs log algebraic
stacks W, for v € V(G) equipped with morphisms W, — .Z(X/B,3(v)) (or
M(X,B(v)) or other variants as appropriate). In particular, we are given a
family of punctured maps

(my : Cy = Wy, po ={pve|ve Ee E(G)ULG)}, f,: C) — X)
over B.

In what follows, the parameter spaces W, can be taken to be fs log schemes
or fs log algebraic stacks, but to simplify the language here, we will stick to
the category of log schemes. The statements are true mutatis mutandis in the
category of fs log stacks.

Definition 5.6. Given a gluing situation as above, we define the stack of gluings
to be the category fibred over Logg, whose objects consist of log schemes T
defined over B along with the following data:
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(1) A morphism T — .#(X/B, 3*) inducing a punctured map
(rp: Cr = T,p={pue|ve EeL(G)}, fr:C; — X)

over B. We are also given nodal sections of splitting type ¢g : T — Cp
indexed by £ € E(G).

(2) For each vertex v € E(G) a morphism ¢, 7 : T' — W,,, yielding a pull-back
punctured map f, 1 : Cyr — X.

(3) Let fT : 5% — X denote the splitting of f7 along the nodes qg, in the sense
of Proposition 5.3. Then we are also given an isomorphism of punctured
maps

(Fr: o= X)= ([ fur - H or— X)
veV (G
compatible with an isomorphism

QT = H QU,T /<pU17E = pv27E>-

veV(Q)

where we range over all edges F with endpoints vy, vo. Under this isomor-
phism, the nodal section g has image p,, g = Dy, for vy, vs the endpoints
of E.

Morphisms in the category of gluings are given by strict morphisms 7} — 15 over
B with isomorphisms of the data over T} with the pull-back of the data over T5.

We will show that the stack of gluings is represented by a log algebraic stack
w.

In the special case that the given morphism W, — .#(X/B, 3(v)) is the iden-
tity, we write the stack of gluings as .Z%(X/B, G, 3).

Proposition 5.7. The log stack .#%(X/B,G,3) is algebraic, and the canonical
morphism .#¢(X/B,G,8) — .#(X/B, 3%) is finite, representable and strict.

Proof. Denoting as usual by M, ,, the stack of pre-stable logarithmic curves of
genus g and n marked points, with its basic log structure, we write
Me' = M
o VeV (G)

Me(w)n(v)>

where n(v) is the valency of the vertex v. There is an obvious gluing map
g M M,

where g is the genus of 3% and n = #L(G). This gluing map identifies the marked
point p, g with p, g, whenever v,v" are the two vertices of an edge E € E(G).
We then give M8 the pull-back log structure, yielding a strict morphism gl. Note
that gl is finite and representable. Further, the pull-back of the universal curve
Ce! — M¢# comes with nodal sections ¢z : M® — C# of splitting type, with the
image of ¢p the glued node produced by gluing p, r and py g.
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There is a forgetful morphism .# (X/B, 3%') — M,,,, and consider a morphism
T — #(X/B,B%) xm,, ME.

Giving such a morphism is equivalent to giving the following data:

e A punctured map fr : C% — X as in Definition 5.6, (1).
e For each v € V(G), a family of curves C, 7+ — T which is the pull-back of
the universal curve over Mg, n(v) Via the composed morphism

T — #(X/B,B%) xm,, M& — M8 — Mg()nw),

where the last morphism is projection to Mg,y () at the level of under-
lying stacks. It is defined at the logarithmic level by noting that after
partially normalising the universal curve C# at the nodes ¢z and restrict-
ing to a connected component indexed by v, one obtains a family of curves
of genus g(v) with n(v) marked points over M#', and hence a tautological
morphism Mgl — Mg(v)m(v).

e Let Cr denote the partial normalization of C'r at the nodes qg, viewing
the points of Cr mapping to normalized nodes as marked points. Then
we are given an isomorphism Cr = Hvev(G) Cyr compatible with an
isomorphism

QT = H QU,T /<pv1,E = pU27E>’

veV(Q)

where we range over all edges F with endpoints vy, vs.

By splitting the morphism fr along the nodes of splitting type ¢g, £ € E(G),
one obtains punctured maps f,r : Cpr — X. Now the class of this punctured
map need not be B(v). However, as the class of a punctured map is locally
constant in families, there is an open and closed substack .Z8(X/B,G,3) of
M (X/B, %) xm,,, M# such that if the morphism from 7" factors through this
open and closed substack, f, 7 is of class B(v). In this case the punctured map in-
duces a morphism ¢, 1 : T' — .# (X /B, 3(v)) for each v, and hence we obtain the
data (1)-(3) of Definition 5.6. Thus it is clear that the log stack .#8(X/B, G, 3)
represents the stack of gluings. Further, since M8 — M, ,, is strict, finite, and
representable, the morphism .#¢(X/B,G,8) — .#(X/B,3%) is also strict, fi-
nite and representable. 'y

Proposition 5.8. Suppose given a general gluing situation. Then the stack of
gluings is represented by a log algebraic stack. If each family f,: Co /W, — X is
basic, then so is the universal glued family f : C°/W — X.
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Proof. We consider a Cartesian diagram in the fs log category

W v IL W,

| l

MX]B,G,B) —— T1,# (X, Bv))

Here the lower morphism ¢ = [], v, is given by the universal splitting map. It
is then clear that W represents the stack of gluings of the families parameterized
by the W,,.

In the basic case, the right-hand vertical arrow is strict, and hence so is the
left-hand vertical arrow. Further .#%(X/B,G,B) — .#(X/B, 3%) is strict. This
shows the family of glued punctured maps over W is basic. [ )

There are two significant issues concerning gluing left unresolved in the previous
discussion. The first is that to be useful, one needs to understand how virtual
fundamental classes behave under gluing. The second is that often one needs an
explicit description of glued families, and the previous subsection is only useful
at a theoretical level. We deal with these two issues in the following sub-sections.

5.2.2. Gluing via fibred products. In a slightly more restrictive situation, we can
describe, given a gluing situation, the gluing via a fibre product, in analogy with
the case of ordinary stable maps. Indeed, suppose given a gluing situation, and
suppose we wish to glue the underlying stable maps L} : €, — X. Then there is
a standard Cartesian diagram

(5.1) V—"-—"—ILW,

[eepe X — [ocper) X

where V' parameterizes the glued family of ordinary stable maps to X. Here
ev is the evaluation map, with the component indexed by v € E € E(G) the
composition of the projection [[, W, — W, and the evaluation map f, o p, g :
W, — X of the stable map f, at p, g. The diagonal A is the product of the
diagonal morphisms X — X x X, taking the copy of X indexed by F € E(G) to
the product of copies of X indexed by v; € E, vy € E.

In the case that we are working with a family of targets X — B, the glued
stable map f : C/V — X can be composed with X — B. This composition is
constant on fibres of C' — V as the fibres are connected, since G is assumed to be
connected. Thus we obtain a glued stable map to the family of targets X — B.

Unfortunately, the story is slightly more complex in the logarithmic category.
In particular, we will require:

Assumption 5.9. Suppose given a (logarithmic) gluing situation. Then for every
geometric point w € |V | where V is defined by (5.1) with images w, € W, let f, :
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(C,)w, = X be the induced stable map. We necessarily have f,(pv.r) = fuo(Pv.E)
for v, v" the two vertices of an edge E € E(G). We then assume that the contact
orders uy g : By, , = Z and uy g : P, , — 7 satisfy the relation uy g = —Uy g-

Remark 5.10. The assumption that contact orders be opposite is insufficient in
general to guarantee that the assumption holds. The problem only arises in fairly
unusual situations, such as in the Mobius example of Remark 2.45. By Remark
2.48, the contact order u given in the example is in fact opposite to itself, so if
that contact order is specified in a gluing situation, one might have w, g = u, g
Or Uy g = —U, g depending on the point @ € |V|.

However, if My is generated by global sections, as is currently required (Theo-
rem 3.7) for moduli spaces to be of finite type, then the above assumption always
hold. Indeed, as in the proof of Proposition 2.46, a connected component of con-
tact orders determines a composed morphism v : F(K Myx) = T(Z2,Mz)-5Z,
and if u, u’ are opposite contact orders, then v = —¢’. In particular, in the situ—
ation of Assumption (5. 9) there are then factorizations I'(X, Mx) — P, E—>Z
and ['(X, Mx) — P,, E—>Z of v and v’ respectively, where the first map takes
germs of global sections. Thus u, g = —uy .

We now partially describe the construction of the glued family W. The chief
difficulty is that there do not exist evaluation maps at the log level ev, g : W,, —
X evaluating f, at p,g. To rectify this, let W denote the log scheme with
underlying scheme I, and log structure p, zpMce. Let Ey, ..., E, be the edges
adjacent to v. Then define W, to be the saturation (see | , 11T Prop. 2.1.5))
of the fibre product in the category of fine log schemes

(52) ano = VVUE1 XWy =" XW, WUEn
Note that there are natural composed morphisms

fuopv,E

(5.3) evyp Wv — ano WE X,

which can be viewed as an evaluation map at the puncture p, . This induces,
by ranging over all F containing a given vertex v, a morphism

evy : /V(Z, — HX,
E

where the product is over all edges containing v. Finally, taking the product over
all v gives a morphism

(5.4) H W, — H X.

veV (G vEEEE(G
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We now have a diagram Cartesian in the fs log category

— pr

[eer@ X —Q [Lepere X

The morphism A is the product of the diagonal morphisms X — X x X, taking
the copy of X indexed by E € F(G) to the product of copies of X indexed by
v € K, v e FE.

Before stating the main gluing result, we need the following standard fact:

Proposition 5.11. Let X1, X5 and Y be fs log schemes, p; : X; — Y morphisms,
and W = X xy X5 the product in the category of fs log schemes with projections
W= X, IfoeW, let Q= Mwag, Qi = Mx, @), P =My porw)- Then
Q is the saturated image of Q1 ® Qo in (QFF ® Q5Y)/R, where R is the saturation
of the image of P& — Q ® Q5°, m — (P} (m), —pj(m)).

Proof. By | , Proposition 6.3.5], Q¥ = QY x pv @y . Since @ is a sharp fine
saturated monoid, Q = QVV, and the latter is precisely the stated monoid. [ )

The main gluing result is then:

Theorem 5.12. Given a gluing situation as above satisfying Assumption 5.9,
there is a log scheme W = (W, My) with My, C Mgy, equipped with morphisms
vy W — W, and a universal glued family (7 : C' — W,p, f: C — X).

Proof. Step 1. Gluing ordinary stable maps.

At the level of underlying schemes, ev, g is the composition of the projection
ﬁv — W, and the evaluation map LOpm g. Thus we obtain a canonical morphism
ﬁ — V where V is the ordinary gluing defined in (5.1). Thus we may glue the
underlying stable maps to obtain f : €' — X, with target relative to B if the
original punctured maps are defined relative to B.

Step 2. Construction of My, and the morphisms 1,. Consider the
composed morphisms, for v € F,

WE LW S W, » WE.
By construction, there are canonical inclusions Myy,, P, g C My e where P, g
is the pull-back via p, g of the divisorial log structure (C,, p, z(JV,)). Note that

P,k is the DF(1) log structure associated to the pull-back of the conormal bundle
Dy, E./\fp\f} B(W.)/C ." Thus we obtain morphisms of log structures

(5.6) (¥) Mw, — M.

"Here we mean the log structure with ghost sheaf the constant sheaf N which is the pull-back
of the standard log structure on BG,, via the morphism W, — BG,, given by the line bundle

PNy ww ) c,-
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and
(5.7) (@DE) vE — M.
We obtain for each edge E two log structures on E

Ng C NE = (( v1) PUl,E) @o% (( 5;)*731)27]3)

with the induced inclusion of ghost sheaves being N C N @ N the diagonal. In
particular N is the DF(1) log structure induced by the line bundle

(Por,p o Uh)* A e, @ Pupo o) o, B(W,)/C,, -

We have morphisms of log structures induced by (5.7)

and
(5.9) N — M.

We then define My, C My to be the fine saturated log structure generated by
the images of all the morphisms (5.6), (5.7) and (5.8). Because My, contains the

image of (5.6), the morphism 7, 0¥¥ factors through W =W, giving the desired
morphism v, : W — W,,.

Step 3. Analysis of the monoids.

For future use in the proof, we give a more detailed description of the ghost
sheaves. Let w be a geometric point of W. Write @ and @ for the stalks of MW
and My, at w. We will describe @gp and Q. Let (Tg)per(q) be the image of w
under the projection morphism pr; of (5.5), and (10, )vev (e the image of @ under
the projection morphism pr,. From Proposition 5.11, if w! denotes the image of
w, in W, and Q, = MWM%, then

WU Wy Qgp @ @ Z
E:veE

Finally, for v € E, write Pp = P, p for the stalk of Mx at Zp; note this does not
depend on v. Again from Proposition 5.11 and the diagram (5.5), we can write

-\ @ e @are @ z /v

EcE(G) veV (G veE€E(G

where R is the saturation of the subgroup generated by elements of the form

((0,...,0,=p,0,...,0),(0,...,04(p),...,0),(0,...,up, ,(p),-..,0))

where p € P}, and the non-zero entries lie in the terms Pg°, Q%, and the

v o

copy of Z indexed by v € E respectively. Here ¢, : P, g — @, is induced by
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fo i Mx g, = Mcs p, par) C Qv ® Z followed by the first projection. Note this
is isomorphic to

(@ ore @ 2] /n
veV(G) veE€E(G

where R’ is the saturation of the subgroup generated by elements of the form, for
p € PEP, v1,v9 the two vertices of E,

(( 0,00, (P)s -, =00 (P), 0,0, (. .,O,upv1 (D) —Up,, =(p),0,.. ))

where the non-zero entries lie in Q%P, Q5P,

and the copies of Z indexed by v; €
and vy € E respectively. By Assumption 5.9, —u,, , = = Up, - This implies that

vo, B

R’ is contained in (%P, and we are thus able to describe @) as the saturated image
of D ey (o) @v ®© Ppepe N in

(@ oo @2 e

veV (G EeE(G)

where R” is the saturation of the subgroup generated by elements of the form

(0,00 (), —0u(P) 0, ), (-, 0,1y, 5(p),0,...)).

Here the copy of Z indexed by E in the above description is embedded diagonally
in Z ® Z in the description of (®P, with the two copies of Z indexed by v; € E
and v € F.

Step 4. Construction of the glued log structure on C.

Following the notation of the proof of Proposition 5.7, we glue the domains by
constructing a morphism z : W — Mé#. To do so, we need to be explicit about
the log structure on M&. Recalling that M® = [T, M) n(), Wwrite

(Mgl prod HM (v),n(v) -

Let N7, denote the DF(1) log structure on M# induced by the tensor prod-
uct of conormal bundles N/ 5 (My0yn())/Coy & J\@L’E(Mg(u)’n(v))/cw, where C, —

M (v),n(v) is the universal curve. Then the log structure on M¢! is the fibred sum
(over O%) of Myyea and the N, for E € E(G).
We can now define a log morphism
W — M8
as follows. First, if p, : W, — My nw) is the tautological map induced by
C,/W,, the composed morphisms i, o ¢, : W — My (v),n(v) Yield a morphism
MI W = (MglaMprod)~

Thus it is sufficient to define morphisms of log structures (u')*Nj — My,. But
there is a canonical isomorphism (4/)*N}, — Ng, which combined with the map
(5.8) yields the desired morphism of log structures.
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The universal log curve C& — M?#' can now be pulled back via x to obtain a
log curve 7 : C' — W, with underlying scheme being the glued curve C.

Step 5. Construction of the morphism f: C° — X.

Recall that from Step 1, we already have f : C' — X. We need to lift this to
log schemes.

Denote the nodal sections of C' — W produced by the gluing by qr, E € E(G).
Let CYyw = C) Xw, W, and let v : Q — (' denote the normalization along
the nodal sections ¢z, so that we have a canonical isomorphism C 22 I, Cow-
Denote by C° the log structure on C pulled back via this isomorphism. There is
a morphism f = IL, fow: C° — X, where fow : Cpy — X is induced by f,.

As C ~ Userer@) Po.e(W) = C N\ Ugep@) a2(W), we obtain a puncturing C°
of C at its marked points so that C° NUserer@) Po.e(W) = C°\Upepe) (W)
is strict. Thus f induces a morphism f : C°~ |, qe(W) — X. We only need to
extend this morphism across the nodal sections.

We do this by showing the morphism f : C° — X induces a morphism [ :
(Q, v*Meo) — X and that for each edge F, the restriction of f to the section
Pu,, e (W) is independent of i, for vy, vy the vertices of E.

First note that by Proposition 5.2, Mgépo and (v*M0)8 can be canonically
identified, since Mz, and v*Mgo are both puncturings along the same set of
punctures. Fix F € E(G) with vertices vy, vy € E. Set

W = (W, qzMee) = (W, pj, pv" Mee)
Wt = (W, py pMes )

We still have a canonical identification 3 , : M2, . = M. By the discussion
of the previous paragraph, it is enough to show (1) Z p induces a log morphism
Bop: WE = WYE: (2) fo, w0 Buy.E = fosw © Pu,.z- Thus we only need to show

the following. Consider the diagram of sheaves of monoids on W

ow
(5.10) (fogp)*Mx ———— Myu.e
f52,wl lﬁzl,E
MW’UQ,E Bb Mlg/ll/)'E
vy, B

It is sufficient to show (1) 8 o fy \ has image lying in Myye, and (2) the
diagram (5.10) is commutative.

To do so, note that by the construction of Step 2, N is a sub-log structure of
both My, and N Then

(5.11) Mye = My Sny Ne.

Further, the map (5.9) then induces a homomorphism My s — Mg If this
homomorphism is injective, then to check commutativity of (5.10) we may replace
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M2, with M%WB‘ The injectivity can be checked at the level of stalks of ghost
sheaves, and thus follows from the explicit descriptions of these monoids in Step
3. The commutativity statement (2) then follows from commutativity of the
diagram (5.5), by tracing the effects of the morphisms on the copies of Mx on
HveEeE(G) X indexed by v; € F and v, € E.

To show (1), we can use the commutativity of (2). Let w be a geometric point
of W, and let s be a section of (i o qp)* My defined in a neighbourhood of w.
Let 5 be the induced section of (f o qe) " '*Mx. We have

b % .
oW (io QE) MX — MW”ivE - MW @05‘/ wvlpzipfh

SO a priori we can write ij w(s) = s1 - 59, with s; a section of My and s2 a
section of ¢ PE .

U'u

Now up, ,,up, » € M},ﬂw) are related by up, , = —up, , by Assumption
5.9. Thus wy, ,(5) > 0 for some 4. Then for this i, in fact

So € ’I/J;’PWE - NE - MWE,

the composition of the latter two inclusions being induced by /3’ g Thus 8, EO
v w(s) € Mye. By commutativity of (5.10), the choice of i is irrelevant.
To recap, by construction we have obtained the data (7 : C' — W,p, f : C° —
X) with nodal sections ¢z, morphisms v, : W — W, and an isomorphism of
[oev(q) Cow with the splitting C° of C° along the gg. Thus we have constructed

a glued family in the sense of Definition 5.6.

Step 6. f:(C° — X is a morphism over B.

As the original underlying morphisms f : C, — X were defined over B and
G is connected, in fact f is a family of stable maps defined over B, i.e., there is a
morphism W — B compatible with f. Indeed, this morphism can be taken to be
the composition of X — B with fogg for any gluing node gg, and all these maps
coincide. To see that f is defined over B at the logarithmic level, it is sufficient
to check that the image of Mp in Mo, under the composition C° — X — B is
contained in 7*My,. However, this can be checked after pull-back to 5’, where
the claim holds because each stable map f, w : Cy y, — X is defined over B.

Step 7. Verification of the universal property.

Assume given any glued family over a log scheme T, i.e., a family (Cr —
T,p, fr : Cr — X)), morphisms ¢U r: 1T —W,, and an isomorphism of punctured
maps between the splitting fr : C° — X of frand [[ for: [, C ot — X.

In analogy with W¥#, W¥¥ se

T = (T, qMcs),
TU7E = (vaz,EMCEVT%

YAl E En
T=T 1><T"'><TT '
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where Fy, ..., E, is an enumeration of the edges of G. Note that the underlying
schemes of T and T are the same as the morphisms 7% — T are integral and
saturated, see [ , I Theorem 4.8.14].

Note we have a morphism

E v, F
UE T = TY

which is the identity on underlying schemes. This morphism exists at the log level
as the induced f,rop, g : T"" — X is pre-stable, so we may apply Proposition
2.4.

We also have the following morphisms:

pr, 7 T%F WUE,

prE:f—>TE,

wa =Pry,r OBZE oprg: T — va
eVE7T:fToquprE:T—>X,

where pr,  is induced by the projection Cy — Cy and pry is the projection
onto TF.

We also have a commutative diagram
T
T

where the vertical maps are the canonical ones. Thus the composition T —
WE — W, is independent of the edge E, and we obtain a morphism T — VVﬁnC
Since T is saturated, this morphism factors through the saturation to give

T— W,

(5.12) WE
|
W,

v

—,
—

This in turn gives a morphism
{E/ T — H Ww,.
On the other hand, we have a morphism
evy = HevE,T A HX.
E E
Using (5.5), we can now define a morphism

¢T T—)W

by noting that ev o ibv’ = Aoevy. Indeed, this follows from the equality of the
morphisms evgr = frogpoprg : T — X and f,op, o ¢5T : T — X, which
holds because f, 7 is induced from fr via the splitting of f along the nodes ¢g.
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Finally, we show that @ZT induces a morphism
¢T T —W.

This is done by showing that under @F, My C My is mapped to My C Mz,
which can be checked on the generating set of My,. By commutativity of (5.12),
the image of (5.6) is mapped into My by 2. Further, analogously to (5.11)

Mes = My &1 NE.
where N7, N, L are pull-backs of N, N g under QT, with

NE = (( ﬁ O@ZT)*PM,E) @O% ((@Di O@ZT)*PUZ,E)

Note that IZT is compatible with wg,T and hence JI’T maps the image of (5.7) to
the image of (¢ o @ZT)*PULE in M. This implies that ’Jg« maps Ng C My,
to N € Myp. Thus My, is mapped via J‘C’p into My, as desired, defining the
morphism .

We then have v, 7 = 1, o ¢y, which follows from the equality 1), = 1} o Ur.
By construction, the data of the gluing over T is the pull-back of the universal

gluing over W via ). [

5.2.3. Gluing with evaluation maps. In this subsection we consider a minor vari-
ant of the gluing procedure of the previous subsection. Suppose given a family
of targets X — B with X Zariski. Set X = Ax x4, B with Ax the relative
Artin fan. Suppose also given a gluing situation of punctured log maps to X'/B
satisfying Assumption 5.9. We may glue to obtain a family of maps to X'/ B using
the fibre product description of the previous section, but as we shall see in the
following subsections, often there is a more useful gluing setup.

Let p, be a subset of the punctures of the given type B(v), and assume that
whenever E € E(G) is an edge with vertex v we have p, g € p,. Let p}, C p, be
the subset of punctures corresponding to legs with endpoint v. Let q = {qg | E €
E(G)} be the collection of nodal sections of a curve resulting from gluing the
given data, and let

p= |J p.
)

veV (G

This is a subset of the set of punctures of 3%
We introduce short-hand: for a set p, we write

with a one-to-one correspondence between factors in the product and elements of
p. Thus, following (4.12), we set

(5.13) W) =W, xpyx [T X

PEPv
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Here the morphism W, — [] vep, L 18 just the product of the schematic evaluation
maps at each of the punctures of the domain curve in Po-

Note that giving a morphism v, : T — W, P is equivalent to giving (1)
a morphism 7" — W, yielding via pull-back a family of punctured maps f, :
Cy /T — X; (2) for each puncture p, g € p, of C 1, a factorization of [, opuE:
W,—=XasW,—-X—>X.

Similarly, we can define, for W the gluing of the W,,,

(5.14) werer) —w s [[ X,

’U

where the product is over all nodes in q and punctures in p’; again, the map
W — ] X is given by the schematic evaluation maps at these points.

The main observation of this subsection is that We(@P) can be constructed
from the spaces We(Pv) as a fibre product as in the previous subsection. We
define

W;N(pv) = WU Xl_[p'&pvi H K
PEPY
and
Wear) = oy [ X

Clearly Wev(@P) is just a sub-log structure of Wev(@P) with the same underlying
stack structure by Theorem 5.12.

Theorem 5.13. There is a Cartesian diagram in the category of fs log stacks

(5.15) wevlap) P2, Meve Wevee)

[IEeExG))(“‘](‘*IIUeEeExG))(

Further, W™ can be constructed from the space We*®) vig (5.2) and pry is
finite and representable.

Proof. The first statement follows immediately from the Cartesian diagram (5.5)
and properties of fibre product.

For the second statement, certainly if v € E, then (W ®)E = |E

v XHPEPU i
/\_/

[I,ep, X. Thus (va )ﬁnC = Wf“ X114 [[X by standard properties of fibre
product. Finally, saturation commutes with strict base-change. This shows the
desired isomorphism.

For the final statement that pr, is finite and representable, note that pr, factors

as
ﬁOV(q,p’) _ Nev (Pv) X1 x H X HNOV(py
v veE
where the first morphism is the result of 1ntegrahzat10n and saturation of a log
structure on the ordinary fibre product, hence finite and representable, and the
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second morphism is a base-change of A, hence a closed immersion, and in partic-
ular finite and representable. Thus pr, is finite and representable. [ )

5.2.4. Gluing at the virtual level. We fix a combinatorial type of gluing situation
G, B with target X — B, which we assumed to be log smooth with X Zariski.
Further, to guarantee that moduli spaces are of finite type, we will assume in this
subsection that Mx is globally generated.

As in the previous subsection, we set X = Ax x4, B with Ay the relative
Artin fan as usual. In addition, we continue with p, a subset of the punctures of
the given type B3(v) as in the previous subsection, yielding subsets p! C p, and
the set of nodal sections q = {¢g | £ € E(G)} obtained from gluing.

Definition 5.14. As in (5.13), (5.14), we define
mcv(pu)(;(ﬁ(v)) M(X, B(v)) x| o H X,

PEPv

Mm@ x, G, B) = MEX, G, B8) < x [ X
zeqUp’
Note that we have obvious strict factorizations
(X, B(0)) — MYPI(X, B(v)) —— M(X, B(v))
and
MAX, G, B) —s gmetevar) (x| B) —— M (X, B)
with the compositions being the canonical morphisms given by composition of a

stable map to X with the morphism X — X.

Theorem 5.15. There is a Cartesian diagram

(5.16) MO(X, G, ) ——— [Loevie) 4 (X, Bv))

.| [0

amelev@r) (X, G, B) anev M@ (X, B(v))
with vertical maps strict. The morphisms § and 0" are finite and representable.

Proof. The diagram is clearly commutative, and hence if

W — mglov q,p’ (X G, /3) XH omev(Po) (X, B(v) H% X /3 ))

we obtain a morphism .Z8(X,G,3) — W. It is thus enough to construct an
inverse morphism.

Note that giving a morphism 7" — W is the same as giving: (1) A family of
punctured maps f : C7. — X of class B8 equipped with nodal sections of splitting
type qg which splits as a collection of punctured maps f, : Cp 7 — X of class
B(v); (2) For each edge £ € E(G), amorphism f : T — X and an isomorphism
between the composition of iE with X — X and foqp: T — X. For each leg
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E € L(G) corresponding to a puncture pg € p’, a morphism fp:T— X and an
isomorphism between the composition of f , with X — X and fopp: T — X. (3)
Punctured maps fv : Cy 7 — X and an isomorphism between the composition of
fv with X — X and f,. This isomorphism is such that it induces an isomorphism
between fv opur: L — X and f . whenever v € E corresponds to a puncture
Duv,E € Po-

Given such data, we show that it induces a unique morphism 7' — .Z8(X, G, 3)
compatible with all maps. To do this, it is sufficient to lift f to a morphism
f: C% — X such that (1) fo qe = [ (2) the splittings Cp 7 — X of f agree
with fv.

To give a lifting f of f, it is enough to give a factorization

f
Cr——X X

of f because X — X is strict. However, this is immediate as the morphisms
iv : C,7 — X can be glued as ordinary stable maps precisely because of the
isomorphism of L o py,p with f_ for all flags v € E' € E(G). Thus we obtain a
morphism T — .## (X, G, 3), and hence a morphism W — .#Z#¢ (X, G, 3) which
is clearly inverse to the canonical morphism .Z%(X, G, 3) — W.

The finiteness and representability of 0 and ¢’ follow immediately from Theorem
5.13. o

We now analyze the obstruction theories in (5.16). For short-hand, write
M, == M(X,B(v), M :=MP)(x, B(v)),
M = H Mm,. m = H ey

veV(G) veV(G)
me =M (X, G, 8),  ME = mEev @) (G, B)

My=M(X,BW), M= ] 4,

veV(Q)

M = (X, G, B).

Denote by C, — .#, and C — .#*® the universal curves over .#, and .#%,
respectively, by C,, — .# the pull-back of C, under the projection from the
product # to .#, and write 7@ : C = 1L, C, — #,. We also have universal
morphisms f : C — X, f: C — X, and the subschemes of special points to
be considered ¢ : Z — C, 7 : Z — C and projections p = 1ot and p = T o 7.
Here Z is the union of the images of the punctured sections in p’ and the nodal
sections in q, while Z is the union of punctured sections in U, po. With & the
partial normalization along the nodal locus Z” C Z as defined before Lemma 4.4,
there is also the universal morphism f = fok: C — X and the subscheme
Z = Kk N(Z) — C of special points on C' with projection p: Z — .#%. We have
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the following commutative diagram with two cartesian squares:

f
¢ —/Mlﬁ\f X
(5.17) 7 CR—// !
//1; = r7[r M,

mebey — M = T, M.
The discussion in §4.2 provides an obstruction theory G — L—; e for A relative
to O with
(5.18) G = R7.(f Qx5 ® we(2)).

Recall that this obstruction theory is obtained by taking the cone of a morphism
of perfect obstruction theories provided by Proposition 4.3:

Le*F —— E
La*@l JE
Le *Lg—ncv /m e L7 /o

Pulling back to .##, we now have four deformation/obstruction situations with
corresponding perfect obstruction theories. Given T' — .## a morphism from an
affine scheme and fr: Cr — X, hy : Zp — X, fT : C’T — X, }NLT : ZT — X the
pull-back of the universal morphisms from the universal curve and universal sec-
tions and their pull-backs to C, respectively, these are as follows. All deformation
situations are relative 978!,

(8 /M) Deforming fr : Op — X:
E = Rm.(f"Qx/B ® wr) — L ya /ona.
(omebey /amsl) Deforming hy : Zr — X:
Le'F = p.(h*Qx/p) — Le"Loyaiev jopat.
(A /M) Deforming fr : Cr — X:
L&'E = Rt (f*Qx/p ® wz) — L8" Lz -
(M /9M) Deforming hy : Zp — X:
L5*Le*F = pu(h*Quxyp) — L6"Le"Lages .
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Lemma 5.16. There is a morphism of distinguished triangles
Lé*Le*F —— L&*E Lo* Le*TF[1]

N

Le'F  —— E > Le*F

Proof. Recall we write Z = Z' U Z"”, where Z’ is the union of the images of the

punctured sections in p’ and Z” is the union of the images of the nodal sections
in q. With Z' = x71(Z’) and 2" = k™1 (Z") we have Z = Z' U Z" and hence the
following commutative diagram of Oz-modules with exact rows.

0 —— Of(—=2") —— Ox(Z") —— 04(Z2") —— 0
00— O —— Oa(Z) —— O0z(2") —— 0.

The statement then follows by tensoring this diagram with x*w, ® f*Q x/B and
arguing similarly as in the proof of Lemma 4.4. For example, since k*w,(—Z2") =
ws, taking R7, of this tensor product leads to

Rﬁ'*(f*Qx/B & w;r) = L(S*E
Further details are left to the reader. 'y

Theorem 5.17. In the above situation and notation, we have

(1) There is a commutative diagram

'//gl(Xa G> /6) — %(Xa ﬁgl)

| |

me(x, G, B) — M(x, B2

which exhibits 4% (X,G, B) as an open and closed substack of the fibre
product Me (X, G, B) XW(X’ﬁgl)%(X, B%). The relative obstruction theory

for (X, B%) — M(X, B%) pulls back to give a relative obstruction theory
for #3(X, G, B) — MYX, G, B), which is the obstruction theory

E = L gax.c,0/msx.c.0
described above.

(2) The obstruction theory

G = L yax.c,0/me e (x,6,8)

for
ME(X, G, B) — MR (¥ G, B)

coincides with the pull-back of the obstruction theory

@ — }L] /ey



72 DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

described above.

(3) If Eigl and €' denote Manolache’s virtual pull-back defined using the two
given obstruction theories, then for a € A, (Qﬁgl’ev(q’p/)(é‘(, G, 5)), we have
the identity

£5.(a) = by (@)

Proof. (1) Tt is clear that the fibre product IME (X, G, B) Xgp(v gety A (X, B
consists of the disjoint union of all .Z8(X,G, '), where 3 runs over all col-
lections of data (A'(v),g'(v),u;, z) such that g'(v) = g(v), u, p = u,p and
>, A (v) =3 A(v), where B is the collection of data (A(v),g(v), u, ). In-
deed, this is because punctured maps to X do not remember curve classes. This
shows that . (X, G, 3) must be a union of connected components of the fibre
product, giving the first claim.

The statement about obstruction theories then follows from the functoriality
statement Lemma 4.1 and the construction in §4.2 of the relative obstruction
theory for .4 (X, 3%) — M(X, 32).

(2) The morphism of triangles in Lemma 5.16 form the back face of the following
diagram with the solid arrows given:

L&*Le*F Lé*E\ G _

NS
Lo Le Liggev oy Lo* Lz o Lo*L 7 e

o* ‘ ‘ ~
LIF\ l E\ l (G}\\>k l

Lg*ngl/g_n e L///gl/gm _— L{///gl/mgl

The four arrows facing to the front in the cube on the left are the four obstruction
theories listed above. The top and bottom faces of this cube are commutative by
Proposition 4.3. The front face is the morphism of distinguished triangles of the
cotangent complexes for the compositions .Z% — M — M and 7 — M —
M and hence is also commutative.

The pull-back by § of the obstruction theory with point conditions G — L—; o
now provides the dashed morphism of triangles on the top face of this diagram.
Since the lower square in (5.17) is cartesian, L&*L7 gz — L gu e is an iso-
morphism. Thus we also obtain the dashed arrow G — L ye /oner on the lower
right, which makes the lower face commutativeand defines a perfect obstruction
theory for .## /98 as claimed.

(3) This follows from the morphism ¢’ being finite and representable, hence

projective, and the push-pull formula of | , Thm.4.1,(iii)]. [
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