
PUNCTURED LOGARITHMIC MAPS
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Abstract. We introduce a variant of stable logarithmic maps, which we call

punctured logarithmic maps. They allow an extension of logarithmic Gromov-

Witten theory in which marked points have a negative order of tangency with

boundary divisors. These are constructed with several applications in mind.

First, they appear naturally in a generalization of the Li-Ruan and Jun Li

gluing formulas, with punctured invariants playing the role of relative invari-

ants in these classical gluing formulae. Second, they provide key enumerative

invariants for constructions in mirror symmetry.
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1. Introduction

Logarithmic Gromov-Witten theory, developed by the authors in [Che14], [AC14],

[GS13], has proved a successful generalization of the notion of relative Gromov-

Witten invariants developed in [LR01], [Li01], [Li02]. Relative Gromov-Witten

invariants are invariants of pairs (X,D) where X is a non-singular variety and D

is a smooth divisor on X ; these invariants count curves with imposed orders of

tangency with D at marked points. Logarithmic Gromov-Witten theory allows D

instead to be normal crossings, or more generally, allows (X,D) to be a toroidal

crossings variety.

One of the main intended applications of the theory considers degenerations

X → B where B is a non-singular curve with a point b0 ∈ B such that (X,D) →
(B, b0) is a toroidal crossings morphism, i.e., is log smooth. Thus the fibre X0

over b0 may be quite singular, but nevertheless logarithmic Gromov-Witten theory

makes sense on X0 relative to b0. One then wishes to describe the Gromov-Witten

theory of the general fibre in terms of the logarithmic Gromov-Witten theory of

the special fibre. In the case that X0 is the normal crossings union of two divisors,

this leads to the gluing formulae of [LR01] and [Li02], which have proved to be

immensely useful tools in the Gromov-Witten toolkit. However, a practically

useful generalization of this gluing formula has proved somewhat elusive.

In [ACGS17], we initiated a program generalizing these classical gluing for-

mulae. Given a class of logarithmic curve for a log smooth target space X/B,

we obtain a moduli space of stable log maps M (X/B, β) which fibres over B.

The fibre of this map over 0 is M (X0/b0, β), and this was shown to have a “vir-

tual irreducible decomposition” into components indexed by rigid tropical curves.

However, there still remains a problem of describing these virtual irreducible com-

ponents and calculating their virtual fundamental classes.

Put simply, the next problem which arises is as follows. Suppose given a

stable log map f : C/W → X , and suppose given a closed subscheme C ′ of the

underlying scheme C of C which is a union of irreducible components of C. As

f : C → X is required to be an ordinary stable map, f |C′ is also an ordinary

stable map provided we mark those non-singular points of C ′ which are double

points of C. However, if we restrict the log structure of C to C ′ to obtain a log

scheme C ′ and a log morphism f |C′ : C ′ → X , this morphism fails to be a stable

log map for the very simple reason that C ′ → W is not a log smooth family:

the log structure at those non-singular points of C ′ which were double points

of C is not the standard one at marked points. Further, if we replaced the log

structure at those points with the standard marked point log structure used in

log Gromov-Witten theory, the morphism to X may not exist.

The solution presented here is to broaden the treatment of marked points to

allow more interesting log structures. While we delay precise definitions until §2,
we explain briefly how these new log structures differ from old-fashioned marked

points. Consider a logarithmic curve π : C → W with W = Spec(Q → k) a



PUNCTURED LOGARITHMIC MAPS 3

logarithmic point. In ordinary log Gromov-Witten theory, the stalk of the ghost

sheaf MC of C at a non-special point is Q, at a marked point is Q⊕N, and is more

complicated at a node. In punctured theory, we allow more complicated choices of

monoids at marked points, which we now call punctured points or punctures. At

such a point, the stalk of the ghost sheaf is a fine (but not necessarily saturated)

monoid Q◦ ⊆ Q⊕Z containing Q⊕N. The possible choices of Q◦ are somewhat

restricted by the need that this be the stalk of a ghost sheaf of a log structure,

but nevertheless this still allows a range of possible choices. We have chosen

here to restrict the possible choices by imposing an additional condition which

we call pre-stability, which only makes sense in the presence of a log morphism

f : C → X . Here, if p ∈ C is a punctured point, we then obtain an induced

morphism on stalks of ghost sheaves

f̄ ♭ : MX,f(p) → MC,p = Q◦ ⊆ Q⊕ Z.

Pre-stability then is the condition that Q◦ is the submonoid of Q⊕ Z generated

by Q⊕N and the image of f̄ ♭. Essentially, we are choosing the smallest possible

monoid for which the morphism f exists.

Crucially, the composition of f̄ ♭ with the projection Q⊕Z → Z gives a homo-

morphism

(1.1) up : MX,f(p) → Z,

called the contact order of the punctured point. In ordinary log Gromov-Witten

theory, this homomorphism would take values in N and record the order of tan-

gency of the curve at the marked point with various boundary divisors. Thus

in punctured theory, this is viewed as giving the possibility of negative contact

order.

More specifically, suppose that the log structure on X arises from a normal

crossings divisor D = D1 + · · · + Dn of X , with Di irreducible. If f(p) lies

in the intersection of irreducible components Di for i ∈ I an index set, then

MX,f(p) = NI , and for i ∈ I, the ith component of up indicates the contact order

of the map f with Di at p. If this contact order is negative, then the irreducible

component C ′ of C containing p should satisfy f(C ′) ⊆ Di, see Remark 2.19.

At this point the reader may reasonably wonder why such punctured invariants

do not appear in the original Li-Ruan and Jun Li gluing formulae. In those

theories, the Gromov-Witten theory of the central fibre X0 = Y 1∪Y 2 is described

in terms of relative Gromov-Witten invariants of the pairs (Y 1, D), (Y 2, D) with

D = Y 1 ∩ Y 2. In fact, there are two log structures on Y i: the restriction of the

log structure of X to Yi, which we write as Y †
i , and the divisorial log structure

coming from D ⊆ Y i, which we write as Yi. There is a canonical morphism

Y †
i → Yi given by inclusion of log structures, hence inducing by composition a

morphism M (Y †
i /b0, β) → M (Yi, β). One can show in this case that this induces

an isomorphism of underlying stacks and obstruction theories (although the log

structures are necessarily different). In particular, in the proof of the classical
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gluing formulas, given a stable log map f : C → X lying in one of the virtual

irreducible components of M (X0/b0, β), there is a way of splitting C = C1 ∪ C2

so that f |Ci
can be viewed as a morphism to Y †

i , and hence by composition with

the morphism Y †
i → Yi, we obtain a stable log map. The moduli of stable log

maps to Yi is closely related to the Jun Li moduli space of stable relative maps

to the pair (Y i, D) and gives the same numerical invariants, see [AMW14].

On the other hand, in more complicated gluing situations, such as when the

central fibre X0 has a triple point, there can be stable log maps f : C → X0 with

some components of C mapping to the triple point, and there is no reasonable

way to view this component as mapping to a specific irreducible component ofX0.

For an example of this, see the extended example of [ACGS17], §6.2, especially
§6.2.4, in which the curve component C4 may not be viewed as a relative curve

in any irreducible component. Thus any reasonable generalization of the classical

gluing formula will need to take into account some more complicated invariants.

This is the first reason that punctured invariants are useful to us. The sec-

ond is that soon after discussions amongst the four of us began on this project

in 2011, the last two authors of this paper realised that it was likely that such

invariants were exactly what was necessary for describing holomorphic versions

of certain tropical constructions in [GS11], [GHK15] which appear naturally in

the Gross-Siebert mirror symmetry program. This has now led to a general mir-

ror symmetry construction, announced in [GS18], in which certain punctured

Gromov-Witten invariants are used to define the (homogeneous) coordinate ring

of the mirror. The proofs of many of the announced results of [GS18] are now

available in [GS19] and depend crucially on this paper. The notion of Gromov-

Witten invariants with negative orders of tangency is absolutely essentially, while

the proof of associativity of the product rule relies crucially on the gluing formal-

ism developed in §5 of the current paper.

We note also that [GS18] also constituted an announcement of this paper, and

followed an early draft of this preprint which was made public in 2016. However,

the reader familiar with that draft or [GS18] will note that in fact the definition

of a punctured point has changed. The original definition given in these older

references dealt with the possible non-uniqueness of the log structure at punctured

points by taking the limit over all possible punctured log structures, resulting

in a non-finitely generated stalk of the ghost sheaf at a puncture. With more

experience, we have found the formulation in this paper to be technically simpler,

as fine log structures are better understood. However, despite the apparently

different formulation, the theories are equivalent, and we give a brief discussion

of this older theory in Remark 2.3.

We now turn to the structure of the paper, and outline novel features of the

theory. §2 introduces the notion of a punctured log structure, specializing quickly

to the case of a punctured point on a curve. This allows us to generalize the notion

of stable log map to that of stable punctured map. Once the notion of punctured
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log structure is introduced, there are no surprises in the definition of a punctured

log map. From there, much of the theory is developed analogously to that of

ordinary log stable maps, with notions of combinatorial types of punctured maps

and basic punctured maps precisely as in the usual case.

The first important difference between the punctured theory and the ordinary

theory occurs in §2.5. There, we explain how any family f : C/W → X of punc-

tured log maps induces a natural idealized log structure on W , in the sense of

[Ogu18], III §1.3. Crucially, this structure encodes certain combinatorial obstruc-

tions to deforming punctured log curves which do not exist in the ordinary case.

Intuitively, for example, suppose the target is a normal crossings pair (X,D) with

D =
∑
Di the decomposition into irreducible components. If C has an irreducible

component C ′ containing a puncture with a negative contact order with some Di,

then we must have f(C ′) ⊆ Di, see Remark 2.19. Thus no deformation of this

punctured map may deform the image of C ′ away from Di, and in particular, if

C has a node q with q ∈ C ′, this node may not be smoothed if the other branch

C ′′ of C containing q has f(C ′′) 6⊆ Di. The idealized structure effectively encodes

such purely combinatorial, local obstructions to deforming. As we shall see, this

becomes especially important when one wishes to build a virtual fundamental

class on moduli space of punctured maps.

The next subtlety involves defining families of contact orders. For an individual

punctured map over a log point, we have the notion of contact order of (1.1).

However, to obtain finite type moduli spaces, we need to impose contact orders

at marked points, and as the point f(p) varies in a connected family, we need

to understand how contact orders vary. This turns out to be much more subtle

than in the ordinary case. In §2.6, we explore this issue, leading to a classification

of possible contact orders. However, at this point, contact orders are only well-

behaved if MX is generated by its global sections, i.e., Γ(X,MX) → MX,x is

surjective for each x ∈ X . Otherwise, it is possible that even a connected family

of contact orders may have an infinite number of irreducible components, making

it difficult to prove that moduli spaces are of finite type. Thus this assumption is

made in many places in this paper to obtain a good theory. Note this assumption

always holds when the log structure on X arises from a normal crossings divisor.

In §2.7, we generalize the tropical point of view of [GS13], [ACGS16] to the

punctured case, showing how to interpret various aspects of the theory tropically.

In particular, under tropicalization, punctured points become line segments or

unbounded rays. The vanishing locus of the puncturing ideal also has a simple

tropical interpretation, see Remark 2.53.

We turn to §3. Following the point of view of [AW18], if given a target X → B,

one lets AX be the relative Artin fan for X → B (see [ACM+15] for an exposition

of Artin fans): this is equipped with a morphism AX → AB to the Artin fan of

B. We set X := AX ×AB
B. We define stacks Mg,n(X/B) and Mg,n(X /B) of

punctured maps to X , X respectively, with their basic log structure. Here one
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considers domain curves of genus g with n punctured points, and note that for

Mg,n(X/B) we impose the condition of stability, i.e., that the underlying map

of schemes is a stable map, but this cannot be imposed in the case of punctured

maps to X .

We also define the notion of a class β of punctured map to X/B, which includes

the data of an underlying curve class, genus, number of punctured points, and

contact orders at the punctures. This gives sub-moduli spaces M (X/B, β) and

M(X /B, β), the latter moduli space forgetting the underlying curve class of β.

The main results of §3 are summarized by:

Theorem 1.1. Suppose given a target X → B with X Zariski. Then:

(1) The stack Mg,n(X/B) of stable punctured maps of genus g with n punc-

tured points and target X/B is a logarithmic Deligne-Mumford stack lo-

cally of finite presentation.

(2) Let β be a class of punctured log curve, and suppose that MX is generated

by global sections and X → B finite type. Then M (X/B, β) → B is of

finite type.

(3) The forgetful map M (X/B, β) → M (X/B, β), where β just remembers

the class of underlying curve, the genus, and number of marked points,

satisfies the weak valuative criterion for properness.

These three items are Theorems 3.1, 3.7 and 3.12 respectively. In particular,

in the case that X is proper over B and MX is generated by global sections,

M (X/B, β) is in fact a proper Deligne-Mumford stack over B.

The proofs of these are essentially the same as in the ordinary log Gromov-

Witten case, and we only note when additional care must be taken at the punc-

tures.

§4 then develops the relative obstruction theory for M (X/B) → M(X /B).

Again, the punctures do not play any particular role here, but some care is taken

in the development of the theory to allow for a clean gluing statement later in

the paper. The main results, from Proposition 4.2 and Theorem 4.5, are:

Theorem 1.2. Suppose X → B is log smooth. Then:

(1) There is a perfect relative obstruction theory for Mg,n(X/B) → Mg,n(X /B).

(2) The natural forgetful morphism Mg,n(X /B) → Mg,n × B is idealized log

smooth, where Mg,n denotes the Artin stack of pre-stable log curves with

the basic log structure. Here Mg,n(X /B) is idealized via its puncturing log

ideal, while Mg,n × B carries the empty log ideal.

The second statement is very important. In the ordinary stable log map case,

[AW18] showed that Mg,n(X /B) was in fact log étale over Mg,n × B, and hence

is log smooth over B. For example, if B = Spec k, then this tells us that smooth

locally, Mg,n(X /B) looks like a toric variety. On the other hand, if we are consid-

ering punctures, then Mg,n(X /B) is only idealized log smooth over B. Again, if
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B = Spec k, this means that smooth locally, Mg,n(X /B) looks like a scheme de-

fined by a monomial ideal in a toric variety. While idealized log smoothness means

that it is easy to control the local structure of Mg,n(X /B) from a combinatorial

point of view, it need not be equi-dimensional, see Example 4.7. This means that

there is not a virtual fundamental class in general, and in any particular situation

where we wish to extract numbers, one must apply virtual pull-back to a suitably

chosen cycle on M(X /B, β). This depends on the particular application one may

have in mind. However, it is very natural to consider virtual pull-backs of strata

of Mg,n(X /B) selected out by certain tropical data. For example, such has been

done in the proposed construction of the canonical scattering diagram in [GS18].

§5 begins the exploration of gluing using punctured maps. We first justify the

original motivation of punctured curves: splitting a stable log map at a node

produces a curve with two punctures. We then reverse the procedure, explaining

how to glue curves. Unfortunately, this is rather more technical than one might

hope. For ordinary stable maps, suppose given two families of stable curves

f
i
: C i/W i → X , along with marked points xi : W i → C i. Suppose further

we wish to glue these two families by identifying x1 and x2. Of course there are

evaluation maps evi = f
i
◦ xi at xi, which we may use to form a fibre product

W 1 ×X W 2 parameterizing the glued family.

If instead we had two families of punctured curves fi : Ci/Wi → X , with

punctures xi, to be able to glue we first need the contact orders at x1 and x2 to

be the negative of each other in an appropriate sense. We define the notion of

opposite contact orders in Definition 2.47 to make this precise. Unfortunately, one

does not in any event have evaluation maps evi : Wi → X , as the log structure

on Wi and the log structure on xi(W i) don’t agree. However, if we define W̃i

to be the saturation of the log scheme (W i, x
∗
iMCi

), then there is an evaluation

map evi : W̃i → X . This allows us to form the product W̃ := W̃1 ×X W̃2 in the

category of fs log schemes. Again, W̃ is not quite the right thing: it does in fact

parameterize the glued family, but it does not carry the basic log structure, even

if W1 and W2 do. Instead, one can show that there is a sub-log structure of W̃

which gives the glued family.

The precise statement in all generality is Theorem 5.12. We do not give the

statement in the introduction, as it requires a rather detailed setup.

After having constructed the glued moduli spaces, the remaining question we

address is compatibility of gluing with the relative obstruction theories con-

structed in this paper. The culmination of this are Theorems 5.15 and 5.17.

Again, these statements are quite technical, and even worse, at this point are

quite difficult to use. It is worth emphasizing one of the basic sources of this

difficulty is the fact that the underlying spaces of fibre products in the fs log

category do not agree with the fibre products of underlying spaces. This means

that naive attempts to make use of Fulton-style intersection theory are bound

to fail. Nevertheless, despite this difficulty, [GS19] has managed to apply the
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gluing techniques introduced here to a quite general situation. We anticipate

that a great deal of future work will be devoted to making Theorems 5.15 and

5.17 broadly usable in practice. Indeed, a sequel paper to this one will explore

these gluing techniques further, showing how to adapt gluing in the degeneration

situation.

We end this introduction to discuss related work. First, our approach owes a

great deal to Brett Parker’s program of exploded manifolds, [Par11]. We have of-

ten found ourselves trying to translate Parker’s results in the category of exploded

manifolds into the category of log schemes. Indeed, some of the original versions

of the definition of punctured invariants, as well as the approach to gluing, arose

after discussions with Parker,

After the earlier manuscript version of this paper was distributed, Mohammed

Teherani [Teh17], in developing a symplectic analogue of stable log maps, found

that punctures were naturally described in the theory. Even more recently,

[FWY18] used rubber invariants to define negative contact order Gromov-Witten

invariants relative to a smooth divisor. While it is not yet clear what the precise

relationship between these invariants and those of this paper are, very likely they

can be defined as the virtual pull-back of certain cycles in Mg,n(X /B).

Besides the immediate applications of punctures already mentioned above,

punctures also have been used by Hülya Argüz in [Arg17] to build a logarith-

mic analogue of certain tropical objects in the Tate elliptic curve related to Floer

theory.

Finally, we also mention recent work of Dhruv Ranganathan [Ran19] taking a

different point of view on gluing in log Gromov-Witten theory using an approach

closer in spirit to the expanded degeneration picture of Jun Li.
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DMS-1162367, DMS-1500525 and DMS-1759514.
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1560830, and DMS-1700682.

M.G. was supported by NSF grant DMS-1262531, EPSRC grant EP/N03189X/1

and a Royal Society Wolfson Research Merit Award.

We would like to thank Dhruv Ranganathan and Brett Parker for many useful
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1.2. Convention. All logarithmic schemes and stacks are defined over an alge-

braically closed field k of characteristic 0. We follow the convention that if X is a

log scheme or stack, then X is the underlying scheme or stack. We almost always

write MX for the sheaf of monoids on X and αX : MX → OX for the structure

map. If P is a monoid, we write P ∨ := Hom(P,N) and P ∗ = Hom(P,Z).

2. Punctured maps

2.1. Definitions.
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2.1.1. Puncturing.

Definition 2.1. Let Y = (Y ,MY ) be a fine and saturated logarithmic scheme

with a decompositionMY = M⊕O×P. Denote E := M⊕O×Pgp and E := E/O×.

A puncturing of Y along P ⊂ MY is a sub-sheaf of monoids

MY ◦ ⊂ E = M⊕O× Pgp

containing MY with a structure map αMY ◦ : MY ◦ → OY such that

(1) The inclusion p♭ : MY → MY ◦ is a morphism of fine logarithmic struc-

tures on Y .

(2) For any geometric point x̄ of Y let sx̄ ∈ MY ◦,x̄ be such that sx̄ 6∈ Mx̄⊕O×

Px̄. Representing sx̄ = (mx̄, px̄) ∈ Mx̄ ⊕O× Pgp
x̄ , we have αMY ◦ (sx̄) =

αM(mx̄) = 0 in OY,x̄.

Denote by Y ◦ = (Y ,MY ◦). We will also call the induced morphism of logarithmic

schemes p : Y ◦ → Y a puncturing of Y along P, or call Y ◦ a puncturing of Y

along P.

We say the puncturing is trivial if p is an isomorphism.

Remark 2.2. In all examples in this paper, the condition αM(mx̄) = 0 is re-

dundant. Indeed, suppose P is a DF (1) log structure, i.e., there is a surjec-

tive sheaf homomorphism N → P. For sx̄ = (mx̄, px̄) 6∈ Mx̄ ⊕O× P, suppose

αMY ◦ (sx̄) = 0. Note that the DF (1) assumption implies that p−1
x̄ ∈ Px̄, so

αM(mx̄) = αY (mx̄, 1) = αMY ◦ (sx̄ · p−1
x̄ ) = 0. More generally, the same argument

works if P is valuative.

Remark 2.3. Puncturings M◦ of M ⊕O× P are not unique. In a widely dis-

tributed early version of this manuscript as well as in [GS18], we found it instruc-

tive to work with a uniquely defined object MP we call here the final puncturing.

It may be defined as the direct limit

MP := lim−→
M◦∈Λ

M◦,

over the collection Λ of all puncturings of M⊕O× P. This exists in the category

of quasi-coherent, not necessarily coherent, logarithmic structures. It has the

advantage of being independent of any choice. Its disadvantage, apart from not

being finitely generated, is in that its behavior under base change is subtle.

2.1.2. Pre-stable punctured log structures. In case a puncturing is equipped with

a morphism to another fs log scheme, there is a canonical choice of puncturing.

The following proposition follows immediately from the definitions.

Proposition 2.4. Let X be an fs log scheme, and Y as in Definition 2.1, with

a choice of puncturing Y ◦ and a morphism f : Y ◦ → X. Let Ỹ ◦ denote the

puncturing of Y given by the subsheaf of MY ◦ generated by MY and f ♭(f ∗MX).

Then

(1) We have MỸ ◦ is a sub-logarithmic structure of MY ◦.
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(2) There is a factorization

Y ◦ f
//

  ❇
❇❇

❇❇
❇❇

❇
X.

Ỹ ◦
f̃

>>⑤⑤⑤⑤⑤⑤⑤⑤

(3) Given Y ◦
1 → Y ◦

2 → Y with both Y ◦
1 , Y

◦
2 puncturings of Y , then Ỹ ◦

1 = Ỹ ◦
2 .

Definition 2.5. A morphism f : Y ◦ → X from a puncturing of a log scheme Y is

said to be pre-stable if the induced morphism Y ◦ → Ỹ ◦ in the above proposition

is the identity. In particular, one has f = f̃ .

Corollary 2.6. A morphism f : Y ◦ → X is pre-stable if and only if the induced

morphism of sheaves of monoids f ∗MX ⊕MY → MY ◦ is surjective.

2.1.3. Pull-backs of puncturings.

Proposition 2.7. Let X and Y be fs log schemes with log structures MX and

MY , and suppose given a morphism g : X → Y . Suppose also given a log

structure PY on Y and an induced log structure PX := g∗PY on X. Set

X ′ = (X,MX ⊕O×

X
PX), Y ′ = (Y ,MY ⊕O×

Y
PY ).

Further, let Y ◦ be a puncturing of Y ′ along PY . Then there is a diagram

X◦
g◦

//

��

Y ◦

��

X ′ g′
//

��

Y ′

��

X
g

// Y

with all squares Cartesian in the category of underlying schemes, the lower square

Cartesian in the category of fs log schemes, and the top square Cartesian in the

category of fine log schemes. Furthermore, X◦ is a puncturing of X ′ along PX .

Proof. We define X◦ to be the fibre product X ′ ×Y ′ Y ◦ in the fine log category.

The bottom square is obviously Cartesian in all categories. Thus it is sufficient

to show (1) the upper square is Cartesian in the ordinary category, i.e., the

underlying map of X◦ → X ′ is the identity and (2) X◦ is a puncturing of X ′.

Note that the fibre product X ′×Y ′ Y ◦ in the category of log schemes is defined

as
(
X,M := MX′ ⊕g∗MY ′

g∗MY ◦

)
. This push-out need not, in general, be

integral, so we must integralize. Note there is a canonical isomorphism

Mgp = Mgp
X′ ⊕g∗Mgp

Y ′
g∗Mgp

Y ◦
∼= Mgp

X′

given by (s1, s2) 7→ s1 · (g′)♭(s2), where (g′)♭ : g∗Mgp
Y ′ → Mgp

X′ is induced by g′.

The integralization Mint of M is then the image of M in Mgp, which thus can



PUNCTURED LOGARITHMIC MAPS 11

be described as the subsheaf of Mgp
X′ generated by MX′ and (g′)♭(g∗MY ◦). Note

MX′ and (g′)♭(g∗MY ◦) both lie in MX ⊕O×

X
Pgp
X , so we can replace Mgp with

this subsheaf of Mgp in describing Mint.

It is now sufficient to show that we can define a structure map α : Mint → OX

compatible with the structure maps αX′ : MX′ → OX and αY ◦ : g∗MY ◦ → OX .

If s ∈ Mint is of the form s1 · (g′)♭(s2) for s1 ∈ MX′ and s2 ∈ g∗MY ◦ , then

we define α(s) = αX′(s1) · αY ◦(s2). We need to show this is well-defined. If

s2 ∈ g∗MY ′ , then (g′)♭(s2) ∈ MX′, and thus as g′ is a log morphism,

α(s) = αX′(s1) · αY ◦(s2) = αX′(s1)αX′((g′)♭(s2)) = αX′(s).

In particular, α(s) only depends on s, and not on the particular representation

of s as a product, provided that s2 ∈ g∗MY ′ .

On the other hand, if s2 ∈ (g∗MY ◦)r (g∗MY ′), then αY ◦(s2) = 0 by definition

of a puncturing. So in this case α(s) = 0. Hence to check that α is well-defined,

it is enough to show that if s = s1 · (g′)♭(s2) = s′1 · (g′)♭(s′2) with s2 ∈ g∗MY ′ but

s′2 6∈ g∗MY ′, then αX′(s1) · αY ◦(s2) = 0. Writing si = (mi, pi), s
′
i = (m′

i, p
′
i) using

the descriptions MX′ = MX⊕O×

X
PX and g∗MY ◦ ⊂ g∗MY ⊕O×

X
Pgp
X , we note that

we must have m1g
♭(m2) = m′

1g
♭(m′

2). As s′2 6∈ g∗MY ′ , by condition 2.1(2) we

necessarily have αY (m
′
2) = 0. Hence αX(m

′
1g
♭(m′

2)) = 0, so αX(m1g
♭(m2)) = 0.

We deduce that αX′(s1(g
′)♭(s2)) = 0, as desired. This shows α is well-defined.

Finally, it is clear from the above description that X◦ is a puncturing. ♠

Definition 2.8. In the situation of Proposition 2.7, we say that X◦ is the pull-

back of the puncturing Y ◦.

Proposition 2.9. Consider the situation of Proposition 2.7, and suppose in ad-

dition given a pre-stable morphism f : Y ◦ → Z. Then the composition f ◦ g◦ :

X◦ → Z is also pre-stable.

Proof. This follows immediately from the definition of pre-stability and the con-

struction of X◦ in the proof of Proposition 2.7. ♠

2.1.4. Punctured curves. Essentially throughout the paper, we will only be inter-

ested in puncturing along logarithmic structures from designated marked points

of logarithmic curves. Let π : C → W be a logarithmic curve in the sense of

[Kat00, Ols07]:

(1) The underlying morphism π is a family of usual prestable curves with

disjoint sections p1, . . . , pk of π.

(2) π is a proper logarithmically smooth and integral morphism of fine and

saturated logarithmic schemes.

(3) If U ⊂ C is the non-critical locus of π thenMC |U ∼= π∗MW⊕⊕k
i=1 pi∗NW .

We write αC : MC → OC for the structure map of the logarithmic structure on

C. We call a geometric point of C special if it is either a marked or a nodal point.
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Definition 2.10. A punctured curve over a fine and saturated logarithmic scheme

W is given by the following data:

(2.1)
(
C◦ p−→ C

π−→W,p = (p1, . . . , pn)
)

where

(1) C →W is a logarithmic curve with a set of disjoint sections {p1, . . . , pn}.
(2) C◦ → C is a puncturing of C along P, where P is the divisorial logarithmic

structure on C induced by the divisor
⋃n
i=1 pi(W ).

When there is no danger of confusion, we may call C◦ → W a punctured curve.

Sections in p are called punctured points, or simply punctures. We also say C◦ is

a puncturing of C along the punctured points p.

If locally around a punctured point pi the puncturing is trivial, we say that the

punctured point is a marked point. In this case, the theory will agree with the

treatment of marked points in [Che14],[AC14],[GS13].

Examples 2.11. (1) Let W = Spec k be the point with the trivial logarithmic

structure, and C be a non-singular curve over W . Choose a point p ∈ C and a

puncturing MC◦ of C at p. Then MC◦ = P, as MC◦ ⊂ Pgp can have no sections

s with αC◦(s) = 0. Thus, in this case the only puncturing C◦ → C is the trivial

one.

(2) Let W = Spec(N → k) be the standard logarithmic point, and C be a non-

singular curve overW , so thatMW = O×
W⊕N, where N denotes the constant sheaf

on C with stalk N. Again choose a puncture p ∈ C. Let MC◦ ⊂ π∗MW ⊕O×

C
Pgp

be a puncturing. Let s be a local section of MC◦ near p. Write s =
(
(ϕ, n), tm

)

with ϕ ∈ O×
C , n ∈ N. If m < 0, then Condition (2) of Definition 2.1 implies that

απ∗(MW )(ϕ, n) = 0, so we must have n > 0. Thus we see that

MC◦,p ⊂ {(n,m) ∈ N⊕ Z |m ≥ 0 if n = 0}.

Conversely, any fine submonoid of the right-hand-side of the above inclusion which

contains N⊕N can be realised as the stalk of the ghost sheaf at p for a puncturing.

Note the monoid on the right-hand side is not finitely generated, and is the stalk

of the ghost sheaf of the final puncturing, see Remark 2.3.

(3) LetW = Spec k[ǫ]/(ǫk+1), and letW be given by the chart N → k[ǫ]/(ǫk+1),

1 7→ ǫ. Let C0 be a non-singular curve over Spec k with the trivial logarithmic

structure, and let C = W ×C0. Choose a section p :W → C, with image locally

defined by an equation t = 0. Again Condition (2) of Definition 2.1 implies that a

section s of a puncturing MC◦ near p takes the form
(
(ϕ, n), tm

)
where ϕ ∈ O×

C ,

and 0 ≤ n ≤ k implies m ≥ 0. In particular,

MC◦,p ⊂ {(n,m) ∈ N⊕ Z |m ≥ 0 if n ≤ k},

and any fine submonoid of the right-hand side containing N⊕ N can be realised

as the stalk of the ghost sheaf at p of a puncturing.
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2.1.5. Pull-backs of punctured curves. Consider a punctured curve (C◦ → C →
W,p) and a morphism of fine and saturated logarithmic schemes h : T → W .

Denote by (CT → T,pT ) the pull-back of the log curve C → W via T → W . By

Proposition 2.7, we obtain a commutative diagram

C◦
T

//

pT
��

C◦

p

��

CT //

πT
��

C

π
��

T
h

// W

where the bottom square is cartesian in the fine and saturated category, and

the square on the top is cartesian in the fine category, and such that C◦
T is a

puncturing of the curve CT along pT .

Definition 2.12. We call C◦
T → T the pull-back of the punctured curve C◦ →W

along T →W .

2.1.6. Punctured maps. We now fix a morphism of fine and saturated logarithmic

schemes X → B.

Definition 2.13. A punctured map to a family X → B over a fine and saturated

logarithmic scheme W consists of a punctured curve (C◦ → C → W,p) and a

morphism f fitting into a commutative diagram

C◦
f

//

��

X

��

W // B

Such a punctured map is denoted by (C◦ → W,p, f).

The pull-back of a punctured map (C◦ →W,p, f) along a morphism of fine and

saturated logarithmic schemes T → W is the punctured map (C◦
T → T,pT , fT )

consisting of the pull-back C◦
T → T of the punctured curve C → W and the

pull-back fT of f .

When there is no danger of confusion, we may write f : C◦ → X/B or f :

C◦ → X for the punctured map.

Definition 2.14. A punctured map (C◦ → W,p, f) is called pre-stable if f :

C◦ → X is pre-stable in the sense of Definition 2.5.

A pre-stable punctured map is called stable if its underlying map is stable in

the usual sense.

Proposition 2.15. Let (C◦ →W,p, f) be a punctured map over W .

(1) The locus of points of W with pre-stable fibers forms an open sub-scheme

of W .
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(2) If f : C◦ → X is pre-stable, then the pull-back fT : C◦ → X along

any morphism of fine and saturated logarithmic schemes T → W is also

pre-stable.

Proof. The punctured map f : C◦ → X induces a morphism of fine logarithmic

structures

f ♭ ⊕ p♭ : f ∗MX ⊕O×

C
MC → MC◦.

The pre-stability of f is equivalent to the condition that f ♭ ⊕ p♭ is surjective

by Corollary 2.6. Statement (1) can be proved by applying Lemma 2.16 below

to the neighborhood of each puncture. Statement (2) follows immediately from

Proposition 2.9. ♠
Lemma 2.16. Let Y be a scheme, and ψ♭ : M → N be a morphism of fine log

structures on Y . Assume that Mgp
and N gp

are torsion-free. Then the locus

Y ′ ⊂ Y over which ψ♭ is surjective forms an open subscheme of Y .

Proof. Note that the surjectivity of ψ♭ can be checked on the level of ghost sheaves.

Since the statement is local on Y , shrinking Y , we may assume that there are

global charts φM : My → M and φN : N y → N for some point y ∈ Y ; indeed

as My and N y are torsion free, [Ogu18, II, Proposition 2.3.7] applies. Consider

another point t ∈ Y specializing to y. Denote by

E = {e ∈ My | αM ◦φM(e)|t ∈ O∗
Y ,t} and F = {e ∈ N y | αN ◦φN (e)|t ∈ O∗

Y ,t}.
Denote byE−1My ⊂ Mgp

y (respectively E−1N y ⊂ N gp

y ) the submonoid generated

by Egp and My (respectively F gp and N y). We have the following commutative

diagram

0 // Egp

��

// E−1My
//

(ψ′)♭y
��

Mt
//

ψ
♭
t

��

0

0 // F gp // F−1N y
// N t

// 0

where the vertical arrows are induced by ψ♭, and the two horizontal sequences are

exact by [Ols03, Lemma 3.5(i)]. The surjectivity of ψ♭ at y implies the surjectivity

of ψ
♭

y. It follows that E
gp → F gp is surjective, hence (ψ′)♭y is surjective, and so is

ψ
♭

t. This proves the statement. ♠
Example 2.17. The intuition behind punctured curves is that it allows points

with negative orders of tangency to divisors. To see this explicitly, let X be a

surface, D ⊆ X a non-singular rational curve with self-intersection −1 inducing

the divisorial log structure X on X . Let C → W be the punctured curve of

Examples 2.11, (2), with C ∼= P1. Let f : C → X be an isomorphism of C with

D. This can be enhanced to a punctured map C◦ → X as follows.

We first define f̄ ♭ : f ∗MX = N → MC◦ ⊆ E = N⊕Zp by 1 7→ (1,−1), where Zp
denotes the sky-scraper sheaf at p with stalk Z. Note that 1 ∈ Γ(X,MX) yields

the O×
X-torsor contained in MX corresponding to the line bundle OX(−D), and
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thus 1 ∈ Γ(C, f∗MX) yields the O×
C -torsor corresponding to OC(1), using −D2 =

1. On the other hand, note that the torsor contained in MC◦ corresponding to

(1, 0) is the torsor of OC and the torsor corresponding to (0, 1) is the torsor of

the ideal OC(−p). Hence (1,−1) ∈ Γ(C,MC◦) corresponds to OC(1). Choosing

an isomorphism of torsors then lifts the map f̄ ♭ to a map f ♭ : f ∗MX → MC◦

inducing a morphism f : C◦ → X .

Note this morphism does not lift to C ′ → W ′ = Spec(k[ǫ]/(ǫ2)) as in Examples

2.11, (3), since we can’t even lift f̄ ♭ at the level of ghost sheaves. Indeed, (1,−1)

is not a section of the ghost sheaf of (C ′)◦.

2.2. Combinatorial Types. Now assume the target X → B has the logarith-

mic structure MX defined in the Zariski site, and B = Spec k with the trivial

logarithmic structure. The combinatorial structure of punctured maps is similar

to the case of logarithmic maps in [GS13, AC14, Che14] except at the punctured

points. We explain the combinatorial structure below.

2.2.1. Induced maps of monoids. Suppose given a punctured map (π : C◦ →
W,p, f : C◦ → X) over W . We write M := f ∗MX . Taking the corresponding

morphisms of sheaves of monoids, we have

(2.2) (MW ,MC , ψ : π∗MW → MC , ϕ : M → E)
where ψ = π̄♭ and ϕ is given by the composition M → MC◦ ⊂ E := MC ⊕P Pgp

.

2.2.2. The ghost sheaf category GS(M). Just as in [GS13], we may focus on the

combinatorial structure, and define the category GS(M) as follows.

Let C →W be a family of underlying pre-stable curves with markings p, and

let f : C → X be a morphism, hence M := f ∗MX . An object of GS(M) is

abstractly a collection of data (2.2) such that

(1) The data (MW ,MC , ψ : π∗MW → MC) come from a log curve C →W .

(2) The pair of morphisms (ψ, ϕ) satisfies the descriptions in Sections 2.2.3

and 2.2.4 below over each geometric fiber.

A morphism of objects in GS(M)

(MW,1,MC,1, ψ1, ϕ1) → (MW,2,MC,2, ψ2, ϕ2)

is given by a pair of local homomorphisms1 MW,1 → MW,2 and MC,1 → MC,2

with the obvious compatibilities with ψi and ϕi, i = 1, 2.

Note that the descriptions in Sections 2.2.3 and 2.2.4 below are only necessary

conditions for an object (2.2) to be induced from a punctured map. The category

GS(M) is, roughly speaking, the collection of objects of the form (2.2) which

satisfy these necessary conditions. Similarly as in [GS13], Discussion 1.8, these

descriptions determine an object of GS(M).

We next describe the pair (ψ, ϕ) over geometric fibers, and assume W =

Spec(Q→ k).

1A homomorphism of monoids ϕ : P → Q is local if ϕ−1(Q×) = P×.
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2.2.3. The structure of ψ. The morphism ψ is an isomorphism when restricted

to the complement of the special (nodal or punctured) points of C◦. The sheaf E
has stalks Q⊕Z and Q⊕N N

2 at punctured points and nodal points respectively.

The fibred sum in the nodal point case is determined by a map

(2.3) N → Q, 1 7→ ρq

and the diagonal map N → N2 (see Def. 1.5 of [GS13]). The map ψ at these

special points is given by the inclusions of Q into the first components of the

direct sums Q⊕ Z and Q⊕N N2.

2.2.4. The structure of ϕ. For any point y ∈ C◦ and its algebraic closure ȳ → y,

the morphism ϕ induces a well-defined morphism ϕȳ : Py → MC◦,ȳ ⊂ Eȳ for

Py := My

as the logarithmic structure M is Zariski. Away from the punctured points, the

description of ϕ is identical to the case of stable logarithmic maps. Following

Discussion 1.8 of [GS13], we have the following behavior at points on C◦:

(i) y = η is a generic point, giving a local homomorphism of monoids

ϕη̄ : Pη −→ Q.

(ii) y = p is a punctured point. We have up the composition

(2.4) up : Pp
ϕp̄−→Q⊕ Z

pr2−→Z.

The element up ∈ P ∗
p is called the contact order at the puncture p.

(iii) y = q is a node contained in the closures of η1, η2. If χi : Pq → Pηi are the

generization maps, there exists a homomorphism

uq : Pq → Z,

called the contact order at q, such that

(2.5) ϕη̄2
(
χ2(m)

)
− ϕη̄1

(
χ1(m)

)
= uq(m) · ρq,

with ρq 6= 0 given in Equation (2.3), see [GS13], (1.8). These data completely

determines the local homomorphism ϕq̄ : Pq → Q⊕N N2.

The choice of ordering η1, η2 for the branches of C containing a node is

called an orientation of the node. We note that reversing the orientation of

a node q (by interchanging η1 and η2) results in reversing the sign of uq.

Remark 2.18. If up ∈ P ∨
p , i.e., takes values only in N ⊂ Z, then a punctured

point behaves precisely like marked points as previously considered in [Che14,

AC14, GS13]. Indeed, in this case pre-stability implies that MC and MC◦ agree

along p. Thus there is no need to distinguish between punctured points and

marked points previously considered in the above references. However, we will

use the convention that a punctured point with contact order up ∈ P ∨
p is called a

marked point.
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Remark 2.19. Let f : C◦/W → X be a punctured map withW = Spec(Q→ k).

Suppose p ∈ C is a punctured point which is not a marked point, and let C ′ be

the irreducible component containing p, with generic point η. Then, intuitively,

C ′ has negative order of tangency with certain strata in X , and this forces C ′ to

be contained in those strata.

Explicitly, if δ ∈ Pp with up(δ) < 0, then we must have pr1 ◦ϕp(δ) 6= 0, as

there is no element of MC◦,p ⊂ Q ⊕ Z of the form (0, n) with n < 0. Thus if

χ : Pp → Pη denotes the generization map, we must have u−1
p (Z<0)∩ χ−1(0) = ∅.

This restricts the strata in which f(C ′) can lie.

For example, if X = (X,D) for a simple normal crossings divisor D with

irreducible components D1, . . . , Dn, then Pp =
⊕

i:f(p)∈Di
N. The value up on the

generator of Pp corresponding to Di is the contact order with Di. Then f(C ′)

must lie in the intersection of Di that have negative contact order at p.

2.2.5. Dual graphs and combinatorial types. To describe the combinatorial struc-

ture of nodal curves and their maps, a graph G will consist of a set of vertices

V (G), a set of edges E(G) and a separate set of legs or half-edges L(G), with

appropriate incidence relations between vertices and edges, and between vertices

and half-edges.

Let GC be the dual intersection graph of the underlying curve C. This is the

graph which has a vertex vη for each generic point η of C, an edge Eq joining

vη1 , vη2 for each node q contained in the closure of η1 and η2, and where Eq is

a loop if q is a double point in an irreducible component of C. Note that an

ordering of the two branches of C at a node gives rise to an orientation on the

corresponding edge. Finally, GC has a leg Ly with endpoint vη for each punctured

point y contained in the closure of η.

Definition 2.20. Given an object in GS(M) of the form (2.2) over a geometric

point W , its combinatorial type is a pair (GC ,u = {up} ∪ {uq}) such that

(1) GC is the dual intersection graph.

(2) up ∈ P ∗
p is the contact order corresponding to each punctured point in p.

(3) uq ∈ P ∗
p is the contact order corresponding to each oriented node of C.

Given a combinatorial type (GC ,u), denote by GS(M,u) the full subcategory

of GS(M) with objects of type (GC ,u). Note that the dual intersection graph

GC is determined by the underlying curve C.

The combinatorial type of a punctured map over a logarithmic point is the

combinatorial type of its associated object in GS(M).

2.2.6. Generization of combinatorial types. We consider a punctured map (C◦ →
W,p, f) over an arbitrary fine and saturated logarithmic scheme W .

Lemma 2.21. Let (G,u) and (G′,u′) be the combinatorial types of the punctured

map at two geometric points w̄ → W , w̄′ → W with w̄ ∈ cl(w̄′). For y ∈ Cw̄,

y′ ∈ Cw̄′ with y ∈ cl(y′), let χy′,y : Py → Py′ be the generization map of the stalks
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of f ∗MX . Then if y, y′ are punctured or nodal, we have

uy = uy′ ◦ χy′,y.

Proof. The proof is exactly as in [GS13], Lemma 1.11, with punctures being

treated like marked points in that proof. ♠

2.3. Basicness.

2.3.1. Construction of the monoid. We follow Construction 1.16 of [GS13]. Sup-

pose given C → W with W a geometric point. Let (G,u) be a combinatorial

type for GS(M) and assume GS(M,u) is non-empty.

Consider the following monoid

(2.6) N :=
∏

η

Pη ×
∏

q

N

where η runs through all the generic points of irreducible components, and q

runs through the nodes of C. For a node q ∈ C and two generic points η1, η2
corresponding to the two branches meeting at q, denote by χηi,q : Pq → Pηi the

two generization maps. For each m ∈ Pq, let

aq(m) :=
(
(. . . , χη1,q(m), . . . ,−χη2,q(m), . . .), (. . . , uq(m), . . .)

)
∈ Ngp

be the element with all vanishing entries except the indicated ones at places η1, η2
and q. Let R ⊂ Ngp be the subgroup generated by aq(m) for all nodes q ∈ C and

m ∈ Pq, and R
sat be its saturation in Ngp. The natural map

Ngp
/
R → Ngp

/
Rsat

is the quotient by the torsion subgroup of Ngp
/
R. Hence Ngp

/
Rsat is torsion

free.

Denote by N
/
Rsat the image monoid of the following composition

N →֒ Ngp → Ngp
/
Rsat.

Define the basic monoid Q to be the saturation of N
/
Rsat in Ngp

/
Rsat. By

definition, the monoid Q is fine and saturated.

The inclusions of the various factors define homomorphisms

ϕη̄ : Pη →
∏

η

Pη ×
∏

q

N → Q,

N →
∏

η

Pη ×
∏

q

N → Q, 1 7→ ρq,
(2.7)

The element aq(m) is precisely the difference of the two sides of (2.5), so (2.5)

holds for these choices of ϕη̄ and ρq with the given uq. Thus the data Q, ρq, and

ϕη̄ define a distinguished basic object (Q,MC , ψ, ϕ) of GS(M,u), except that we

don’t know that Q× = 0, so that all relevant morphisms are local.
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2.3.2. Basic families.

Proposition 2.22. If GS(M,u) 6= ∅, then it has as an initial object the basic

object (Q,MC , ψ, ϕ) from Section 2.3.1.

Proof. This is identical to [GS13], Proposition 1.19. ♠

Definition 2.23. A pre-stable punctured map (C/W,p, f) is called basic if for

any geometric point w̄ → W the induced object of GS(f ∗

w̄
MX ,u) is initial, i.e.

the basic object. Here u is given by the combinatorial type of (C/W,p, f) at w̄.

Proposition 2.24. Let (C/W,p, f) be a pre-stable punctured map. Then

Ω := {w̄ ∈ |W |
∣∣ {w̄} ×W (C/W,p, f) is basic}

is an open subset of |W |.

Proof. This is identical to [GS13], Proposition 1.22. ♠

Proposition 2.25. Any pre-stable punctured map to the target X arises as the

pull-back from a basic pre-stable punctured map with the same underlying ordinary

pre-stable map. Both the basic pre-stable punctured map and the morphism are

unique up to a unique isomorphism.

Proof. The proof is similar to [GS13], Proposition 1.24, however some care must

be taken at the punctures. Let (C → W,p, f) be a pre-stable punctured map.

For each geometric point w̄ ∈ W , one obtains a combinatorial type (Gw̄,uw̄) by

restriction, and these types are compatible under generization by Lemma 2.21.

Following the argument of Lemma 1.23 of [GS13], one has an initial object of the

full subcategory GS
(
M, (uw̄)

)
of objects of GS(M) that have type uw̄ over the

geometric point w̄. Write this universal object as (MW,bas,MC,bas, ψbas, ϕbas).

On the other hand, write the object of GS(M) determined by the given pre-

stable punctured map as (MW ,MC , ψ, ϕ). Recall the notation ϕ : M → E and

ϕbas : M → Ebas from (2.2). Furthermore, as we have a map Ebas → E , the basic

object being the initial object in the category, we then define MC◦,bas ⊂ Ebas to

be the fine sub-sheaf generated by the image of MC,bas ⊕M → Ebas.

We observe that the composition MC◦,bas →֒ Ebas → E factors through MC◦ .

Indeed, the composition MC,bas → Ebas → E factors through MC ⊂ MC◦ , and

the composition M → Ebas → E factors through M → MC◦ → E .
As in the proof of [GS13], Proposition 1.24, we can now define

MW,bas =MW ×MW
MW,bas,

MC,bas =MC ×MC
MC,bas,

MC◦,bas =MC◦ ×MC◦
MC◦,bas.

Each of these is a log structure with the structure map being the composition

of the projection to the first factor followed by the structure map for that log

structure.
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The inclusion MC → MC◦ induces an inclusion of log structures MC,bas →
MC◦,bas. Furthermore for any local section s of MC◦,bas, if s /∈ MC,bas then the

image of s via MC◦,bas → MC◦ is not contained in MC , hence αMC◦,bas
(s) =

0 ∈ OC . Thus, using Remark 2.2, we have a puncturing C◦
bas = (C,MC◦,bas) →

(C,MC,bas) along the sections of p. As in the proof of [GS13], Proposition 1.24,

this now allows us to define a basic punctured map fbas : C
◦
bas → X over Wbas =

(W,MW,bas). Since MC◦,bas is generated by the image of MC,bas ⊕M → Ebas,

the map fbas is pre-stable.

Denote by fbas,W : C◦
bas,W → X the pull-back of the punctured map fbas via

W → Wbas. Since fbas is pre-stable, fbas,W is also pre-stable. Observe that

the morphism M → MC◦ factors through MC◦

bas
→ MC◦, hence the pre-stable

punctured map f : C◦ → Y factors through fbas,W . By Proposition 2.4, the two

punctured maps f and fbas,W are isomorphic. Thus, f is the pull-back of the

basic map fbas. ♠
Proposition 2.26. An automorphism ϕ : C◦/W → C◦/W of a basic pre-stable

punctured map (C◦/W,p, f) with ϕ = idC◦ is trivial.

Proof. This is identical to [GS13], Proposition 1.25. ♠
2.4. Family of targets. More generally, we consider a relative target X → B

with MX defined in the Zariski site.

Definition 2.27. A pre-stable punctured map to the family X → B is called

basic if the induced pre-stable punctured map to the target X is basic.

Proposition 2.28. Any pre-stable punctured map to the family X → B arises

as the pull-back from a basic pre-stable punctured map to X → B with the same

underlying ordinary pre-stable map. Both the basic pre-stable punctured map and

the morphism are unique up to a unique isomorphism.

Proof. Consider a pre-stable punctured map (C◦ → W,p, f) to the family X →
B. Forgetting the morphism to B, denote by fbas : C

◦
bas → X the corresponding

basic punctured map over Wbas as in Proposition 2.25. We have a canonical

commutative diagram of solid arrows as follows:

C◦ //

��

f

++C◦
bas fbas

//

��

X

��

W //

h

33Wbas
hbas

//❴❴❴❴❴❴ B.

We will show that there is a canonical dashed arrow hbas making the above dia-

gram commutative, hence the desired basic punctured map to X → B.

Since the underlying morphism W → W bas is an isomorphism, pulling back to

W it suffices to show that the morphism h∗MB → MW factors through MWbas

canonically.
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Pulling back to C, we observe that the composition MB|C → MX |C → MC◦

factors through MW |C . Thus, the contact order of any elements in MB is trivial

at all nodes and punctures. Consequently, the composition MB|C → MX |C →
MC◦

bas
factors through MWbas

|C . Since ghost sheaves are constructible, and the

fiber of C → W is connected, the morphism MB|C → MWbas
|C descends to a

morphism h̄♭bas : MB|W → MWbas
.

To see that h̄♭bas lifts to a morphism of logarithmic structures, notice that any

global section δ of MB, viewed as a global section of MB|C , maps to a global

section f ♭bas(δ) of MWbas
|C ⊂ MC◦

bas
. As the family C → W is proper, f ♭bas(δ) is

constant over each fiber of C →W , hence descends to a section h♭bas(δ) of MWbas
.

This defines the desired morphism h♭bas. ♠
2.5. Puncturing log-ideals. The punctured points which are not marked points

impose extra important constraints we now describe. This is a key new feature of

the theory. Given a monoid Q and a punctured log map over W = Spec(Q→ k)

with puncture p contained in a component with generic point η, consider the

commutative diagram

(2.8) Pp
ϕp

//

χη,p

��

Q⊕ Z

χ′
η,p

��

Pη
ϕη̄

// Q

where vertical arrows are generization maps. The morphism χ′
η,p is the projection

to the first factor. Then ϕp is given by

(2.9) m 7→ ϕp(m) =
(
ϕη̄ ◦ χη,p(m), up(m)

)
∈ MC◦,p ⊂ Q⊕ Z.

Suppose that up(m) < 0. By (2) of Definition 2.1, any lifting of ϕp(m) to MC◦

has its image in OC vanishing in a neighborhood of p. By the commutativity of

the above diagram, we thus have ϕη̄ ◦χη,p(m) 6= 0. We summarize the constraint

of ϕ around p as follows:

(2.10) for any m ∈ Pp such that up(m) < 0, we have ϕη̄ ◦ χη,p(m) 6= 0.

Denote by K ⊂ Q the ideal

(2.11) 〈ϕη̄ ◦ χη,p(m) | there is a puncture p and m ∈ Pp such that up(m) < 0〉
and call it the puncturing ideal of the punctured map.

Given a fine log scheme W , a sheaf of ideals K ⊂ MW is called coherent if for

any w,w′ ∈ W with w ∈ cl(w′), the generization map Kw̄ → Kw̄′ is surjective.

Lemma 2.29. The fiber-wise constructed ideal in Equation (2.11) glues to a

coherent sheaf of ideals KW ⊂ MW .

Proof. It suffices to verify the construction in (2.11) is compatible with gener-

ization. More explicitly, consider two geometric points w̄ → W , w̄′ → W with

w̄ ∈ cl(w̄′). Denote by Kw̄ and Kw̄′ the two puncturing ideals associated to the
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corresponding fibers of punctured maps. We need to show that the image of the

composition Kw̄ → MW,w̄ → MW,w̄′ generates Kw̄′.

Take a punctured point p̄ over w̄ and a punctured point p̄′ over w̄′ such that

p ∈ cl(p′). Write Qw̄ = MW,w̄ and Qw̄′ = MW,w̄′. Lemma 2.21 implies the

following commutative diagram

u−1
p (Z<0)

�

�

//

��

Pp //

χp′p

��

Qw̄ ⊕ Z

��

// Qw̄

��

u−1
p′ (Z<0)

�

�

// Pp′ // Qw̄′ ⊕ Z // Qw̄′

where all the vertical arrows are generization maps. By the construction in (2.11)

the puncturing ideals Kw̄ and Kw̄′ are generated by the images of u−1
p (Z<0) → Qw̄

and u−1
p′ (Z<0) → Qw̄′ respectively for all punctures. It remains to show that

u−1
p (Z<0) → u−1

p′ (Z<0) is surjective.

Consider the sub-monoid F = χ−1
p′p(0) ⊂ Pp. Denote by F−1Pp′ ⊂ P gp

p the

submonoid generated by Pp and F gp. Then the quotient h : F−1Pp → Pp′ by

F gp yields an isomorphism F−1Pp/F
gp ∼= Pp′. For any a′ ∈ up′(Z<0), choose

a ∈ F−1Pp′ such that h(a) = a′. Note that if a ∈ Pp then a ∈ u−1
p (Z<0) by

Lemma 2.21. Suppose a /∈ Pp. Then it is of the form a = b − c for some b ∈ Pp
and c ∈ F . Observe that up(F ) = 0. Thus, we have b ∈ u−1

p (Z<0) and h(b) = a′.

This proves the desired surjectivity. ♠

Recall (see e.g., [Ogu18], III §1.3) that a log-ideal K over a fine log scheme W

is a sheaf of ideals K of MW . A log-ideal K over W is called coherent if for any

points x, y ∈ W with x ∈ cl(y), the generization map Kx̄ → Kȳ is surjective.

Given a morphism of fine log schemes h : T → W and a log-ideal K over W ,

the pull-back f •K is the log-ideal over T generated by the image of f−1K →
f−1MW → MT . The pull-back f̄ •(K) of an ideal K ⊂ MW is defined similarly.

Observe that if K (respectively K) is coherent, the pull-back f •K (respectively

f̄ •K) is coherent as well.

For any pre-stable punctured map f : C◦ → X over W , let KW ⊂ MW be

the coherent sheaf of ideals introduced in Lemma 2.29. Consider the log-ideal

KW := MW ×MKW ⊂ MW . The coherence of KW implies the coherence of KW .

Definition 2.30. The coherent log-ideal KW is called the puncturing log-ideal

associated to the pre-stable punctured map f : C◦ → X over W . The log-ideal

KW is said to be basic if f is basic.

Proposition 2.31. Let f : C◦ → X be any pre-stable punctured map over W ,

and fT : C◦
T → X be the pull-back of f via h : T → W . Then f •KW = KT . In

particular, KW is the pull-back of the corresponding basic puncturing log-ideal.

Proof. It suffices to show that h̄•KW = KT , and it suffices to check this at each

geometric point. We may assume that both T and W are geometric points. For
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each punctured point p, let up : Pp → Z be the contact order at p. We have the

following commutative diagram:

u−1
p (Z<0)

�

�

//

=

��

Pp
f̄♭

//

=

��

MW ⊕ Z //

��

MW

h̄♭

��

u−1
p (Z<0)

�

�

// Pp
f̄♭T

// MT ⊕ Z // MT .

The puncturing ideals KW and KT are generated by the images of compositions

of the top and bottom arrows respectively for all punctures, see (2.11), and hence

the statement follows. ♠

The puncturing log-ideal is a new phenomenon for punctured maps compared

to log maps which puts extra constraints as follows.

Theorem 2.32. Let f : C◦ → X be any pre-stable punctured map over W , and

KW be the corresponding puncturing log-ideal. Then we have αMW
(KW ) = 0.

Proof. Since the statement can be checked locally on W , shrinking W we may

assume given a chart γ : MW,w → MW for some geometric point w ∈ W . Since

KW is coherent, it is generated by γ(KW,w). It suffices to show that αMW
◦

γ(KW,w) = 0.

Let p ∈ C◦
w be a puncture with contact order up. For any δ̄ ∈ u−1

p (Z<0) ⊂ Pp,

denote by ēδ̄ its image via the following composition

Pp
f̄♭−→ MW,w ⊕ Z

pr1−→ MW,w.

Let eδ̄ be a local section of MW over ēδ̄. It suffices to note that by Definition 2.1,

(2), αMW
(eδ̄) = 0. ♠

This demonstrates that the base of a family of punctured maps is naturally an

idealized log scheme (or stack). We recall from [Ogu18, III Def. 1.3]:

Definition 2.33. An idealized log scheme is a log scheme (X,MX) equipped

with a sheaf of ideals KX ⊆ MX such that KX ⊆ α−1
X (0). A morphism of

idealized log schemes f : X → Y is a morphism of log schemes such that f ♭ maps

f−1(KY ) into KX .

Corollary 2.34. In the situation of Theorem 2.32, the triple (W,MW ,KW ) is a

coherent idealized log scheme.

2.6. Contact orders. For a target X , consider the following étale sheaves over

X :

M∨

X = Hom(MX ,N) and M∗

X = Hom(MX ,Z) ∼= Hom(Mgp

X ,Z).

Definition 2.35. A family of contact orders of X consists of a strict morphism

Z → X and a section u ∈ Γ(Z,M∗

Z) satisfying the following condition. Let
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u : MZ → MZ
u→ Z be the composite homomorphism associated to u. Then the

map α : MZ → OZ sends u−1(Z r {0}) to 0.

We call the ideal Iu ⊂ MZ generated by u−1(Z r {0}) the contact ideal asso-

ciated to u, and denote by Iu the corresponding ghost contact ideal in MZ .

The family of contact orders is said to be connected if Z is connected.

For simplicity, we will refer to u as the contact order when there is no con-

fusion about the strict morphism Z → X . Given a family of contact orders

u ∈ Γ(Z,M∗

Z) of X , the pull-back of u along a strict morphism Z ′ → Z defines

a family of contact orders u′ ∈ Γ(Z ′,M∗

Z′).

Example 2.36. To motivate this definition, consider a punctured map f : C◦ →
X over W , and a section p ∈ p. Take Z :=W , and give Z the log structure given

by pull-back of MX via f ◦ p, so that Z → X is strict. Let u be the following

composition

(2.12) MZ
f̄♭−→ p∗MC◦ ⊂ MW ⊕ Z −→ Z.

where the last arrow is the projection to the second factor.

We claim that u defines a family of contact orders of X . Indeed, let δ ∈ MZ

and represent f ♭(δ) = (eδ, σ
up(δ)), where σ is the element of MC corresponding

to a local defining equation of the section p.

If up(δ) > 0 then

αZ(δ) = p∗αC(f
♭(δ)) = p∗αC(eδ) · p∗αC(σup(δ)) = 0

since p∗αC(σ) = 0.

If up(δ) < 0 then f ♭(δ) /∈ MC and hence, by Definition 2.1 (2) we have αZ(δ) =

0.

2.6.1. Family of contact orders of Artin cones. Let u ∈ Γ(Z,M∗

Z) be a family of

contact orders of X . For any strict morphism X → Y , u is naturally a family of

contact orders of Y via the composition Z → X → Y . Thus we may parameterize

contact orders of the Artin fan AX instead of X . We first study the local case.

Consider a fine saturated sharp monoid σ and the Artin cone

(2.13) Aσ = [Spec(σ∨ → k[σ∨])/ Spec(k[σ∗])].

Choose an integral vector u ∈ σgp. Let Iu be the ideal of σ
∨ generated by u−1(Zr

{0}). This generates a k[σ∗]-invariant ideal in k[σ∨], defining a closed substack

Zu,σ ⊂ Aσ. We proceed to construct a family of contact orders parametrized by

Zu,σ.

For each face τ ≺ σ, denote by Zτ≺σ ⊂ Aσ the locally closed sub-stack where

the fiber of M∨

Zτ≺σ
is identified with τ .

Lemma 2.37. We have (Zu,σ)red =
⋃
τgp∋uZτ≺σ ⊂ Aσ.

Proof. Working with monoid ideals, we want to show that
√
Iu coincides with the

monoid ideal I(∪τgp∋uZτ≺σ) of monomials vanishing on the union ∪τgp∋uZτ≺σ.
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Note that I(Zτ≺σ) = σ∨ r (τ⊥ ∩ σ∨). The ideal
√
Iu defines some union of strata

and we identify those strata Zτ≺σ on which it vanishes. If u /∈ τ gp there is an

element p ∈ τ⊥ ∩ σ∨ such that u(p) 6= 0. Therefore p ∈ Iu but the monomial zp

does not vanish at the generic point of Zτ≺σ. If u ∈ τ gp, and if p ∈ u−1(Zr {0}),
then p /∈ τ⊥ ∩ σ∨, hence zp vanishes along Zτ≺σ. ♠

As MZu,σ and Z are constructible, we have

Γ(Zu,σ,M∗

Zu,σ
) = Γ((Zu,σ)red,M∗

(Zu,σ)red
).

We define an element uu,σ of this group by defining it on stalks in a manner

compatible with generization. For a point z ∈ Zτ≺σ the condition u ∈ τ gp

guarantees that u : σ∨ → Z descends to u : MZu,σ,z = (σ∨ + τ⊥)/τ⊥ → Z. Being

induced by the same element u, this is compatible with generization. Note that

the scheme Zu,σ was defined in such a way so that αZu,σ(Iuu,σ) = 0, so that Zu,σ

acquires the structure of an idealized log stack.

Thus u defines a family of contact orders of Aσ

(2.14) uu,σ ∈ Γ(Zu,σ,M∗

Zu,σ
).

It is connected since the most degenerate stratum Zσ≺σ is contained in the closure

of Zτ≺σ for any face τ .

Lemma 2.38. For any connected family of contact orders u ∈ Γ(Z,M∗

Z) of Aσ,

there exists a unique u ∈ σgp such that ψ : Z → Aσ factors uniquely through Zu,σ,

and uu,σ pulls back to u.

Proof. The global chart σ∨ → MAσ over Aσ pulls back to a global chart σ∨ →
MZ over Z. The composition σ∨ −→ MZ

u−→ Z defines an integral vector

u ∈ σgp. Consider the sheaf of monoid ideals Ju ⊂ MAσ generated by Iu. By

definition of the contact ideal Iu we have Iu = ψ•Ju. Since αZ(Iu) = 0 we have

the factorization Z → Zu,σ = V (αAσ(Ju)) of ψ, with u the pull-back of uu,σ. ♠
We can now assemble all the Zu,σ by defining

Zσ =
∐

u∈σgp

Zu,σ,

and write ψσ : Zσ → Aσ for the morphism which restricts to the closed immersion

Zu,σ →֒ Aσ on each connected component Zu,σ of Zσ. Then the uu,σ yield a

section uσ ∈ Γ(Zσ,M∗

Zσ
), giving the universal family of contact orders over Aσ,

as follows immediately from Lemma 2.38 by restricting to connected components.

Lemma 2.39. For any family of contact orders u ∈ Γ(Z,M∗

Z) of Aσ, ψ : Z →
Aσ factors uniquely through Zσ, and uσ pulls back to u.

Lemma 2.40. If τ is a face of σ, viewing Aτ naturally as an open substack of

Aσ we then have Zτ
∼= ψ−1

σ (Aτ ), and the section uσ ∈ Γ(Zσ,M∗

Zσ
) pulls back to

the section uτ ∈ Γ(Zτ ,M∗

Zτ
).
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Proof. Note that the open immersion Aτ ⊆ Aσ is induced by the open immersion

of toric varieties Spec k[σ∨ + τ⊥] ⊆ Spec k[σ∨]. From Lemma 2.37, it follows that

Zu,σ∩ψ−1
σ (Aτ) is non-empty if and only if u ∈ τ gp. If u ∈ τ gp, then Zu,τ is defined

by the monoid ideal in σ∨ + τ⊥ generated by u−1(Z r {0}), and this coincides

with the extension of the monoid ideal in σ∨ defining Zu,σ. Thus in this case

Zu,τ = ψ−1
σ (Aτ) ∩ Zu,σ, giving the first claim.

Let u ∈ σgp be the vector corresponding to a component uu,σ of u. Observe

that if u 6∈ τ gp, then the image of Zu,σ → Aσ avoids Aτ ⊆ Aσ. Furthermore, if

u ∈ τ gp, then uu,σ pulls back to uu,τ by the construction of (2.14). Therefore,

uσ ∈ Γ(Zσ,M∗

Zσ
) pulls back to the section uτ ∈ Γ(Zτ ,M∗

Zτ
). ♠

2.6.2. Family of contact orders of Zariski Artin fans. We now consider the case

of an Artin fan AX . Recall that AX has an étale cover by Artin cones, and

was constructed in [ACMW17, Proposition 3.1.1], as a colimit of Artin cones Aσ,

viewed as sheaves over Log.

Definition 2.41. We say that the Artin fan AX is Zariski if it admits a Zariski

cover by Artin cones.

It was shown, for example, in [ACGS17, Lemma 2.2.4], that if X is log smooth

over k then AX is Zariski.

Over a Zariski Artin fan, one can construct Z as the colimit of the Zσ viewed

as sheaves over AX . Indeed, Z is obtained by gluing together the local model Zσ

for each Zariski open Aσ ⊂ AX via the canonical identification given by Lemma

2.40.2

We then have

Proposition 2.42. There is a section uX ∈ Γ(Z,M∗

Z) making Z into a family

of contact orders for AX . This family of contact orders is universal in the sense

that for any family of contact orders u ∈ Γ(Z,M∗

Z) of AX , ψ : Z → AX , there is

a unique factorization of ψ through Z → AX such that u is the pull-back of uX .

Proof. If Aσ → AX is a Zariski open set, then by the construction of Z,

Z ×AX
Aσ = Zσ.

By Lemma 2.40, the sections uσ glue to give a section uX ∈ Γ(Z,M∗

Z), yielding

a family of contact orders in AX .

Consider a family of contact orders Z → AX , u. To show the desired factor-

ization, it suffices to prove the existence and uniqueness locally on each Zariski

open subset Aσ → AX , which follows from Lemma 2.39. ♠
Definition 2.43. A connected contact order for X is a choice of connected com-

ponent of Z.

2It should be possible to carry this process out for more general Artin fans. However, given

how rarely one needs more general Artin fans in practice, it did not seem to be worth the extra

technical baggage to carry this out.
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We end this discussion with a couple of properties of the space Z of contact

orders.

Proposition 2.44. Suppose that the Artin fan AX of X is Zariski. There is a

one-to-one correspondence between irreducible components of Z and pairs (u, σ)

where σ ∈ Σ(X) is a minimal cone such that u ∈ σgp.

Proof. Since we are interested in classifying irreducible components of contact or-

ders, we may assume AX = Aσ. Then the statement follows from the description

of Zu,σ in Lemma 2.37. ♠
Remark 2.45. Note that if u ∈ σ or −u ∈ σ, then Zu,σ is already irreducible,

being the closure of the stratum Zτ≺σ where τ ⊂ σ is the minimal face containing

u. Further, the ideal generated by u−1(Zr{0}) is precisely σ∨r τ⊥, so that Zu,σ

is reduced. In the case that u ∈ σ, this is the case of contact orders associated

to ordinary marked points, as developed in [Che14],[AC14],[GS13]. The situation

for more general contact orders associated to punctured points may be more

complex, and in addition, even in the Zariski case, there may be monodromy.

For example, consider the three-dimensional toric variety Y (not of finite type)

defined by a fan consisting of the collection of three-dimensional cones

Σ[3] = {R≥0(n, 0, 1) + R≥0(n + 1, 0, 1) + R≥0(n, 1, 1) + R≥0(n + 1, 1, 1) |n ∈ Z}
and their faces. Projection onto the third coordinate yields a toric morphism

Y → A1. After a base-change Ŷ = Y ×A1 Spec k[[t]] → Spec k[[t]], one may

divide out Ŷ by the action of Z defined as follows. This action is generated by

an automorphism of Ŷ induced by an automorphism of Y defined over A1. This

automorphism is given torically via the linear transformation Z3 → Z3 given by

the matrix 

1 0 ℓ

0 −1 1

0 0 1




where ℓ is a fixed positive integer. We then define X = Ŷ /Z, with log structure

induced by the toric log structure on Y . Then X → Spec k[[t]] is a degeneration of

the total space of a Gm-torsor over an elliptic curve, the torsor corresponding to a

2-torsion element of the Picard group of the elliptic curve. As long as ℓ ≥ 2, X has

a Zariski log structure. Further, Σ(X) is a cone over a Möbius strip composed of

ℓ squares. If one takes u = (0, 1, 0) ∈ σgp for any three-dimensional cone in Σ(X),

then the twist in the Möbius strip identifies u with −u. The connected contact

order corresponding to such a u is then a cycle of 2ℓ copies of P1, mapping 2 to

1 to the cycle of ℓ copies of P1 contained in the central fibre of X → Spec k[[t]].

In fact, there exist examples where this kind of monodromy (even in a Zariski

log smooth situation) produces connected contact orders which have an infinite

number of components, and then one does not expect well-behaved moduli spaces.

Thus, additional hypotheses are usually needed to obtain good control of these

spaces. For example:
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Proposition 2.46. Suppose MX is generated by its global sections. Then ev-

ery connected component of contact orders of AX has finitely many irreducible

components.

Proof. Denote by σ∨ = Γ(X,MX). Suppose u ∈ Γ(Z,M∗

Z) is a connected

component of contact orders of AX . Denote the composition σ∨ −→ MZ
u−→ Z

by v. As MX is globally generated, for each irreducible component of Z, its

corresponding vector u as in Proposition 2.44 is uniquely determined by v. By

Proposition 2.44 again Z has finitely many irreducible components, as Σ(X) has

finitely many cones. ♠
2.6.3. Opposite contact orders. When we proceed to gluing punctured log curves,

we may only glue punctures p and p′ to form nodes when up = −up′. It is useful
to formalize this as follows.

If σ is a fine saturated sharp monoid, u ∈ σgp, then Zu,σ = Z−u,σ as closed

substacks of Aσ, as they are defined by the same ideal. Thus there is a natural

involution

opp : Zσ → Zσ

defined over Aσ taking Zu,σ to Z−u,σ for any u ∈ σgp. If AX is a Zariski Artin

fan, we can then patch this involution over each Aσ ⊂ AX to obtain an involution

opp : Z → Z.
Definition 2.47. We say two connected contact orders Z1,Z2 ⊂ Z are opposite

if opp(Z1) = Z2.

Remark 2.48. A connected contact order can be opposite to itself, as is the case

in the example given in Remark 2.45. However, an irreducible contact order is

only opposite to itself if the contact order is trivial, i.e., u = 0.

2.7. The tropical interpretation. The construction of the basic monoid in

[GS13] was motivated by a description of the dual of the basic monoid as a moduli

space of tropical curves. The tropical interpretation of a stable log map over the

standard log point is described in [GS13, §1.4], and the tropical interpretation

of the basic monoid is given in [GS13, Remark 1.18]. This is expanded on at

length in [ACGS17, §2.1.4]. Here we discuss briefly how punctures affect this

interpretation.

Recall from [GS13, Appendix B], or more generally [ACGS17, §2.1.4], the trop-
icalization functor. In [ACGS17, §2.1.4], we associate to any Deligne-Mumford fs

log stack X a generalized polyhedral complex Σ(X). For η the generic point of a

stratum of X , we have an associated cone

ση = Hom(MX,η̄,R≥0),

(a cone is viewed as also carrying an integral structure from the lattice M∗

X,η̄).

Then Σ(X) is the cone complex presented by a diagram of these cones with

morphisms between them the inclusions of faces dual to generization maps. In
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particular, a stable log map (C/W,p, f) gives rise via functoriality of Σ to the

diagram

(2.15) Σ(C)
Σ(f)

//

Σ(π)
��

Σ(X)

��

Σ(W ) // Σ(S)

This is then interpreted as a family of tropical curves, with each fibre of Σ(π)

being a graph, and Σ(f) restricted to a fibre defines a map to Σ(X). In the case

that W = Spec(Q → κ) is a log point, the basicness of (C/W,p, f) is then seen

to be a kind of universality of this family of tropical curves.

The same approach works in the punctured case: all we need to do is modify

the treatment of a marked point in [ACGS17, §2.5.4(iii)] to punctured points as

follows:

(iii′) If p ∈ C is a punctured point, then we describe σp = Hom(MC◦,p,R≥0)

as follows. Let Pp = MX,f(p) and Q = MW,π(p). Denote the dual of the

homomorphism f̄ ♭ : Pp → MC◦,p by (f̄ ♭)t. Then

σp =
(
((f̄ ♭)t)−1(P ∨

p ) ∩ (Q⊕ N)∨
)
R
.

Indeed, the stalk of the ghost sheaf at p of the prestable punctured loga-

rithmic structure is the smallest fine submonoid of Q⊕Z containing both

Q⊕ N and f̄ ♭Pp.

The map Σ(π) : σp → Q∨
R is the projection. Its fiber over an element

q ∈ Q∨
R is

{
n ≥ 0 | (f̄ ♭)t(q, 0) + n · up ∈ (P ∨

p )R
}
.

Here Σ(f)(q, 0) is the image of the vertex corresponding to the irreducible

component containing p, and pre-stability means that this is either a ray,

when up ∈ P ∨
p , namely p is a marked point, or a segment whose image

extends as far as possible in the cone (P ∨
p )R, if p is genuinely a puncture.

Note the fibres Σ(π)−1(x) of Σ(π) for x ∈ Int(Q∨
R) can be identified with the

dual graph GC of C, with the proviso that the legs of GC corresponding to

punctured points are either closed line segments or rays. If x instead lies in the

boundary of Q∨
R, Σ(π)

−1(x) is obtained from GC by contracting some edges and

legs of GC whose lengths have gone to zero.

Note the language of tropical curves from [ACGS16], Definitions 2.5.2 and 2.5.3

can be easily adapted to the current setting, as follows. We consider connected

graphs G with sets of vertices V (G), edges E(G) and legs L(G). However, unlike

in the marked point case, a leg may be a compact interval or a ray. In either

case, a leg has only one endpoint in V (G). A tropical curve Γ = (G, g, ℓ) of

combinatorial type (G, g) is the choice of a genus function g : V (G) → N and a

length function ℓ : E(G) → R>0.
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We summarize the definition of a tropical curve in Σ(X) as given in [ACGS16,

Def. 2.5.3], with the slight modification from punctures. We recall from [ACGS16,

§2.1] that a cone σ ∈ Σ(X) is equipped with a lattice of integral tangent vectors

Nσ. A tropical curve in Σ(X) is then data of (1) a tropical curve Γ; (2) a map

σ : V (G) ∪ E(G) ∪ L(G) → Σ(X),

thinking of Σ(X) as a set of cones; (3) a bijection between L(G) and a marking set;

(4) for each edge Eq ∈ E(G) with an orientation a weight vector uq ∈ Nσ(Eq) (the

lattice of integral tangent vectors to the cone σ(Eq)); (5) for each Ex ∈ L(G) an

element ux ∈ Nσ(Ex); (6) a continuous map f : |Γ| → |Σ(X)|. This data satisfies

conditions enumerated in [ACGS16], Definition 2.5.3, with one modification due

to punctures: if Ex ∈ L(G) is a leg with vertex v, it holds that f(Int(Ex)) ⊆
Int(σ(Ex)) and f maps Ex affine linearly to the ray or line segment

(2.16) (f(v) + R≥0ux) ∩ σ(Ex) ⊂ Nσ(Ex) ⊗Z R.

In other words, a leg Ex with vertex v associated to a punctured point is mapped

to the longest possible line segment in the cone σ(Ex) with one endpoint f(v)

with tangent direction ux. Thus if ux lies in the cone σ(Ex), in fact this line

segment is a ray, which is the case more clasically for marked points.

We also recall that if v1, v2 are vertices of an edge Eq from v1 to v2, then

f(Int(Eq)) ⊆ Int(σ(Eq)),

(2.17) f(v2)− f(v1) = ℓ(Eq)uq,

and f maps Eq affine linearly to the line segement joining f(v1) and f(v2).

A combinatorial type of tropical map to Σ(X) is all of the above data except

for the contiunous map f and the length function ℓ.

2.7.1. The balancing condition. The above discussion fits well with the tropical

balancing condition at vertices of the dual graph of C◦. In fact, the statement

[GS13, Proposition 1.15] holds unchanged. There is no balancing condition at the

endpoint of the segment described above. As we will need the balancing condition

to prove boundedness, we review this statement here.

Suppose given a stable punctured map (C/W,p, f) with W = Spec(N → κ)

the standard log point over a field. Let g : D̃ → C be the normalization of

an irreducible component D with generic point η of C. One then obtains, with

M = f ∗MX , composed maps

τXη : Γ(D̃, g∗M) −→ Pic D̃
deg−→ Z

τCη : Γ(D̃, g∗MC◦) −→ Pic D̃
deg−→ Z

with the first map on each line given by taking a section of the ghost sheaf to

the corresponding O×

D̃
-torsor. These are compatible: the pull-back of f ♭ to D̃,
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ϕ : g∗M → g∗MC◦ , induces ϕ̄ : g∗M → g∗MC◦ , and hence a commutative

diagram

Γ(D̃, g∗M)
ϕ̄

//

τXη
((◗◗

◗◗
◗◗

◗◗◗
◗◗◗

◗◗
◗◗

Γ(D̃, g∗MC◦)

τCη
��

Z

The map τXη is given by f and M, so is dependent on the geometry of f : C◦ →
X ; however if f contracts D, then τXη = 0. On the other hand, τCη is determined

using the notation in [GS13, §1.4]. Explicitly, for each point q ∈ D over a node

of C we have MC◦,q̄ = Seq , the submonoid of N2 generated by (0, eq), (eq, 0) and

(1, 1). The generization map χq : MC◦,q̄ → MC◦,η̄ = N is given by projection to

the second coordinate: χq(a, b) = b. We then have

Γ(D̃, g∗MC◦) ⊆ Γ(D̃, g∗E),
where

Γ(D̃, g∗E) =

{
(nq)q∈D̃

∣∣∣∣
nq ∈ Seq and χq(nq) = χq′(nq′)

for q, q′ ∈ D̃

}
⊕
⊕

p∈D̃

Z,

We then obtain, with proof identical to that of [GS13, Lemma 1.14]:

Lemma 2.49. τCη
(
((aq, b)q∈D̃, (np)p∈D̃)

)
= −∑p∈D̃ np +

∑
q∈D̃

b−aq
eq

.

The equation τXη = τCη ◦ ϕ is a formula in ND := Γ(D̃, g∗Mgp
)∗, which is

described in [GS13, Equations (1.12), (1.13)] as follows. Let Σ ⊂ D̃ be the set of

special points p, q in D̃, that is mapping to a special point of D. Then

ND = lim
−→

x∈D̃

P ∗
x =

(
⊕

x∈Σ

P ∗
x

)/
∼

where for any a ∈ P ∗
η and any x, x′ ∈ Σ,

(0, . . . , 0, ιx,η(a), 0, . . . , 0) ∼ (0, . . . , 0, ιx′,η(a), 0, . . . , 0).

Here ιx,η : P ∗
η → P ∗

x is the dual of generization, and the non-zero entries lie in

the position indexed by x and x′ respectively.

We then have, exactly as in [GS13, Proposition 1.15], the balancing condiiton:

Proposition 2.50. Suppose (C/W,p, f) is a stable punctured map to X/S with

W = Spec(N → κ) a standard log point. Let D ⊂ C be an irreducible component

with generic point η and Σ ⊂ D̃ the preimage of the set of special points. If

τXη ∈ Γ(D̃, g∗Mgp
)∗ is represented by (τx)x∈Σ, then

(ux)x∈Σ + (τx)x∈Σ = 0

in ND = Γ(D̃, g∗Mgp
)∗.

The following is an encapsulation of balancing which gives easy to use restric-

tions on curve classes realized by punctured maps with given contact orders.
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Proposition 2.51. Suppose given a punctured curve (C/W,p, f) with W a log

point, p = {p1, . . . , pn}. For s ∈ Γ(X,Mgp

X ), denote by L×
s the corresponding

torsor, i.e., the inverse image of s under the homomorphism Mgp
X → Mgp

X , and

write Ls for the corresponding line bundle. Further, the stalk of s at f(pi) lies in

P gp
pi

and hence defines a homomorphism P ∗
p → Z, which we write as 〈·, s〉. Then

deg f ∗Ls = −
n∑

i=1

〈upi, s〉.

Proof. First, by making a base-change, we can assume W is the standard log

point. Note f ∗Ls must be the line bundle Lf̄♭(s) associated to the torsor corre-

sponding to f̄ ♭(s).

Now the value of the total degree of Lf̄♭(s) can be calculated using Lemma 2.49

and details of the proof of [GS13, Proposition 1.15]. Let D̃ be the normalization

of an irreducible component of C with generic point η, g : D̃ → C the obvious

map. Then

deg(f ◦ g)∗Ls = deg g∗Lf̄♭(s)
= τCη (ϕ(s))

=
∑

q∈D̃

1

eq

(
〈Vη, s〉 − 〈Vηq , s〉

)
−
∑

xi∈D̃

〈uxi, s〉,

in the notation of [GS13, Propositions 1.14,1.15], and the last equality coming

from the proof of [GS13, Proposition 1.15]. Summing over all irreducible com-

ponents, the left-hand side becomes deg f ∗Ls and on the right-hand side, all the

contributions from the nodes cancel, giving

deg f ∗(Ls) = −
∑

i

〈uxi, s〉,

as desired. ♠
2.7.2. The puncturing ideal. We end this subsection by giving a tropical inter-

pretation for the puncturing ideal KW associated to a punctured map.

Proposition 2.52. Suppose given a sharp toric monoid Q, and a collection of

sharp toric monoids Pp1, . . . , Ppr along with monoid homomorphisms ϕpi : Ppi →
Q ⊕ Z with upi := pr2 ◦ϕpi. Let evi := (pr1 ◦ϕpi)t : Q∨

R → (Ppi)
∨
R. Let the ideal

I ⊂ Q be the monoid ideal

I = 〈pr1 ◦ϕpi(m) | there is an i such that m ∈ Ppi and upi(m) < 0〉.
For σ a face of the cone Q∨

R, let Zσ = Spec k[σ⊥ ∩Q] be the closed toric stratum

of Spec k[Q] corresponding to σ. Then there is a decomposition

Spec k[Q]/
√
I =

⋃

σ

Zσ

where the union is over all faces σ of Q∨
R such that if x ∈ Int(σ), then evi(x) +

ǫupi ∈ (Ppi)
∨
R for ǫ > 0 sufficiently small and 1 ≤ i ≤ r.
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Proof. Let Ipi ⊂ Q be the monoid ideal

Ipi = 〈pr1 ◦ϕpi(m) |m ∈ Ppi satisfies upi(m) < 0〉.
Of course V (I) =

⋂
i V (Ipi). We first show that if σ satisfies the given condition,

then Zσ ⊆ V (Ipi) for each i. The monomial ideal defining Zσ is Q r (σ⊥ ∩ Q),
so it is enough to show that σ⊥ ∩ Ipi = ∅. Choose an x ∈ Int(σ). Let q ∈ Ipi be

a generator of Ipi, i.e., there exists an m ∈ Ppi such that q = pr1(ϕpi(m)) and

upi(m) < 0. Since m ∈ Ppi and evi(x) + ǫupi ∈ (Ppi)
∨
R for some ǫ > 0, we have

0 ≤ 〈evi(x) + ǫupi, m〉.
Thus 〈upi, m〉 < 0 implies 〈evi(x), m〉 > 0, or 〈x, pr1(ϕpi(m))〉 = 〈x, q〉 > 0, as

desired.

Conversely, suppose that Zσ ⊆ V (I) for some face σ of Q∨
R, but there exists an

i and some x ∈ Int(σ) such that evi(x) + ǫupi 6∈ (Ppi)
∨
R for any ǫ > 0. Then there

exists anm ∈ Ppi such that 〈evi(x)+ǫupi, m〉 < 0 for all ǫ > 0. Since 〈evi(x), m〉 ≥
0, we must have 〈evi(x), m〉 = 0 and upi(m) < 0. Thus q = pr1(ϕpi(m)) lies in Ipi .

We have 〈x, q〉 = 〈evi(x), m〉 = 0, so q ∈ σ⊥. In particular, zq does not vanish on

Zσ, contradicting Zσ ⊆ V (I). ♠

Remark 2.53. The above proposition gives an immediate tropical interpretation

for the zero locus of the puncturing ideal, ignoring the scheme structure. Indeed,

suppose that the data in the above proposition arises from a punctured curve

f : C◦ → X with C defined over W = Spec(Q → κ), with punctures p1, . . . , pr.

Tropicalizing gives a family of tropical curves (2.15). Fixing x ∈ Σ(W ) = Q∨
R

yields a tropical curve Σ(f) : Γ → Σ(X). Let η be the generic point of the

irreducible component of C containing the punctured point pi, and vη the vertex

of Γ corresponding to η. Then evi can be viewed as the evaluation map evi :

Σ(W ) → Σ(X) of Σ(f) at the vertex vη. The condition in the above proposition

on σ then says that for x ∈ Int(σ), the affine length of the leg of Γ corresponding

to each pi is non-zero.

3. The stack of punctured maps

3.1. Algebraicity.

3.1.1. The set-up and the statement. We fix a morphism locally of finite pre-

sentation and separated logarithmic schemes X → B as the target with MX

Zariski.

Denote by Mg,n(X/B) the category of stable punctured maps to X → B

with genus g, m-marked punctured curves fibered over the category of fine and

saturated logarithmic schemes. By Proposition 2.25 this is the pullback of the

corresponding category of basic stable punctured maps fibered over the category

of schemes.

Let Mg,n(X/B) be the algebraic stack over B parameterizing usual stable

maps to the family of underlying schemes X → B. We view Mg,n(X/B) as
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the logarithmic stack equipped with the canonical log structure of its universal

curves.

The morphism X → X induces a morphism of fibered categories

(3.1) Mg,n(X/B) → Mg,n(X/B).

We will prove the following theorem:

Theorem 3.1. The morphism (3.1) is representable by logarithmic algebraic

spaces locally of finite presentation. In particular, Mg,n(X/B) is a logarithmic

Deligne-Mumford stack locally of finite presentation.

Lemma 3.2 and Proposition 3.3 below will imply that the morphism is repre-

sented by logarithmic algebraic stacks, locally of finite presentation. The repre-

sentability property is a consequence of Proposition 2.26.

3.1.2. Reduction to the case of universal target. Denote by AX the relative Artin

fan associated to X → B, see Corollary 3.3.5 of [ACMW17]. Write X := AX×AB

B. Then the morphism X → B uniquely factors through a strict morphism

X → X . We may replace X by X , and form the fibered category of pre-stable

punctured maps Mg,n(X /B), and the stack of usual pre-stable maps Mg,n(X /B).

Again, we viewMg,n(X /B) as a logarithmic stack with the canonical log structure

of its universal curve. Similarly, the morphism X → X induces a morphism

(3.2) Mg,n(X /B) → Mg,n(X /B),

and the strict morphism X → X induces a morphism

(3.3) Mg,n(X/B) → Mg,n(X /B).

Furthermore, the underlying morphism X → X induces a morphism of stacks

(3.4) Mg,n(X/B) → Mg,n(X /B).

Lemma 3.2. There is a canonical isomorphism of fibered categories

Mg,n(X/B) → Mg,n(X/B)×Mg,n(X /B) Mg,n(X /B),

where the fiber product is in the fine and saturated category.

Proof. The morphism in the statement is given by (3.1) and (3.3). To see the

isomorphism, observe that giving a stable punctured map f : C◦ → X/B over

W is equivalent to giving an underlying stable map f : C → X/B over W

and a morphism of logarithmic structures f ♭ : f ∗MX → MC◦ compatible with

the arrows from MB. The latter is equivalent to a pre-stable punctured map

C◦ → X /B whose underlying map is given by the composition C → X → X . ♠
Lemma 3.2 and Proposition 2.26 reduces Theorem 3.1 to the following:

Proposition 3.3. The morphism Mg,n(X /B) → Mg,n(X /B) as in (3.2) is a

morphism between logarithmic algebraic stacks locally of finite presentation.
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3.1.3. Moduli of punctured curves with a fixed log curve. Let π : C → W be

a genus g, n-marked logarithmic curve over W . Define W p to be the fibered

category over W -schemes defined as follows.

For any strict morphism T → W , the objects in W p(T ) are punctured curves

C◦
T → CT → T with punctures given by the markings of CT . Here CT = C ×W

T → T is the pull-back of the logarithmic curve C → W . Pull-backs in W p are

defined as pull-backs of punctured curves along strict morphisms over W .

In other words,W p parameterizes punctured curves with the logarithmic curves

given by C → W . We prove that

Proposition 3.4. The tautological morphism W p → W obtained by removing

the punctured curve is, locally on W p, a locally closed embedding.

Proof. For any object C◦
T → CT → T in W p(T ), we will construct a strict and

locally closed immersion V → W with the punctured curve C◦
V → CV → V

such that T → W factors through V , and C◦
T → CT → T is the pull-back of

C◦
V → CV → V . Furthermore, we will show that such an object C◦

V → CV → V

is universal with respect to the above property.

Since the statement is local on both W and T , shrinking both W and T , we

may assume there is a chart h : Q = MW,w → MW which pulls back to a chart

hT : Q = MT,t → MT for a point w ∈ W and a fixed point t ∈ T over w.

For each puncture p and a generic point η in Ct with p ∈ cl(η), consider the

generization map χη,p : MC◦
t ,p

→ Mη = Q. Let I t ⊂ Q be the ideal generated by

the image χη,p(MC◦

T,t
r MCt) for each puncture p ∈ pt. Since both MC◦

T,t
and

MCt are fine monoids, the ideal I t is finitely generated. Using the chart h, the

ideal I t ⊂ Q generizes to a coherent sheaf of ideals IW and IT .
Let IW := MW×MW

IW and IT := MT×MT
IT be the corresponding coherent

log-ideals on W and T respectively. It follows from the construction that IT is

the pull-back of the log-ideal IW via T → W . Denote by V →W the strict closed

immersion defined by the ideal αMW
(IW ). Further shrinking T if necessary, by

(2) of Definition 2.1 the image αMT
(IT ) is the zero ideal. Thus T → W factors

through V ⊂W . Denote by i the morphism T → V .

We next construct the punctured curves C◦
V → CV → V . To construct the

sheaf of monoids MC◦

V
, first notice that the inclusion MCV

⊂ MC◦

V
is an iso-

morphism away from the points of p. For each puncture pw ∈ pw over w, we

define MC◦

V ,pw
:= MC◦

T ,pt
using the fiber over the fixed point t. Further shrink-

ing T , we may assume there is a chart MC◦

T ,pt
→ MC◦|pT along the puncture

pT ∈ p. Shrinking W hence V accordingly, we may assume that there is a chart

MCw,pt → MCV
|pV . We may then extend the fiber MC◦

V ,pw
along the punc-

tured marking pV via generization. This defines the subsheaf of fine monoids

MC◦

V
⊂ Mgp

CV
.

Consider MC◦

V
:= Mgp

CV
×M

gp
CV

MC◦

V
. Observe that MCV

⊂ MC◦

V
. We define

the structure morphism αMC◦

V
: MC◦

V
→ OCV

as follows. First, we require
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αMC◦

V
|MCV

= αMCV
. Second, for a local section δ of MC◦

V
not contained in

MCV
, we define αMC◦

V
(δ) = 0. This defines a monoid homomorphism. Indeed, if

we use the decomposition MC◦

V
⊆ M⊕O× Pgp, writing δ = δ′ ·δ′′ with δ′ the pull-

back of a section of MV , it is sufficient to check that αV (δ
′) = 0. However, this

follows from the definition of the defining ideal of V . This defines a logarithmic

structure MC◦

V
over CV . The inclusion of logarithmic structures MCV

⊂ MC◦

V

is a puncturing, hence defines the punctured curve C◦
V → CV → V .

We check that C◦
T → CT → T is the pull-back of C◦

V → CV → V via i : T → V .

Since CT → T is given by the pull-back of CV → V , it suffices to show that

i∗MC◦

V
= MC◦

T
as sub-sheaves of monoids in Mgp

CT
. Away from the punctures,

the equality clearly holds. Along each puncture p ∈ pT , we have the equality

i∗MC◦

V ,pw
= MC◦

T ,pt
at pt which extends along the marking p by generization.

This proves the desired equality.

Finally, consider another closed immersion V ′ → W and a family of punctured

curves C◦
V ′ → CV ′ → V ′ such that CV ′ = C ×W V ′, the morphism T → W

factors through V ′, and C◦
T → CT → T is the pull-back of C◦

V ′ → CV ′ → V ′.

Then αMV ′
(IW |V ′) is the zero ideal on V ′ as it contains the punctured curve over

t ∈ T . Hence the inclusion V ′ → W factors through V . The same construction

above shows that C◦
V ′ → CV ′ → V ′ is the pull-back of C◦

V → CV → V . This

proves the desired universal property. ♠

3.1.4. Proof of Proposition 3.3. By [AW18, ACMW17], the morphism X → B is

locally of finite presentation, quasi-separated, and having affine stabilizers. By

[HR14, Theorem 1.2], the stack Mg,n(X /B) is an algebraic stack locally of finite

presentation. Recall that Mg,n(X /B) is viewed as a logarithmic algebraic stack

equipped with the canonical log structure of its universal curve.

Consider a strict morphism W → Mg,n(X/B). We will show that the product

in the fine and saturated category

W := Mg,n(X /B)×Mg,n(X/B) W

is represented by a logarithmic algebraic stack locally of finite presentation.

Consider Olsson’s log stack V := LogW×BB
as in [Ols03].3 Pulling-back the uni-

versal families via the composition of logarithmic stacks V →W → Mg,n(X /B),

we obtain a family of underlying pre-stable maps f : C → X/B over V , and a

logarithmic curve C → V over C → V . Denote by U := V p the logarithmic stack

over V introduced in Section 3.1.3. By Proposition 3.4, the stack U is a logarith-

mic algebraic stack. Pulling-back the universal families, we have an underlying

pre-stable map f
U
: CU → X /B over U , a punctured curve C◦

U → CU → U , and

a morphism U → B.

3Departing from Olsson’s notation, we write LogW for the stack parameterizing only fine

and saturated logarithmic structures.
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Denote by M := f ∗

U
MX ⊕MB

MU in the category of coherent logarithmic

structures. Consider the fibered category

H := HomSch/U(M,MC◦

U
)

which associates, to each strict morphism T → U , the category of morphisms

of logarithmic structures M|C◦

T
→ MC◦

T
where C◦

T := C◦
U ×U T . By [Wis16,

Proposition 2.1], the projection H → U is representable by algebraic spaces

locally of finite presentation. Hence H is a logarithmic algebraic stack locally of

finite presentation. The universal morphism f ♭H : M|C◦

H
→ MC◦

H
and the pull-

back f
H
: CH → X /B of f : C → X /B defines a punctured map fH : C◦

H → X /B
over H .

The universal punctured maps define a tautological morphism W → H . By

the construction of H and the universal property of basic objects in Proposition

2.28, this morphism identifies W with the sub-stack of H parameterizing pre-

stable basic punctured maps. By Proposition 2.15 and Proposition 2.24, W is

identified with an open sub-stack of H . Therefore, W is a logarithmic algebraic

stack locally of finite presentation.

This completes the proof of Proposition 3.3.

3.2. Boundedness.

3.2.1. The classes of punctured maps. In what follows, we will need to make

a choice of a notion of degree data for curves in X ; we will write the group

of degree data as H2(X). This could be 1-cycles on X modulo algebraic or

numerical equivalence, or it could be Hom(Pic(X),Z). If we work over C, we can

use ordinary singular homology H2(X,Z). In general, any family of stable maps

f : C/W → X should induce a well-defined class f
∗
[Cw̄] ∈ H2(X) for w̄ ∈ W

a geometric point. If W is connected, this class should be independent of the

choice of w̄.

Definition 3.5. A class of stable punctured maps to X/B with Artin fan AX

Zariski consists of data β =
(
g, ~up = (upj )pj∈p, A

)
where:

(1) g is the genus of the source curve.

(2) upj is the connected component of contact orders of AX along the j-th

punctured point pj.

(3) A ∈ H2(X) is a curve class.

Similarly we call β ′ =
(
g, ~up

)
a class of punctured maps to X /B.

For simplicity, we may write ~u = ~up. We also introduce the notation β =

(g, k, A) for the discrete data of underlying stable maps to X/B, where k is the

number of punctured points.

Since contact orders in ~u are given by connected components of contact orders,

we obtain a decomposition
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Lemma 3.6. There are decompositions by disjoint unions of open and closed

substacks

M (X/B) =
⊔

β

M (X/B, β) and M(X /B) =
⊔

β′

M(X /B, β ′)

where M (X/B, β) and M(X /B, β ′) parameterize punctured maps with the given

classes β and β ′ respectively.

We state our result on boundedness:

Theorem 3.7. Suppose the underlying family X → B is projective, the Artin

fan AX is Zariski, and the sheaf MX is generated by its global sections. Then

the projection M (X/B, β) → B is of finite type.

Proof. We split the proof into several steps. This theorem will follow from Propo-

sitions 3.10 and 3.11. ♠

Remark 3.8. We remark in the case where all points are marked rather than

punctured, [ACMW17] proved this result without any hypotheses on MX . Here,

this hypothesis is used in two ways. The first way is similar to its use in [GS13],

Theorem 3.8 to bound the numbers of types of tropical curves. Here, we do this

in Proposition 3.11. The second use is to apply Proposition 2.46: if a connected

contact order has an infinite number of irreducible components, then it may well

be that a moduli space of stable punctured maps with such a contact order at a

punctured point is not of finite type.

Even if this second issue did not potentially cause problems, we would still

be unable to prove the stronger finiteness result of [ACMW17] because we have

not shown an analogue of the invariance of punctured invariants under log étale

modifications shown in the ordinary marked case in [AW18]. Indeed, the story

seems to be rather more subtle in the punctured case, and we leave this to future

work.

3.2.2. Boundedness of M (X/B, β).

Definition 3.9. A class β is called combinatorially finite if the set of types (see

Definition 2.20) of stable punctured maps of class β is finite.

Proposition 3.10. Suppose β is combinatorially finite. Then the forgetful map

M (X/B, β) → M (X/B, β) is of finite type.

Proof. The strategy of the proof is similar to those in [GS13, Section 3.2] and

[Che14, Section 5.4] by showing that each stratum with constant combinatorial

structure is bounded. The proof is largely the same, with extra care needed only

in the proof of [GS13, Prop. 3.17]. Let f = (C/W,p, f) be a combinatorially

constant (in the sense of [GS13, Def. 3.15]) ordinary stable map over an integral,

quasi-compact scheme W . Then W ×M (X/B,β) M (X/B, β) classifies punctured
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enhancements of the ordinary stable maps parameterized by W . As the combi-

natorial type of a log curve is locally constant, we have a decomposition

W ×M (X/B,β) M (X/B, β) =
∐

u

M (X, f,u)

into disjoint open substacks according to the type u. If β is combinatorially finite,

this is a finite union, and hence it is sufficient to show quasi-compactness of each

M (X, f,u). As in the proof of [GS13, Prop. 3.17], it is sufficient to construct a

quasi-compact stack Z with a morphism Z → M (X, f,u) which is surjective on

geometric points.

To do so, set Q1 := Nk, where k is the number of nodes of any fibre of C →W .

By Section 2.3.1 and the fact we have fixed the type u, the basic monoid Q

is constant on M (X, f,u). Then there is a canonical morphism Q1 → Q (see

Section 2.3.1), which induces a morphism of Artin cones AQ∨ → AQ∨

1
. We equip

W with the canonical log structure coming from the family of nodal pre-stable

curves C → W , and consider Z1 = AQ∨ ×AQ∨
1
W . Pulling back the universal

family from W , we obtain a family of log curves C1 → Z1 and a usual stable map

f : C1 → X/B. Observe that there is a global chart Q→ MZ1 . By Theorem 3.1

the morphism (3.1) is locally of finite type, and therefore we can replace Z1 with

its reduction.

The type u prescribes, for each puncture p ∈ p, an element up which determines

over each geometric point of Z1 a commutative diagram (2.8). Further observe

that the commutative diagram (2.8) varies globally constantly along Z1. We thus

obtain a monoid ideal K ⊂ Q as in (2.11) by taking into account all punctures

in p. Denote by K = K ×MZ1
MZ1 where the arrow on the left is given by

the composition K → Q → MZ1 with the last arrow the global chart. Noting

that to obtain a family of punctured stable maps of type u over Z1 then requires

that αZ1(K) = 0 by Theorem 2.32. Thus in particular if 0 ∈ K, then there are

no punctured maps of type u and we can ignore such a u; otherwise, as Z1 is

reduced and MZ1 is locally constant with stalk Q, necessarily αZ1(K) = 0.

We now construct a punctured family of curves C◦
1 → Z1. First, the ghost

sheaf MC◦

1
is identical to MC1 away from punctures. Along each puncture p ∈ p,

we take MC◦

1 ,p
⊂ Mgp

C1,p
to be the smallest fine submonoid generated by MC1,p

and the image of ϕp as in (2.8). As all the characteristic sheaves and morphisms

between them are globally constant along Z1, this yields a well-defined sheaf of

monoids MC◦

1
, hence MC◦

1
:= MC◦

1
×M

gp
C1

Mgp
C1

over C1.

We define the structural morphism αMC◦
1
: MC◦

1
→ OC1 as follows. First, we

require αMC◦
1
|MC1

= αMC1
. For a local section δ of MC◦

1
not contained in MC1 ,

we defined αMC◦
1
(δ) = 0, as away from punctures it generizes to a section in K,

hence is the zero section in OC1 . This defines a logarithmic structure MC◦

1
, hence

the desired punctured curve C◦
1 → Z1.

The remainder of the proof is now identical to that of [GS13, Prop. 3.17]. ♠
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3.2.3. Finiteness of the combinatorial data. In order to complete the proof that

M (X/B, β) is finite type, it remains to bound the combinatorial data.

Proposition 3.11. Suppose MX is generated by its global sections. Then any

class β is combinatorially finite.

Proof. It is sufficient to show that for any combinatorially constant family of

ordinary stable maps (C/W,p, f) in the sense of [GS13, Def. 3.15], there are

only finitely many combinatorial types of liftings of such a family to a punctured

log curve of type β. This is essentially identical to the proof of [GS13, Thm.

3.8], However, there are two small points of difference. First, in following the

argument of [GS13, Thm. 3.8], we must fix the up’s, as the positivity argument

to obtain boundedness for any choice of up’s does not apply, as the up need not be

positive. Thus we must use the fact, shown in Proposition 2.46, that a connected

contact order only has a finite number of irreducible components to obtain a finite

number of possible choices for up for each p ∈ p for the given family of ordinary

stable maps. ♠
3.3. Valuative criterion. We now show stable reduction for basic stable punc-

tured maps, which allows us to conclude properness of the moduli spaces of such

maps. Recall that for a given class β = (g,u, A) of stable punctured maps to

X → B, we have the class β = (g, k, A) for usual stable maps to X → B by

removing contact orders. We will show that

Theorem 3.12. The tautological morphism removing all logarithmic structures

M (X/B, β) → M (X/B, β)

satisfies the weak valuative criterion for properness.

Proof. In what follows, we assume given R a discrete valuation ring over B with

maximal ideal m, residue field κ = R/m, and fraction field K. Suppose we have

a commutative square of solid arrows of the underlying stacks:

SpecK //

��

M (X/B, β)

��

SpecR //

88♣
♣

♣
♣

♣
♣

M (X/B, β).

We want to show that possibly after replacing K with a finite extension K̃ and R

by an appropriate discrete valuation ring in K̃, there is a dashed arrow marking

the above diagram commutative, and is unique up to a unique isomorphism.

The top arrow of the above diagram yields a stable punctured map

(πK : CK → Spec(QK → K),pK , fK)

over the logarithmic point Spec(QK → K). The bottom arrow of the above

diagram yields a usual stable map (C/ SpecR,p, f) with its generic fiber given

by the underlying stable map of fK . To construct the dashed arrow, it suffices
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to extend the stable punctured map fK across the closed point 0 ∈ SpecR with

the given underlying stable map f . The task is to then extend the logarithmic

structures and morphisms thereof. The proof is almost identical to that of [GS13],

Theorem 4.1. Since that proof is quite long, we only note the salient differences.

Section 4.1 of [GS13] accomplishes this extension at the level of ghost sheaves;

in particular, [GS13], Proposition 4.3, which states that the type of the central

fibre is uniquely determined by the type of the generic fibre, carries through with

up for a puncture p determined as for marked points. Indeed, if p is a punctured

point on C0 in the closure of the punctured point pK on CK , then we must have

up being the composition

(3.5) Pp −→ PpK
upK−→ Z,

where the first map is the generization map (f ∗MX)p → (f ∗MX)pK . In particu-

lar, the contact orders up and upK are contained in the same connected component

specified in β.

By Definition 2.14 and Section 2.2, the type of the central fibre then determines

the extension MC◦ of MC◦

K
and a map f̄ ♭ : f ∗MX → MC◦ extending the

corresponding map on the generic fibre. Here MC◦ is defined at punctures via

Corollary 2.6.

Next, [GS13], §4.2 shows that the logarithmic structure on the base SpecR is

uniquely defined. In this argument, marked points play no role, and the argu-

ment remains unchanged in the punctured case. In particular, this produces a

unique choice of logarithmic structure MR on SpecR, which in addition comes

with a morphism of logarithmic structures M0
R → MR where M0

R is the basic

logarithmic structure (pulled back from the moduli space of pre-stable curves

M with its basic logarithmic structure, see [GS13], Appendix A) associated

to the family C → SpecR. In particular, one obtains a logarithmic structure

(C,M′
C) = (SpecR,MR) ×(SpecR,M0

R) (C,M0
C), where M0

C is the logarithmic

structure pulled back from the basic logarithmic structure of the universal curve

over M (X/B, β). The logarithmic structure M′
C then has logarithmic marked

points along the punctures p, but there is a sub-logarithmic structure MC ⊂ M′
C

which only differs in that the punctures are no longer marked.

By Corollary 2.6, there is a natural inclusion MC◦ ⊂ (M′

C)
gp. We form

MC◦ := MC◦ ×(M
′

C)gp (M′
C)

gp. We then define a structure homomorphsim

αC◦ : MC◦ → OC by αC◦|M′

C
= αC′ and αC◦(MC◦ r M′

C) = 0. To show

that this is a homomorphism, it is enough to show that if s ∈ MC◦,p r M′
C,p,

writing s = (s1, s2) as a stalk of MC ⊕O×

C
Pgp, then αC(s1) = 0. But nec-

essarily (s̄1, s̄2) = f̄ ♭(m) for some m ∈ Pp with up(m) < 0. Write for points

x, x′ ∈ C with x in the closure of x′ the generization map χx′,x : Px → Px′ .

Then upK(χpK ,p(m)) = up(m) by (3.5). Thus upK(χpK ,p(m)) < 0 and necessar-

ily αCK
(s1|CK

) = 0. But since C is reduced and CK is dense in C, this implies

αC(s1) = 0, as desired. Thus we have a punctured log scheme C◦.
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We can now extend f ♭K : f ∗
KMX → MC◦

K
to f ♭ : f ∗MX → MC◦ as in §4.3 of

[GS13]. ♠

4. The perfect obstruction theory

Throughout this section, we fix a log smooth morphism X → B with MX

Zariski and n ∈ N. As in §3.1.2, X → B factors over its relative Artin fan

X = AX ×AB
B. Denote by Mn(X/B) and by Mn(X /B) the stacks of n-

punctured maps to X → B and to X → B, respectively. In §§4.1 and 4.2,

we construct two perfect relative obstruction theories, in the sense of [BF97,

Def. 4.4], one for Mn(X/B) → Mn(X /B) and one for a related morphism

Mn(X/B) → Mev
n (X /B), where the latter space incorporates data of maps to

X at a set of special points on the domain curve, see (4.12). Working over

Mev
n (X /B) is crucial for understanding gluing at a virtual level in §5.2.4.
Finally in §4.3, we explore the local structure of Mn(X /B) and in turn the

local structure of Mev
n (X /B), the latter being smooth over Mn(X /B). This is

done by studying the forgetful morphism Mn(X /B) → M× B, where M is the

Artin stack of prestable basic log curves. In the case that there are no punctures,

that is, all points are marked, then in fact this morphism is log smooth, as was

shown in [AW18]. Now, however, the morphism is only idealized log smooth,

with the idealized structure given by the puncturing log ideal. This tells us that

smooth locally Mn(X /B) looks like a closed subscheme of a toric variety defined

by the puncturing ideal. We give examples showing that Mn(X /B) need not be

pure dimensional. Thus the relative obstruction theorydoes not in general define

a virtual fundamental class on Mn(X/B), but rather a virtual pullback map

A∗(Mn(X /B)) → A∗(Mn(X/B))

via [Man12].

4.1. Obstruction theories for logarithmic maps from pairs. All cases of

interest fit into the following general setup. Let S be a log stack over B and

assume we are given a proper and representable morphism of fine log stacks

Y −→ S,

with underlying map of ordinary stacks Y → S flat and relatively Gorenstein.

The fibres of this morphism serve as domains for a space of logarithmic maps. In

the application, Y is either the universal curve over S = Mn(X /B) or a union

of sections in this universal curve with induced log structure. To avoid adjusting

for shifts of dimension in the formulas, we denote by ωπ the relative dualizing

complex of a relatively Gorenstein morphism π, that is, the complex with the

invertible relative dualizing sheaf shifted to the left by the relative dimension. As

a target, we take a composition of log smooth morphisms of fine log stacks

V −→W −→ B.
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We assume further given an S-morphism Y →W defining a commutative square

Y //

��

W

��

S // B

Let M be an open algebraic substack of the stack over S with objects over an

affine S-scheme T commutative diagrams

(4.1)

YT

##●
●●

●●
●●

●●
//

��

V

��

T

##❍
❍❍

❍❍
❍❍

❍❍
❍ Y //

��

W

��

S // B

where the square formed by YT , T, S and Y is cartesian. Thus we are interested

in lifting the map Y → W to V fibrewise relative S.4 We endow M with the

log structure making the morphism M → S strict. The pull-back of Y to M

defines the universal domain π : YM → M . We have the following 2-commutative

diagram of stacks

(4.2)

YM

##❍
❍❍

❍❍
❍❍

❍❍

f
//

π
��

V

��

M

$$❍
❍❍

❍❍
❍❍

❍❍
❍

Y //

��

W

��

S // B

Functoriality of log cotangent complexes [Ols05, 1.1(iv)] yields the morphism

(4.3) f ∗ΩV/W = Lf ∗LV/W −→ LYM/Y = π∗LM/S.

The equality on the left holds by [Ols05, 1.1 (iii)] since V → W is log smooth,

while the equality on the right follows since LM/S = LM/S and LYM/Y = LYM/Y by

strictness of M → S [Ols05, 1.1(ii)] and then using compatibility of the ordinary

cotangent complexes with flat pull-back by π∗.

Since Y −→ S is relatively Gorenstein by assumption, so is Y M −→ M and

we have a natural isomorphism of exact functors π! = π∗ ⊗ ωπ. Thus (4.3)

4In the application, M is the stack of punctured maps of interest, S is a stack of punctured

maps to the relative Artin fan X of X → B and V → W → B is the composition X → X → B.

Thus our deformation theory fixes both the domain of the punctured map to X and the map

to the relative Artin fan X . In this case, V → W is strict and we could indeed work with

ordinary cotangent complexes throughout, but for possible other applications we do not make

this assumption.
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is equivalent to a morphism f ∗ΩV/W ⊗ ωπ → π!LM/S , which by adjunction is

equivalent to a morphism

(4.4) Φ : E −→ LM/S

with E = Rπ∗(f
∗ΩV/W ⊗ ωπ). The most transparent proof that Φ is a perfect

obstruction theory forM over S is based on the fact that the construction of Φ is

functorial. For lack of reference we provide a proof for this well-known property

in the following lemma. If T → M is any map, denote by

ΦT : ET → LT/S

the morphism in (4.4) constructed from (4.1) instead of (4.2).

Lemma 4.1. The construction of Φ in (4.4) is functorial in the following sense:

Let T → M be a morphism of stacks. Denoting T → M the associated strict

morphism of log stacks, we obtain the commutative diagram

YT

fT

''

h̃

//

πT
��

YM

##❍
❍❍

❍❍
❍❍

❍❍

f
//

π
��

V

��

T
h

// M

$$❍
❍❍

❍❍
❍❍

❍❍
❍

Y //

��

W

��

S // B

with the two squares of domains cartesian. Then we have a commutative square

Lh∗E
Lh∗Φ

//

β

��

Lh∗LM/S

��

ET
ΦT

// LT/S ,

with left-hand vertical arrow a natural isomorphism and the right-hand vertical

arrow defined by functoriality of cotangent complexes.

Proof. Naturality of the base change map [Sta17, Rem. 07A7] applied to f ∗ΩV/W⊗
ωπ → LYM/Y ⊗ ωπ together with f ◦ h̃ = fT and h̃∗ωπ = ωπT , leads to the

commutative square

Lh∗Rπ∗(f
∗ΩV/W ⊗ ωπ) −−−→ Lh∗Rπ∗(LYM/Y ⊗ ωπ)

β

y
y

RπT ∗(f
∗
TΩV/W ⊗ ωπT ) −−−→ RπT ∗(Lh̃

∗LYM/Y ⊗ ωπT ).

Now LYM/Y ≃ π∗LM/S, as remarked after (4.3), and hence the adjunction counit

Rπ∗π
! → 1 applied in the construction of Φ in (4.4) is given by the projection

formula followed by the trace isomorphism,

Rπ∗(π
∗LM/S ⊗ ωπ)

≃−→ LM/S ⊗ Rπ∗(ωπ)
Trωπ−→ LM/S .
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Thus the upper horizontal sequence composed with Lh∗ of this adjunction counit

isomorphism yields Lh∗Φ.

Similarly, extending the lower horizontal arrow by the map induced by functo-

riality of cotangent complexes,

Lh̃∗LYM/Y −→ LYT /Y = π∗
TLT/S.

composed with the adjunction counit isomorphism RπT ∗(π
∗
TLT/S ⊗ ωπT ) ≃ LT/S

for πT retrieves the definition of ΦT . By compatibility of both the projection

formula [Sta17, Lem. 0B6B] and the trace morphism [Sta17, Lem. 0E6C] with

base change, the induced map Lh∗LM/S → LT/S agrees with the map defined by

functoriality of cotangent complexes. This establishes the claimed commutative

diagram.

The claim on β follows from the general base change statement [Sta17, Lem. 0A1K]

applied to π : YM → M , with f ∗ΩV/W for the object in DQCoh(OYM ) and with ωπ
as complex of π-flat quasi-coherent sheaves. ♠

Proposition 4.2. The morphism Φ : E → LM/S constructed in (4.4) is an

obstruction theory for M → S in the sense of [BF97, Def. 4.4].

Proof. We check the obstruction-theoretic criterion [BF97, Thm. 4.5.3], applied

in the setting relative to S, similarly to ordinary logarithmic maps carried out in

[GS13, Prop, 5.1].

Assume given a morphism h : T → M , a square zero extension T → T with

ideal sheaf J and a morphism T → S, with log structures turning all three

morphisms strict. This situation leads to the following commutative diagram:

YT

fT

$$h̃
//

~~⑤⑤
⑤⑤ πT

��

YM
f

//

~~⑥⑥
⑥⑥ π

��

V

��⑦⑦
⑦⑦

YT
//

��

Y

��

// W

��

T
h
//

}}④④
④④

M

}}④④
④④

T // S // B.

All sides of the cube on the left are cartesian, but not in general the bottom and

top faces.

The obstruction class ω(h) ∈ Ext1(Lh∗LM/S,J ) for extending h to a map

T →M is the composition

Lh∗LM/S −→ LT/T −→ τ≥−1LT/T = J [1]

with the first arrow defined by functoriality of the cotangent complex, see [Ill71,

Prop. 2.2.4] with X0 = T , X = T , Y0 = Y = M and Z0 = Z = S. Because

all morphisms are strict we can use the log cotangent complex in this definition

[Ols05, 1.1(ii)].
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Now Φ∗ω(h) is the composition of this morphism with Lh∗Φ : Lh∗E → Lh∗LM/S .

By functoriality of our obstruction theory (Lemma 4.1), this composition also has

the factorization

ET = RπT ∗(f
∗
TΩV/W ⊗ ωπT )

ΦT−→ LT/S −→ τ≥−1LT/T = J [1],

which by adjunction is equivalent to the composition

f ∗
TΩV/W ⊗ ωπT −→ LYT /Y ⊗ ωπT −→ τ≥−1π

!
TLT/T = π∗

TJ [1]⊗ ωπT ,

Up to tensoring with ωπT this is the obstruction class for extending fT : YT → V

to YT , as a morphism over W . By our assumption on the objects of M , this

extension exists if and only if T → M extends to T . This shows the part of the

criterion concerning the obstruction.

A similar argument shows that once ω(h) = 0 the space of extensions form a

torsor under Ext0(Lh∗LM/S,J ), showing the second part of the criterion. ♠

After this recapitulation of obstruction theories for logarithmic maps with

proper and relatively Gorenstein domains, we are now in position to bring in

point conditions. Abstractly we consider a composition of proper, representable

morphisms of fine log stacks

(4.5) Z
ι−→ Y −→ S,

with maps of schemes underlying Z → S and Y → S flat and relatively Goren-

stein as before. Note that while ι may not be flat and hence cannot be considered

relatively Gorenstein following the usual convention, one can still define a relative

dualizing sheaf

(4.6) ωι = ωZ/S ⊗ ι∗ω∗
Y/S.

fulfilling relative duality, hence defining a right-adjoint functor ι! to Rι∗. This

works as in the case of smooth morphisms discussed e.g. in [Huy06, §3.4].
We now have another algebraic stack N over S with objects given by diagrams

as in (4.1) with Y replaced by Z. We assume that composition with ι : Z → Y

defines a morphism of stacks

(4.7) ε :M −→ N.

As in (4.4) we now obtain two obstruction theories, one for M → S, the other

for N → S,

(4.8) Φ : E −→ LM/S, Ψ : F −→ LN/S .

In our application, Y → S is some universal curve and Z → Y a strict closed

embedding with morphism to S scheme-theoretically étale. In this case, Ψ is a

trivial obstruction theory for a number of points in V/W and in particular, étale

locally F can be taken as the direct sum of the pull-back of ΩV/W by scheme-

theoretic maps from N to V .
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Proposition 4.3. The two obstruction theories Φ and Ψ in (4.8) fit into a com-

mutative square

Lε∗F
Lε∗Ψ−−−→ Lε∗LN/Sy

y

E
Φ−−−→ LM/S ,

with the right-hand vertical morphism given by functoriality of the cotangent com-

plex.

Proof. Consider the following commutative diagram with the left four squares

cartesian.

Z

ι

��

ZN

��

oo

g

%%

p

��

ZM
ε̃

oo

ιM
��

h
//

pM

��

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
V

��

Y

��

YN

��

oo YMoo

π
��

//

f

88♣♣♣♣♣♣♣♣♣♣♣♣♣♣
W

��

S Noo M
ε

oo // B

The left column is the given morphism (4.5) of domains, the lower horizontal row

contains the restriction morphism ε from (4.7) and the morphism to the base

S, while f : YM → V and g : ZN → V are the respective universal morphisms

defined on the universal domains YM →M and ZN → N .

The obstruction theory Ψ in (4.8) was defined by applying Rp∗( . ⊗ ωp) to

g∗ΩV/W → LZN/Z = p∗LN/S . By functoriality of obstruction theories (Lemma 4.1),

the pull-back Lε∗Ψ is similarly obtained by applying RpM ∗( · ⊗ ωpM ) to

(4.9) h∗ΩV/W −→ Lε̃∗LZN/Z = Lε̃∗p∗LN/S = p∗MLε
∗LN/S ,

followed by the adjunction counit RpM ∗p
!
M → 1 using p!M = p∗M ⊗ ωpM . Now

consider the composition of the morphism in (4.9) with p∗M of the functoriality

morphism Lε∗LN/S → LM/S and take the tensor product with ωpM to obtain

(4.10) h∗ΩV/W ⊗ ωpM −→ p∗MLε
∗LN/S ⊗ ωpM −→ p!MLM/S .

Adjunction turns this sequence into the composition of the upper horizontal and

right vertical arrows of the commutative square in the assertion:

(4.11) Lε∗F = RpM ∗(h
∗ΩV/W ⊗ ωpM )

Lε∗Ψ−→ Lε∗LN/S −→ LM/S.

On the other hand, observing h = f ◦ιM , ωpM = ι∗Mωπ⊗ωιM and ι!M = Lι∗M⊗ωιM ,

we can rewrite domain and image of the morphism in (4.10) as

h∗ΩV/W ⊗ ωpM = ι∗Mf
∗ΩV/W ⊗ ι∗Mωπ ⊗ ωιM = ι!M(f ∗ΩV/W ⊗ ωπ)
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and

p!MLM/S = p∗MLM/S ⊗ ωpM = ι!M (π∗LM/S ⊗ ωπ),

respectively. The adjunction counit RιM ∗ι
!
M → id applied to (4.10) thus produces

the commutative diagram

RιM ∗(h
∗ΩV/W ⊗ ωpM ) −−−→ RιM ∗(p

!
MLM/S)∥∥∥
∥∥∥

RιM ∗ι
!
M (f ∗ΩV/W ⊗ ωπ) RιM ∗ι

!
M (π∗LM/S ⊗ ωπ)y

y
f ∗ΩV/W ⊗ ωπ −−−→ π∗LM/S ⊗ ωπ.

The claimed morphism of obstruction theories now follows by (4.11) from the

result of applying Rπ∗ to the outer square of this diagram, observing RpM ∗ =

Rπ∗RιM ∗. ♠
4.2. Obstruction theories with point conditions. We are now in position

to define obstruction theories for moduli spaces of stable logarithmic maps with

prescribed point conditions. Recall the log smooth morphism X → B and its

factorization over the relative Artin fan X → B from the beginning of this section.

We want to work relative a stack S of stable punctured maps to X /B. Adopting

the notation used otherwise in the paper we now write M instead of S for the

algebraic stack of domains together with the tuple of points to impose point

conditions at. For example, M could be M(X /B,β) as introduced in Lemma 3.6

or a similar moduli space of nodal curves with nodes labelled in addition to

punctured points. Then Y → S = M is the universal curve, Z → Y a union of

sections, one for each point condition, which we assume to be ordered, and we

have a universal diagram
Y −−−→ Xy

y
M −−−→ B.

As our target we now take the composition

X −→ X −→ B.

Note that X → B is log étale and X −→ X is strict and log smooth. Hence

X → X is smooth as a morphism of schemes and we have a sequence of canonical

isomorphisms

LX/B = ΩX/B = ΩX/X = ΩX/X = LX/X .

For easier reference later on we also write M instead ofM for the algebraic stack

of punctured maps to be considered.

For the moduli space N of point conditions we take the space of factorizations

of the composition Z → Y → X via X → X . Thinking of these factorizations as
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providing evaluation maps M → X at the marked points given by the sections

Z of Y → S, we denote the stack of such factorizations by Mev. This stack is

algebraic by the fibre product description

(4.12) Mev = M×X×B...×BX (X ×B . . .×B X).

Here the map M → X ×B . . . ×B X is defined by composing the sections M →
M → Z with the composition Z → Y → X in the given order of the marked

points.

With this notation, the composition M → N → S considered in the proof of

Proposition 4.3 reads

M
ε−→ Mev −→ M.

In §4.1 we recalled the construction of obstruction theories for M /M and for

Mev/M, which in the situation at hand are perfect of amplitude contained in

[−1, 0], and showed their compatibility (Proposition 4.3). As in [Man12, Con-

str. 3.13], this situation provides perfect obstruction theories for M /Mev by

completing the compatibility diagram in Proposition 4.3 to a morphism of dis-

tinguished triangles:

(4.13) Lε∗F //

��

E //

��

G //

��
✤

✤

✤
Lε∗F[1]

��

Lε∗LMev/M
// LM /M

// LM /Mev // Lε∗LMev/M[1]

Note that while the isomorphism class of G is unique, the dashed arrow is not, so

this recipe potentially provides several different obstruction theories for M /Mev.

Uniqueness holds, however, for the induced obstruction theories in the sense of

Wise [Wis11], and hence we can ignore this subtlety in the following.

For being explicit and for later use we now work out G. For simplicity of

notation write C → M for the pull-back YM of the universal curve Y → M

to M , while in disagreement with the general discussion write ι : Z → C for

the closed subscheme of special points rather than ZC . Since Z → Y is the

inclusion of a union of sections of the family of nodal curves Y → M, we can

write Z = Z ′ ∐ Z ′′ with Z ′′ contained in the critical locus of C → M and Z ′

disjoint from it. Recall also from the setup that each connected component of Z

maps isomorphically to a connected component of M . Denote by κ : C̃ → C the

partial normalization of C̃ that normalizes C along Z ′′, but otherwise leaves C

untouched. Write π̃ = π ◦ κ : C̃ → M , f̃ = f ◦ κ : C̃ → X and Z̃ = κ−1(Z).

Lemma 4.4. For the tangent-obstruction bundle in (4.13) it holds

G ≃ Rπ∗
(
f ∗ΩX/B ⊗κ∗(ωπ̃(Z̃))

)
≃ Rπ̃∗

(
f̃ ∗ΩX/B ⊗ωπ̃(Z̃)

)
≃ (Rπ̃∗f̃

∗ΘX/B(−Z̃))∨.

Moreover, G is perfect of amplitude [−1, 0].
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Proof. The second isomorphism follows by the projection formula, the third iso-

morphism by relative duality.

For the first isomorphism we start with the following exact sequence of com-

plexes, all concentrated in degree −1:

(4.14) 0 −→ ωπ −→ κ∗
(
ωπ̃(Z̃)

)
−→ ι∗OZ [1] −→ 0.

On the complement of the nodal locus Z ′′, this sequence is defined by

0 −→ ωπ −→ ωπ(Z
′) −→ ωπ ⊗OC

ι∗OZ′(Z ′) −→ 0

by means of the canonical isomorphism

ωπ ⊗OC
ι∗OZ′(Z ′) = ι∗(ι

∗ωπ ⊗OZ′
ωι) ≃ ι∗OZ′[1]

coming from the definition of ωι in (4.6), with the first equality arising from the

projection formula and the fact that ι∗ω∗
Y/S = OZ′(Z ′). Explicitly, the homomor-

phism ωπ(Z
′) → OZ′ [1] takes the residue along Z ′. Near the nodal locus, (4.14)

is defined by

0 −→ ωπ
κ∗−→ κ∗

(
ωπ̃(Z̃)

)
−→ ι∗OZ′′[1] −→ 0.

To obtain this sequence, recall that étale locally ωπ = ΩC/M[1] with ΩC/M the

sheaf of relative logarithmic differentials for C/M, while ωπ̃ = ΩC̃/M[1] with ΩC̃/M
the sheaf of relative ordinary differentials for C̃/M. In fibrewise coordinates z, w

for the two branches of C along Z ′′ on an étale neighbourhood, ΩC/M is locally

generated by z−1dz = −w−1dw, hence pulls back to ordinary differentials with

simple poles along κ−1(Z ′′) ⊆ Z̃. The map to OZ takes the difference of the

residues of such rational differential forms on C̃ along the two preimages of the

nodal locus.5 This establishes sequence (4.14).

Now apply Rπ∗ to (4.14) tensored with f ∗ΩX/B , and observe ωpM ≃ OZ since

Z → M is étale, to obtain the claimed distinguished triangle

E G Lε∗F[1]∥∥∥
∥∥∥

∥∥∥
Rπ∗(f

∗ΩX/B ⊗ ωπ) −−−→ Rπ∗
(
f ∗ΩX/B ⊗ κ∗(ωπ̃(Z̃))

)
−−−→ pM ∗(h

∗ΩX/B)[1]

Taking cohomologies, this diagram also shows the statement about the amplitude

of G. ♠

5Note that this map depends on an order of the two branches along each connected component

of Z ′′. This local ambiguity of sign is irrelevant for our purposes.



PUNCTURED LOGARITHMIC MAPS 51

4.3. Idealized smoothness for M(X /B) → M×B. Denote by M the moduli

stack of pre-stable curves over the ground field k with any number of marked

points or genus, along with its basic log structure. See [GS13, Appendix A] for

details. There is a natural forgetful morphism

(4.15) M(X /B) → M× B

which remembers only the domain curve as a family of marked curves over B.

Theorem 4.5. If M×B is given the idealized structure with ideal sheaf the empty

set, then the forgetful morphism (4.15) is idealized log étale.6

Proof. We use short-hand M := M(X /B). According to the definition of ideal-

ized log étale, it is sufficient to consider a diagram of solid arrows

(4.16) T0
g0

//

��

M

��

T
g
//

;;✇
✇

✇
✇

✇
M×B

where T0 →֒ T is an idealized strict closed embedding defined by a square-zero

ideal J over T . We wish to show that there is a unique dashed arrow making the

above diagram commutative.

Let KT0 ⊂ MT0 , KT ⊂ MT be the ideals of the idealized log structure on T0
and T . By strictness, KT pulls-back to the ideal KT0 . Let K be the puncturing

log ideal on M. Necessarily g♭0(K) ⊂ KT0 .

Denote by fT0 : C◦
T0

→ X the punctured map over T0 corresponding to the

morphism g0. Let CT0 → T0 be the family of log curves underlying C◦
T0

→ T0.

The morphism T → M×B also induces a family CT → T of log curves such that

CT ×T T0 = CT0.

We then lift CT to a punctured curve over T lifting C◦
T0

as follows. Consider

the Cartesian diagram

(4.17) M′ //

��

MC◦

T0

��

Mgp
CT

// Mgp
CT0

where the two vertical arrows are inclusion of sheaves of monoids. We next show

that M′ is a puncturing along markings in p.

Indeed, as T0 → T is a square-zero extension, the induced morphism Mgp

CT
→

Mgp

CT0
is an isomorphism. Observe that O∗

CT
⊂ M′, and write M′

:= M′/O∗
CT

.

Then the induced morphism M′ → MC◦

T0
is also an isomorphism. Now the

inclusion MCT0
→֒ MC◦

T0
implies an inclusion MCT

→֒ M′, and the isomorphism

(MC◦

T0
)|CT0

rp = MCT0
|CT0

rp implies M′|CTrp = MCT
|CTrp.

6For the definition of idealized log étale, see [Ogu18, IV §3.1].
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We then check that the structure morphism MCT
→ OT extends to αM′ :

M′ → OT . Let αM′ |MCT
= αMCT

. Let e be a local section of M′ around a

puncture p ∈ p which is not contained inMCT
. Then its image ē inM′ ∼= MC◦

T0
is

not contained inMCT0
. By Corollary 2.6, the section ē is of the form ē = ā+f̄ ♭T0(δ̄)

for some local section ā ∈ MCT0
and δ̄ ∈ f ∗

T0
MX such that up(δ̄) < 0. By (2.11),

f̄ ♭T0(δ̄) = b̄ + up(δ̄)x̄p for some b̄ ∈ g•K ⊂ KT0 and x̄p ∈ MCT0
corresponding

to the local coordinate of the puncture p. As the morphism KT → KT0 is an

isomorphism, we see that any lift b ∈ MT of b̄ is contained in KT whose image in

OT is zero. We thus define αM′(e) = 0. This makes C◦ := (CT ,M′) a punctured

curve over T extending C◦
T0

→ T0.

Consider the commutative diagram of solid arrows

C◦
T0

fT0
//

��

X

��

C◦
T

//

fT

>>⑥
⑥

⑥
⑥

B

To construct the unique dashed arrow in (4.17), it remains to construct a unique

dashed arrow fT lifting fT0 . Since X → B is log étale, by the infinitesimal lifting

property of log étale morphisms, such fT exists and is unique. This completes

the proof. ♠

Remark 4.6. Of course M×B is log smooth over B. Thus Theorem 4.5 implies

that M(X /B) is idealized log smooth over B. This implies by [Ogu18], IV Vari-

ant 3.3.5, that locally in the smooth topology, the morphism M(X /B) → B is

modelled on a morphism of the form Spec k[Q]/K → Spec k[R]. Here B locally

has a chart given by a morphism to Spec k[R]. In particular, if B = Spec k, we

may take R = 0, in which case a smooth neighbourhood of a point x̄ of M(X /B)

is smooth over Spec k[Q]/K, where Q is the basic monoid at x̄ and K ⊆ Q is

the puncturing ideal. Thus the puncturing ideal gives a key local description for

M(X /B).

Example 4.7. Take B = Spec k, and consider X a smooth surface with log

structure coming from a smooth rational curve D ⊆ X with D2 = 2. Consider a

type of punctured curve of genus 0, underlying curve class [D], and four punctures,

p1, . . . , p4, with contact orders −1,−1, 2 and 2 respectively. Consider a punctured

curve f : C◦ → X where C = C1 ∪C2 ∪C3 has three irreducible components and

two nodes q1 = C1 ∩ C2, q2 = C1 ∩ C3. We have p1, p3 ∈ C2, p2, p4 ∈ C3. Finally,

f identifies C1 with D and contracts C2 and C3. It is not difficult to check such

a curve exists with uq1 = uq2 = 1.

The corresponding tropical curve Γ has three vertices, v1, v2, v3, edges Eq1, Eq2 ,

and legs Ep1, . . . , Ep4. The moduli space of tropical curves of this combinatorial

type is R3
≥0, with coordinates ρ, ℓ1, ℓ2, where ρ gives the distance of the image of

v1 from the origin of Σ(X) = R≥0, and ℓ1, ℓ2 give the length of the edges Eq1, Eq2 .
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In particular, the basic monoid for this punctured log curve is Q = N3, generated

by ρ, ℓ1, ℓ2.

In this case we may easily calculate the puncturing ideal. We have contributions

from each of the two punctures. Using the definition (2.11), we note that at

the puncture pi, i = 1 or 2, the map ϕη̄ ◦ χη,pi : Ppi = N → Q is dual to

evi : Q
∨
R → (Ppi)

∨ = R≥0 evaluating the tropical curve parameterized by a point

at Q∨
R at vi, see Proposition 2.52. Thus for m ∈ Q∨

R, evi(m) = ρ(m) + ℓi(m).

Dually ϕη̄ ◦ χη,pi : P → Q is given by 1 7→ ρ + ℓi. As upi(1) = −1, i = 1, 2,

we see the puncturing ideal K is generated by ρ + ℓ1, ρ + ℓ2. Writing k[Q] =

k[x, y, z], with the three variables corresponding to ρ, ℓ1, ℓ2 respectively, we see

Spec k[Q]/K = Spec k[x, y, z]/(xy, xz), which has two irreducible components of

differing dimension.

To understand why it is natural to have two irreducible components, let us

assume that D can be deformed inside X to a curve transversal to D. We then

have two ways to deform the map f . By smoothing one or both of the nodes, we

obtain a (partial) smoothing of the domain, with at least one pair p1, p3 or p2, p4
now being distinct points on the component of the domain mapping surjectively

to D. Since this component now contains a negative contact order point, its

image cannot be deformed away from D by Remark 2.19.

On the other hand, if one keeps the domain of f fixed, one may deform the

image of C1 away fromD, so that it meets D transversally in two points (provided

the geometry of X allows this). The remaining components C2 and C3 are then

contracted to the points of intersection of f(C1) with D. It is then no longer

possible to smooth the nodes.

The point of the puncturing ideal is that it captures these intrinsic singularities

of the moduli space: the example given above may well be unobstructed.

5. Splitting and gluing

5.1. Splitting punctured log maps. The origin of the notion of puncturing

arises from the fact that a stable log map, split at a node, can no longer be viewed

as a stable log map. Thus punctured maps are the correct category in which to

work.

Definition 5.1. Suppose given a family of punctured curves π : C◦ → W . A

nodal section q : W → C of π is a section with image a node, so that étale locally

near the image of q, C takes the form SpecOW [x, y]/(xy). The normalization of

C at q is a morphism ν : C̃ → C which is an isomorphism away from q(W ) and

is given étale locally at the image of q by

SpecOW [x]∐ SpecOW [y] → SpecOW [x, y]/(xy).

Note that ν−1(q(W )) → q(W ) is an étale double cover, and we say that the node

q is of splitting type if ν−1(q(W )) ∼= q(W )∐ q(W ).
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Proposition 5.2. Let (C →W,p) be a family of punctured curves equipped with

nodal sections q1, . . . , qn of splitting type. Let ν : C̃ → C be the normalization of

C at the nodes q1, . . . , qn. Setting MC̃◦ = ν∗MC◦, we obtain a family of (possibly

disconnected) punctured curves

(C̃◦ → W,p, p11, p12, . . . , pn1, pn2),

with ν ◦ pij = qi for 1 ≤ i ≤ n.

Proof. For each nodal section qi, we have distinct sections pi1, pi2 : W → C̃ with

ν◦pij = qi. To show that C̃◦ →W is a punctured curve with the given punctures,

we first note that this is obvious away from the images of the pij in C̃.

At an image of pij, note that étale locally along the node qi, MC◦ is generated

by π∗MW , sx and sy, where sx, sy are local sections of MC◦ near the node

induced by the coordinates x, y. These are subject to the relation sxsy = sρ for

some section sρ of π
∗MW , and hence π∗MW , sy locally generate Mgp

C◦ as a group,

with sx = sρs
−1
y . Pulling back to C̃, along the branch x = 0, (with y = 0 giving

the image of the section pij), we have (ν∗MC◦)gp locally generated by π∗MW

and ν∗sy. Further, ν∗sy is also a section of P, the divisorial log structure given

by pij, and the image of ν∗sy in P generates P as a monoid. Thus locally near

pij ,

π∗MW ⊕O×

C̃

P ⊂ ν∗MC◦ ⊂ π∗MW ⊕O×

C̃

Pgp.

Further, any element of ν∗MC◦ not contained in π∗MW ⊕O×

C̃

P can be written in

the form saxs
b
ysW with a > 0, b ≥ 0 and sW a section of π∗MW . Since α(sx) = 0

when x = 0, we see that α applied to any such element is zero. Thus C̃ is a

punctured curve at pij. ♠

Proposition 5.3. Let (C → W,p, f : C◦ → X) be a pre-stable punctured map

equipped with nodal sections q1, . . . , qn of splitting type. Let ν : C̃ → C be the

normalization of C at the nodes q1, . . . , qn. Then there is an induced pre-stable

punctured log map (with possibly disconnected domain)

(C̃◦ → W,p, p11, p12, . . . , pn1, pn2, f̃),

and ν ◦ pij = qi for 1 ≤ i ≤ n. Further, there is a canonical isomorphism

Mgp

C̃◦

∼= (ν∗MC◦)gp. If f is stable, so is f̃ .

Proof. We first apply Proposition 5.2 to split the domain; we obtain a strict

morphism ν : C̃◦ → C◦ which we may compose with f to obtain f : C̃◦ → X .

This may not be pre-stable in the sense of Definition 2.14, but we can replace

MC̃◦ with a smaller log structure with the same group using Proposition 2.4 and

obtain a pre-stable morphism. ♠

5.2. Gluing punctured log maps.
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5.2.1. The general setup. We now want to reverse the procedure described in §5.1.
To do so, we fix a target space X . For the purposes of this discussion, X will

be a Zariski log scheme. However, all statements go through mutatis mutandis

when X is replaced by a Zariski Artin fan X = AX , or, in the case of a family

of targets X → B, by X = AX ×AB
B, where AX is the relative Artin fan of X

over B.

For this discussion, we fix a combinatorial type of a gluing situation:

Definition 5.4. A combinatorial type of a gluing situation is a tuple (G, g, u,A),

where

(1) G is a connected graph, with a set of vertices V (G), a set of edges E(G),

and a set of legs L(G).

(2) g : V (G) → N assigns a genus to each vertex of G;

(3) A : V (G) → H2(X) assigns an underlying curve class to each vertex.

(4) u assigns to each flag v ∈ E ∈ E(G) ∪ L(G) a connected component of

contact orders uv,E . We require that if E ∈ E(G) with vertices v, v′, then

uv,E and uv′,E are opposite contact orders in the sense of Definition 2.47.

Note that given a combinatorial type of gluing situation, associated to each

vertex v we have a class of stable punctured curve β(v). This includes the under-

lying curve class A(v), the genus g(v), and the collection of contact orders uv,E
for each flag v ∈ E ∈ E(G) ∪ L(G).

In such a situation, we can define a glued class of stable punctured curve βgl

whose underlying curve class is A =
∑

v∈V (G) A(v), underlying genus is g =

b1(G) +
∑

v∈G g(v), and with one puncture for each E ∈ L(G), with contact

order uv,E .

Definition 5.5. Given a combinatorial type of a gluing situation, we define a

gluing situation to be the additional data of fs log schemes or fs log algebraic

stacks Wv for v ∈ V (G) equipped with morphisms Wv → M (X/B,β(v)) (or

M(X ,β(v)) or other variants as appropriate). In particular, we are given a

family of punctured maps

(πv : Cv → Wv,pv = {pv,E | v ∈ E ∈ E(G) ∪ L(G)}, fv : C◦
v → X)

over B.

In what follows, the parameter spaces Wv can be taken to be fs log schemes

or fs log algebraic stacks, but to simplify the language here, we will stick to

the category of log schemes. The statements are true mutatis mutandis in the

category of fs log stacks.

Definition 5.6. Given a gluing situation as above, we define the stack of gluings

to be the category fibred over LogB, whose objects consist of log schemes T

defined over B along with the following data:
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(1) A morphism T → M (X/B,βgl) inducing a punctured map

(πT : CT → T,p = {pv,E | v ∈ E ∈ L(G)}, fT : C◦
T → X)

over B. We are also given nodal sections of splitting type qE : T → CT

indexed by E ∈ E(G).

(2) For each vertex v ∈ E(G) a morphism ψv,T : T →Wv, yielding a pull-back

punctured map fv,T : C◦
v,T → X .

(3) Let f̃T : C̃◦
T → X denote the splitting of fT along the nodes qE , in the sense

of Proposition 5.3. Then we are also given an isomorphism of punctured

maps

(f̃T : C̃◦
T → X) ∼= (

∐
fv,T :

∐

v∈V (G)

C◦
v,T → X)

compatible with an isomorphism

CT
∼=


 ∐

v∈V (G)

Cv,T


 /〈pv1,E = pv2,E〉.

where we range over all edges E with endpoints v1, v2. Under this isomor-

phism, the nodal section qE has image pv1,E = pv2,E for v1, v2 the endpoints

of E.

Morphisms in the category of gluings are given by strict morphisms T1 → T2 over

B with isomorphisms of the data over T1 with the pull-back of the data over T2.

We will show that the stack of gluings is represented by a log algebraic stack

W .

In the special case that the given morphism Wv → M (X/B,β(v)) is the iden-

tity, we write the stack of gluings as M gl(X/B,G,β).

Proposition 5.7. The log stack M gl(X/B,G,β) is algebraic, and the canonical

morphism M gl(X/B,G,β) → M (X/B,βgl) is finite, representable and strict.

Proof. Denoting as usual by Mg,n the stack of pre-stable logarithmic curves of

genus g and n marked points, with its basic log structure, we write

Mgl =
∏

v∈V (G)

Mg(v),n(v),

where n(v) is the valency of the vertex v. There is an obvious gluing map

gl : Mgl → Mg,n

where g is the genus of βgl and n = #L(G). This gluing map identifies the marked

point pv,E with pv′,E , whenever v, v
′ are the two vertices of an edge E ∈ E(G).

We then give Mgl the pull-back log structure, yielding a strict morphism gl. Note

that gl is finite and representable. Further, the pull-back of the universal curve

Cgl → Mgl comes with nodal sections qE : Mgl → Cgl of splitting type, with the

image of qE the glued node produced by gluing pv,E and pv′,E.
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There is a forgetful morphism M (X/B,βgl) → Mg,n, and consider a morphism

T → M (X/B,βgl)×Mg,n Mgl.

Giving such a morphism is equivalent to giving the following data:

• A punctured map fT : C◦
T → X as in Definition 5.6, (1).

• For each v ∈ V (G), a family of curves Cv,T → T which is the pull-back of

the universal curve over Mg(v),n(v) via the composed morphism

T → M (X/B,βgl)×Mg,n Mgl → Mgl → Mg(v),n(v),

where the last morphism is projection to Mg(v),n(v) at the level of under-

lying stacks. It is defined at the logarithmic level by noting that after

partially normalising the universal curve Cgl at the nodes qE and restrict-

ing to a connected component indexed by v, one obtains a family of curves

of genus g(v) with n(v) marked points over Mgl, and hence a tautological

morphism Mgl → Mg(v),n(v).

• Let C̃T denote the partial normalization of CT at the nodes qE , viewing

the points of C̃T mapping to normalized nodes as marked points. Then

we are given an isomorphism C̃T ∼=
∐

v∈V (G) Cv,T compatible with an

isomorphism

CT
∼=


 ∐

v∈V (G)

Cv,T


 /〈pv1,E = pv2,E〉.

where we range over all edges E with endpoints v1, v2.

By splitting the morphism fT along the nodes of splitting type qE , E ∈ E(G),

one obtains punctured maps fv,T : C◦
v,T → X . Now the class of this punctured

map need not be β(v). However, as the class of a punctured map is locally

constant in families, there is an open and closed substack M gl(X/B,G,β) of

M (X/B,βgl) ×Mg,n Mgl such that if the morphism from T factors through this

open and closed substack, fv,T is of class β(v). In this case the punctured map in-

duces a morphism ψv,T : T → M (X/B,β(v)) for each v, and hence we obtain the

data (1)-(3) of Definition 5.6. Thus it is clear that the log stack M gl(X/B,G,β)

represents the stack of gluings. Further, since Mgl → Mg,n is strict, finite, and

representable, the morphism M gl(X/B,G,β) → M (X/B,βgl) is also strict, fi-

nite and representable. ♠

Proposition 5.8. Suppose given a general gluing situation. Then the stack of

gluings is represented by a log algebraic stack. If each family fv : C
◦
v/Wv → X is

basic, then so is the universal glued family f : C◦/W → X.
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Proof. We consider a Cartesian diagram in the fs log category

W
ψ′

//

��

∏
vWv

��

M gl(X/B,G,β)
ψ

//
∏

v M (X,β(v))

Here the lower morphism ψ =
∏

v ψv is given by the universal splitting map. It

is then clear that W represents the stack of gluings of the families parameterized

by the Wv.

In the basic case, the right-hand vertical arrow is strict, and hence so is the

left-hand vertical arrow. Further M gl(X/B,G,β) → M (X/B,βgl) is strict. This

shows the family of glued punctured maps over W is basic. ♠
There are two significant issues concerning gluing left unresolved in the previous

discussion. The first is that to be useful, one needs to understand how virtual

fundamental classes behave under gluing. The second is that often one needs an

explicit description of glued families, and the previous subsection is only useful

at a theoretical level. We deal with these two issues in the following sub-sections.

5.2.2. Gluing via fibred products. In a slightly more restrictive situation, we can

describe, given a gluing situation, the gluing via a fibre product, in analogy with

the case of ordinary stable maps. Indeed, suppose given a gluing situation, and

suppose we wish to glue the underlying stable maps f
v
: Cv → X . Then there is

a standard Cartesian diagram

(5.1) V //

��

∏
vW v

ev

��∏
E∈E(G)X ∆

//
∏

v∈E∈E(G)X

where V parameterizes the glued family of ordinary stable maps to X . Here

ev is the evaluation map, with the component indexed by v ∈ E ∈ E(G) the

composition of the projection
∏

vW v → W v and the evaluation map fv ◦ pv,E :

W v → X of the stable map fv at pv,E . The diagonal ∆ is the product of the

diagonal morphisms X → X ×X , taking the copy of X indexed by E ∈ E(G) to

the product of copies of X indexed by v1 ∈ E, v2 ∈ E.

In the case that we are working with a family of targets X → B, the glued

stable map f : C/V → X can be composed with X → B. This composition is

constant on fibres of C → V as the fibres are connected, since G is assumed to be

connected. Thus we obtain a glued stable map to the family of targets X → B.

Unfortunately, the story is slightly more complex in the logarithmic category.

In particular, we will require:

Assumption 5.9. Suppose given a (logarithmic) gluing situation. Then for every

geometric point w̄ ∈ |V | where V is defined by (5.1) with images w̄v ∈ W v, let fv :
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(Cv)w̄v → X be the induced stable map. We necessarily have fv(pv,E) = fv′(pv′,E)

for v, v′ the two vertices of an edge E ∈ E(G). We then assume that the contact

orders uv,E : Ppv,E → Z and uv′,E : Ppv,E → Z satisfy the relation uv′,E = −uv,E.

Remark 5.10. The assumption that contact orders be opposite is insufficient in

general to guarantee that the assumption holds. The problem only arises in fairly

unusual situations, such as in the Möbius example of Remark 2.45. By Remark

2.48, the contact order u given in the example is in fact opposite to itself, so if

that contact order is specified in a gluing situation, one might have uv′,E = uv,E
or uv′,E = −uv,E depending on the point w̄ ∈ |V |.

However, if MX is generated by global sections, as is currently required (Theo-

rem 3.7) for moduli spaces to be of finite type, then the above assumption always

hold. Indeed, as in the proof of Proposition 2.46, a connected component of con-

tact orders determines a composed morphism v : Γ(X,MX) → Γ(Z,MZ)
u−→Z,

and if u, u′ are opposite contact orders, then v = −v′. In particular, in the situ-

ation of Assumption (5.9), there are then factorizations Γ(X,MX) → Ppv,E
uv,E−→Z

and Γ(X,MX) → Ppv,E
uv′,E−→Z of v and v′ respectively, where the first map takes

germs of global sections. Thus uv,E = −uv′,E.

We now partially describe the construction of the glued family W . The chief

difficulty is that there do not exist evaluation maps at the log level evv,E :Wv →
X evaluating fv at pv,E . To rectify this, let WE

v denote the log scheme with

underlying scheme W v and log structure p∗v,EMC◦
v
. Let E1, . . . , En be the edges

adjacent to v. Then define W̃v to be the saturation (see [Ogu18, III Prop. 2.1.5])

of the fibre product in the category of fine log schemes

(5.2) W̃ fine
v := WE1

v ×Wv · · · ×Wv W
En
v .

Note that there are natural composed morphisms

(5.3) evv,E : W̃v
// W̃ fine

v
// WE

v

fv◦pv,E
// X,

which can be viewed as an evaluation map at the puncture pv,E . This induces,

by ranging over all E containing a given vertex v, a morphism

evv : W̃v →
∏

E

X,

where the product is over all edges containing v. Finally, taking the product over

all v gives a morphism

(5.4) ev :
∏

v∈V (G)

W̃v →
∏

v∈E∈E(G)

X.



60 DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

We now have a diagram Cartesian in the fs log category

(5.5) W̃
pr2

//

pr1

��

∏
v∈V (G) W̃v

ev

��∏
E∈E(G)X ∆

//
∏

v∈E∈E(G)X

The morphism ∆ is the product of the diagonal morphisms X → X ×X , taking

the copy of X indexed by E ∈ E(G) to the product of copies of X indexed by

v1 ∈ E, v2 ∈ E.

Before stating the main gluing result, we need the following standard fact:

Proposition 5.11. Let X1, X2 and Y be fs log schemes, pi : Xi → Y morphisms,

and W = X1×Y X2 the product in the category of fs log schemes with projections

πi : W → Xi. If w̄ ∈ W , let Q = MW,w̄, Qi = MXi,πi(w̄), P = MY,pi◦πi(w̄). Then

Q is the saturated image of Q1⊕Q2 in (Qgp
1 ⊕Qgp

2 )/R, where R is the saturation

of the image of P gp → Qgp
1 ⊕Qgp

2 , m 7→
(
p̄♭1(m),−p̄♭2(m)

)
.

Proof. By [ACGS16, Proposition 6.3.5], Q∨ = Q∨
1 ×P∨Q∨

2 . Since Q is a sharp fine

saturated monoid, Q = Q∨∨, and the latter is precisely the stated monoid. ♠
The main gluing result is then:

Theorem 5.12. Given a gluing situation as above satisfying Assumption 5.9,

there is a log scheme W = (W̃ ,MW ) with MW ⊂ MW̃ , equipped with morphisms

ψv : W → Wv and a universal glued family (π : C →W,p, f : C → X).

Proof. Step 1. Gluing ordinary stable maps.

At the level of underlying schemes, evv,E is the composition of the projection

W̃ v →W v and the evaluation map f
v
◦pv,E . Thus we obtain a canonical morphism

W̃ → V where V is the ordinary gluing defined in (5.1). Thus we may glue the

underlying stable maps to obtain f : C → X , with target relative to B if the

original punctured maps are defined relative to B.

Step 2. Construction of MW and the morphisms ψv. Consider the

composed morphisms, for v ∈ E,

ψEv : W̃ → W̃v → WE
v .

By construction, there are canonical inclusions MWv ,Pv,E ⊂ MWE
v

where Pv,E
is the pull-back via pv,E of the divisorial log structure (Cv, pv,E(W v)). Note that

Pv,E is the DF(1) log structure associated to the pull-back of the conormal bundle

p∗v,EN ∨
pv,E(W v)/Cv

.7 Thus we obtain morphisms of log structures

(5.6) (ψEv )
∗MWv → MW̃ .

7Here we mean the log structure with ghost sheaf the constant sheaf N which is the pull-back

of the standard log structure on BGm via the morphism W v → BGm given by the line bundle

p∗v,EN∨

pv,E(W
v
)/C

v
.
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and

(5.7) (ψEv )
∗Pv,E → MW̃ .

We obtain for each edge E two log structures on W̃

NE ⊂ ÑE :=
(
(ψEv1)

∗Pv1,E
)
⊕O×

W̃

(
(ψEv2)

∗Pv2,E
)

with the induced inclusion of ghost sheaves being N ⊆ N ⊕ N the diagonal. In

particular NE is the DF(1) log structure induced by the line bundle

(pv1,E ◦ ψEv1)∗N ∨
pv1,E(W v1

)/Cv1
⊗ (pvi,E ◦ ψEv2)∗N ∨

pv2,E(W v2
)/Cv2

.

We have morphisms of log structures induced by (5.7)

(5.8) NE → MW̃

and

(5.9) ÑE → MW̃ .

We then define MW ⊆ MW̃ to be the fine saturated log structure generated by

the images of all the morphisms (5.6), (5.7) and (5.8). Because MW contains the

image of (5.6), the morphism πv ◦ψEv factors through W̃ →W , giving the desired

morphism ψv : W → Wv.

Step 3. Analysis of the monoids.

For future use in the proof, we give a more detailed description of the ghost

sheaves. Let w̄ be a geometric point of W . Write Q̃ and Q for the stalks of MW̃

and MW at w̄. We will describe Q̃gp and Q. Let (x̄E)E∈E(G) be the image of w̄

under the projection morphism pr1 of (5.5), and (w̄v)v∈V (G) the image of w̄ under

the projection morphism pr2. From Proposition 5.11, if w̄′
v denotes the image of

w̄v in Wv and Qv = MWv,w̄′
v
, then

Mgp

W̃v,w̄v
= Qgp

v ⊕
⊕

E: v∈E

Z.

Finally, for v ∈ E, write PE = Pv,E for the stalk of MX at x̄E ; note this does not

depend on v. Again from Proposition 5.11 and the diagram (5.5), we can write

Q̃gp =


 ⊕

E∈E(G)

P gp
E ⊕

⊕

v∈V (G)

Qgp
v ⊕

⊕

v∈E∈E(G)

Z



/
R

where R is the saturation of the subgroup generated by elements of the form
(
(0, . . . , 0,−p, 0, . . . , 0), (0, . . . , ϕv(p), . . . , 0), (0, . . . , upv,E(p), . . . , 0)

)

where p ∈ P gp
v,E , and the non-zero entries lie in the terms P gp

E , Qgp
v , and the

copy of Z indexed by v ∈ E respectively. Here ϕv : Pv,E → Qv is induced by
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f ♭v : MX,x̄E → MC◦
v ,pv,E(w̄′

v) ⊂ Qv ⊕ Z followed by the first projection. Note this

is isomorphic to

Q̃gp =


 ⊕

v∈V (G)

Qgp
v ⊕

⊕

v∈E∈E(G)

Z



/
R′

where R′ is the saturation of the subgroup generated by elements of the form, for

p ∈ P gp
E , v1, v2 the two vertices of E,

(
(. . . , 0, ϕv1(p), . . . ,−ϕv2(p), 0, . . .), (. . . , 0, upv1,E(p), . . . ,−upv2,E(p), 0, . . .)

)

where the non-zero entries lie in Qgp
v1 , Q

gp
v2 , and the copies of Z indexed by v1 ∈ E

and v2 ∈ E respectively. By Assumption 5.9, −upv2,E = upv1,E . This implies that

R′ is contained in Qgp, and we are thus able to describe Q as the saturated image

of
⊕

v∈V (G)Qv ⊕
⊕

E∈E(G)N in

Qgp =


 ⊕

v∈V (G)

Qgp
v ⊕

⊕

E∈E(G)

Z



/
R′′

where R′′ is the saturation of the subgroup generated by elements of the form
(
(. . . , 0, ϕv1(p), . . . ,−ϕv2(p), 0, . . .), (. . . , 0, upv1,E(p), 0, . . .)

)
.

Here the copy of Z indexed by E in the above description is embedded diagonally

in Z ⊕ Z in the description of Q̃gp, with the two copies of Z indexed by v1 ∈ E

and v2 ∈ E.

Step 4. Construction of the glued log structure on C.

Following the notation of the proof of Proposition 5.7, we glue the domains by

constructing a morphism µ : W → Mgl. To do so, we need to be explicit about

the log structure on Mgl. Recalling that Mgl =
∏

vMg(v),n(v), write

(Mgl,Mprod) :=
∏

v

Mg(v),n(v).

Let N ′
E denote the DF(1) log structure on Mgl induced by the tensor prod-

uct of conormal bundles N ∨
pv1,E(Mg(v),n(v))/Cv1

⊗ N ∨
pv2,E(Mg(v),n(v))/Cv2

, where Cv →
Mg(v),n(v) is the universal curve. Then the log structure on Mgl is the fibred sum

(over O×) of Mprod and the N ′
E for E ∈ E(G).

We can now define a log morphism

µ : W → Mgl

as follows. First, if µv : Wv → Mg(v),n(v) is the tautological map induced by

Cv/Wv, the composed morphisms µv ◦ ψv : W → Mg(v),n(v) yield a morphism

µ′ :W → (Mgl,Mprod).

Thus it is sufficient to define morphisms of log structures (µ′)∗N ′
E → MW . But

there is a canonical isomorphism (µ′)∗N ′
E → NE , which combined with the map

(5.8) yields the desired morphism of log structures.
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The universal log curve Cgl → Mgl can now be pulled back via µ to obtain a

log curve π : C →W , with underlying scheme being the glued curve C.

Step 5. Construction of the morphism f : C◦ → X.

Recall that from Step 1, we already have f : C → X. We need to lift this to

log schemes.

Denote the nodal sections of C →W produced by the gluing by qE , E ∈ E(G).

Let C◦
v,W = C◦

v ×Wv W , and let ν : C̃ → C denote the normalization along

the nodal sections qE , so that we have a canonical isomorphism C̃ ∼=
∐

v C
◦
v,W .

Denote by C̃◦ the log structure on C̃ pulled back via this isomorphism. There is

a morphism f̃ =
∐

v fv,W : C̃◦ → X , where fv,W : C◦
v,W → X is induced by fv.

As C̃ r
⋃
v∈E∈E(G) pv,E(W ) ∼= C r

⋃
E∈E(G) qE(W ), we obtain a puncturing C◦

of C at its marked points so that C̃◦r
⋃
v∈E∈E(G) pv,E(W ) → C◦r

⋃
E∈E(G) qE(W )

is strict. Thus f̃ induces a morphism f : C◦ r
⋃
E qE(W ) → X . We only need to

extend this morphism across the nodal sections.

We do this by showing the morphism f̃ : C̃◦ → X induces a morphism f̃ :

(C̃, ν∗MC◦) → X and that for each edge E, the restriction of f̃ to the section

pvi,E(W ) is independent of i, for v1, v2 the vertices of E.

First note that by Proposition 5.2, Mgp

C̃◦
and (ν∗MC◦)gp can be canonically

identified, since MC̃◦ and ν∗MC◦ are both puncturings along the same set of

punctures. Fix E ∈ E(G) with vertices v1, v2 ∈ E. Set

WE = (W, q∗EMC◦) = (W, p∗vi,Eν
∗MC◦)

W v,E = (W, p∗v,EMC◦

v,W
)

We still have a canonical identification β♭v,E : Mgp
W v,E

∼= Mgp
WE . By the discussion

of the previous paragraph, it is enough to show (1) β♭v,E induces a log morphism

βv,E : WE → W v,E ; (2) fv1,W ◦ βv1,E = fv2,W ◦ βv2,E. Thus we only need to show

the following. Consider the diagram of sheaves of monoids on W

(5.10) (f ◦ qE)∗MX

f♭v1,W
//

f♭v2,W
��

MW v1,E

β♭
v1,E

��

MW v2,E

β♭
v2,E

// Mgp
WE

It is sufficient to show (1) β♭vi,E ◦ f ♭vi,W has image lying in MWE , and (2) the

diagram (5.10) is commutative.

To do so, note that by the construction of Step 2, NE is a sub-log structure of

both MW and ÑE. Then

(5.11) MWE = MW ⊕NE
ÑE.

Further, the map (5.9) then induces a homomorphism MWE → MW̃ . If this

homomorphism is injective, then to check commutativity of (5.10) we may replace
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Mgp
WE with Mgp

W̃
. The injectivity can be checked at the level of stalks of ghost

sheaves, and thus follows from the explicit descriptions of these monoids in Step

3. The commutativity statement (2) then follows from commutativity of the

diagram (5.5), by tracing the effects of the morphisms on the copies of MX on∏
v∈E∈E(G)X indexed by v1 ∈ E and v2 ∈ E.

To show (1), we can use the commutativity of (2). Let w̄ be a geometric point

of W , and let s be a section of (f ◦ qE)∗MX defined in a neighbourhood of w̄.

Let s̄ be the induced section of (f ◦ qE)−1MX . We have

f ♭vi,W : (f ◦ qE)∗MX → MW vi,E ⊂ MW ⊕O×

W
ψ∗
vi
Pgp
vi,E

,

so a priori we can write f ♭vi,W (s) = s1 · s2, with s1 a section of MW and s2 a

section of ψ∗
vi
Pgp
vi,E

.

Now upv1,E , upv2,E ∈ M∗

X,f(w) are related by upv2,E = −upv1,E by Assumption

5.9. Thus upvi,E(s̄) ≥ 0 for some i. Then for this i, in fact

s2 ∈ ψ∗
vi
Pvi,E ⊂ ÑE ⊂ MWE ,

the composition of the latter two inclusions being induced by β♭vi,E. Thus β
♭
vi,E

◦
f ♭vi,W (s) ∈ MWE . By commutativity of (5.10), the choice of i is irrelevant.

To recap, by construction we have obtained the data (π : C →W,p, f : C◦ →
X) with nodal sections qE , morphisms ψv : W → Wv, and an isomorphism of∐

v∈V (G) C
◦
v,W with the splitting C̃◦ of C◦ along the qE . Thus we have constructed

a glued family in the sense of Definition 5.6.

Step 6. f : C◦ → X is a morphism over B.

As the original underlying morphisms f
v
: Cv → X were defined over B and

G is connected, in fact f is a family of stable maps defined over B, i.e., there is a

morphism W → B compatible with f . Indeed, this morphism can be taken to be

the composition of X → B with f ◦qE for any gluing node qE , and all these maps

coincide. To see that f is defined over B at the logarithmic level, it is sufficient

to check that the image of MB in MC◦ , under the composition C◦ → X → B is

contained in π∗MW . However, this can be checked after pull-back to C̃, where

the claim holds because each stable map fv,W : C◦
v,W → X is defined over B.

Step 7. Verification of the universal property.

Assume given any glued family over a log scheme T , i.e., a family (CT →
T,p, fT : CT → X), morphisms ψv,T : T →Wv, and an isomorphism of punctured

maps between the splitting f̃T : C̃◦
T → X of fT and

∐
fv,T :

∐
v C

◦
v,T → X .

In analogy with WE, W v,E , set

TE = (T , q∗EMC◦

T
),

T v,E = (T , p∗v,EMC◦

v,T
),

T̃ = TE1 ×T · · · ×T T
En,
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where E1, . . . , En is an enumeration of the edges of G. Note that the underlying

schemes of T̃ and T are the same as the morphisms TEi → T are integral and

saturated, see [Ogu18, I Theorem 4.8.14].

Note we have a morphism

βTv,E : TE → T v,E

which is the identity on underlying schemes. This morphism exists at the log level

as the induced fv,T ◦ pv,E : T v,E → X is pre-stable, so we may apply Proposition

2.4.

We also have the following morphisms:

prv,T : T v,E → WE
v ,

prE : T̃ → TE,

ψEv,T = prv,T ◦βTv,E ◦ prE : T̃ →WE
v ,

evE,T = fT ◦ qE ◦ prE : T̃ → X,

where prv,T is induced by the projection C◦
v,T → C◦

v and prE is the projection

onto TE.

We also have a commutative diagram

(5.12) T̃
ψE
v,T

//

��

WE
v

��

T
ψv,T

// Wv

where the vertical maps are the canonical ones. Thus the composition T̃ →
WE
v →Wv is independent of the edge E, and we obtain a morphism T̃ → W̃ fine

v .

Since T̃ is saturated, this morphism factors through the saturation to give

T̃ → W̃v.

This in turn gives a morphism

ψ̃′ : T̃ →
∏

v

W̃v.

On the other hand, we have a morphism

evT =
∏

E

evE,T : T̃ →
∏

E

X.

Using (5.5), we can now define a morphism

ψ̃T : T̃ → W̃

by noting that ev ◦ ψ̃′ = ∆ ◦ evT . Indeed, this follows from the equality of the

morphisms evE,T = fT ◦ qE ◦ prE : T̃ → X and fv ◦ pv,E ◦ ψEv,T : T̃ → X , which

holds because fv,T is induced from fT via the splitting of f along the nodes qE.
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Finally, we show that ψ̃T induces a morphism

ψT : T →W.

This is done by showing that under ψ̃♭T , MW ⊂ MW̃ is mapped to MT ⊂ MT̃ ,

which can be checked on the generating set of MW . By commutativity of (5.12),

the image of (5.6) is mapped into MT by ψ♭T . Further, analogously to (5.11)

MTE = MT ⊕NT
E
Ñ T
E ,

where N T
E , Ñ T

E are pull-backs of NE, ÑE under ψ̃
T
, with

Ñ T
E =

(
(ψEv1 ◦ ψ̃T )∗Pv1,E

)
⊕O×

W̃

(
(ψEv2 ◦ ψ̃T )∗Pv2,E

)

Note that ψ̃T is compatible with ψEvi,T and hence ψ̃♭T maps the image of (5.7) to

the image of (ψEv1 ◦ ψ̃T )∗Pv1,E in MT̃ . This implies that ψ̃♭T maps NE ⊂ MW

to N T
E ⊂ MT . Thus MW is mapped via ψ̃♭T into MT , as desired, defining the

morphism ψT .

We then have ψv,T = ψv ◦ ψT , which follows from the equality ψEv,T = ψEv ◦ ψ̃T .
By construction, the data of the gluing over T is the pull-back of the universal

gluing over W via ψT . ♠

5.2.3. Gluing with evaluation maps. In this subsection we consider a minor vari-

ant of the gluing procedure of the previous subsection. Suppose given a family

of targets X → B with X Zariski. Set X = AX ×AB
B with AX the relative

Artin fan. Suppose also given a gluing situation of punctured log maps to X /B
satisfying Assumption 5.9. We may glue to obtain a family of maps to X /B using

the fibre product description of the previous section, but as we shall see in the

following subsections, often there is a more useful gluing setup.

Let pv be a subset of the punctures of the given type β(v), and assume that

whenever E ∈ E(G) is an edge with vertex v we have pv,E ∈ pv. Let p
′
v ⊆ pv be

the subset of punctures corresponding to legs with endpoint v. Let q = {qE |E ∈
E(G)} be the collection of nodal sections of a curve resulting from gluing the

given data, and let

p′ :=
⋃

v∈V (G)

p′
v.

This is a subset of the set of punctures of βgl.

We introduce short-hand: for a set p, we write
∏

p∈p

X := X ×B . . .×B X,
∏

p∈p

X := X ×B . . .×B X ,

with a one-to-one correspondence between factors in the product and elements of

p. Thus, following (4.12), we set

(5.13) W ev(pv)
v :=Wv ×∏

p∈pv
X

∏

p∈pv

X



PUNCTURED LOGARITHMIC MAPS 67

Here the morphismWv →
∏

p∈pv
X is just the product of the schematic evaluation

maps at each of the punctures of the domain curve in pv.

Note that giving a morphism ψv,T : T → W
ev(pv)
v is equivalent to giving (1)

a morphism T → Wv yielding via pull-back a family of punctured maps fv :

C◦
v,T /T → X ; (2) for each puncture pv,E ∈ pv of C

◦
v,T , a factorization of f

v
◦pv,E :

Wv → X as Wv → X → X .

Similarly, we can define, for W the gluing of the Wv,

(5.14) W ev(q,p′) = W ×∏
X

∏
X,

where the product is over all nodes in q and punctures in p′; again, the map

W →∏X is given by the schematic evaluation maps at these points.

The main observation of this subsection is that W ev(q,p′) can be constructed

from the spaces W ev(pv) as a fibre product as in the previous subsection. We

define

W̃ ev(pv)
v := W̃v ×∏

p∈pv
X

∏

p∈pv

X

and

W̃ ev(q,p′) :=W ×∏
X

∏
X.

Clearly W ev(q,p′) is just a sub-log structure of W̃ ev(q,p′) with the same underlying

stack structure by Theorem 5.12.

Theorem 5.13. There is a Cartesian diagram in the category of fs log stacks

(5.15) W̃ ev(q,p′)
pr2

//

pr1

��

∏
v∈V (G) W̃

ev(pv)
v

ev

��∏
E∈E(G)X ∆

//
∏

v∈E∈E(G)X

Further, W̃
ev(pv)
v can be constructed from the space W

ev(pv)
v via (5.2) and pr2 is

finite and representable.

Proof. The first statement follows immediately from the Cartesian diagram (5.5)

and properties of fibre product.

For the second statement, certainly if v ∈ E, then (W
ev(pv)
v )E ∼= WE

v ×∏
p∈pv

X

∏
p∈pv

X . Thus (
˜
W

ev(pv)
v )fine ∼= W̃ fine

v ×∏
X

∏
X by standard properties of fibre

product. Finally, saturation commutes with strict base-change. This shows the

desired isomorphism.

For the final statement that pr2 is finite and representable, note that pr
2
factors

as

W̃
ev(q,p′) →

∏

v

W̃
ev(pv)

v ×∏
E X

∏

v∈E

X →
∏

v

W̃
ev(pv)

v

where the first morphism is the result of integralization and saturation of a log

structure on the ordinary fibre product, hence finite and representable, and the
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second morphism is a base-change of ∆, hence a closed immersion, and in partic-

ular finite and representable. Thus pr2 is finite and representable. ♠
5.2.4. Gluing at the virtual level. We fix a combinatorial type of gluing situation

G,β with target X → B, which we assumed to be log smooth with X Zariski.

Further, to guarantee that moduli spaces are of finite type, we will assume in this

subsection that MX is globally generated.

As in the previous subsection, we set X = AX ×AB
B with AX the relative

Artin fan as usual. In addition, we continue with pv a subset of the punctures of

the given type β(v) as in the previous subsection, yielding subsets p′
v ⊆ pv and

the set of nodal sections q = {qE |E ∈ E(G)} obtained from gluing.

Definition 5.14. As in (5.13), (5.14), we define

Mev(pv)(X ,β(v)) := M(X ,β(v))×∏
p∈pv

X

∏

p∈pv

X,

Mgl,ev(q,p′)(X , G,β) := Mgl(X , G,β)×∏
x∈q∪p′ X

∏

x∈q∪p′

X.

Note that we have obvious strict factorizations

M (X,β(v))
εv

// Mev(pv)(X ,β(v)) // M(X ,β(v))
and

M gl(X,G,β)
εgl

// Mgl,ev(q,p′)(X ,β) // Mgl(X ,β)
with the compositions being the canonical morphisms given by composition of a

stable map to X with the morphism X → X .

Theorem 5.15. There is a Cartesian diagram

(5.16) M gl(X,G,β)

εgl

��

δ
//
∏

v∈V (G) M (X,β(v))

ε=
∏

v εv
��

Mgl,ev(q,p′)(X , G,β) δ′
//
∏

v∈V (G)M
ev(pv)(X ,β(v))

with vertical maps strict. The morphisms δ and δ′ are finite and representable.

Proof. The diagram is clearly commutative, and hence if

W = Mgl,ev(q,p′)(X , G,β)×∏
v Mev(pv)(X ,β(v))

∏

v

M (X,β(v)),

we obtain a morphism M gl(X,G,β) → W . It is thus enough to construct an

inverse morphism.

Note that giving a morphism T → W is the same as giving: (1) A family of

punctured maps f : C◦
T → X of class βgl equipped with nodal sections of splitting

type qE which splits as a collection of punctured maps fv : C◦
v,T → X of class

β(v); (2) For each edge E ∈ E(G), a morphism f
E
: T → X and an isomorphism

between the composition of f
E
with X → X and f ◦ qE : T → X . For each leg
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E ∈ L(G) corresponding to a puncture pE ∈ p′, a morphism f
E
: T → X and an

isomorphism between the composition of f
E
withX → X and f ◦pE : T → X . (3)

Punctured maps f̃v : C
◦
v,T → X and an isomorphism between the composition of

f̃v with X → X and fv. This isomorphism is such that it induces an isomorphism

between f̃
v
◦ pv,E : T → X and f

E
whenever v ∈ E corresponds to a puncture

pv,E ∈ pv.

Given such data, we show that it induces a unique morphism T → M gl(X,G,β)

compatible with all maps. To do this, it is sufficient to lift f to a morphism

f̃ : C◦
T → X such that (1) f̃ ◦ qE = f

E
; (2) the splittings C◦

v,T → X of f̃ agree

with f̃v.

To give a lifting f̃ of f , it is enough to give a factorization

CT

f̃
// X // X

of f because X → X is strict. However, this is immediate as the morphisms

f̃
v
: Cv,T → X can be glued as ordinary stable maps precisely because of the

isomorphism of f̃
v
◦ pv,E with f

E
for all flags v ∈ E ∈ E(G). Thus we obtain a

morphism T → M gl(X,G,β), and hence a morphism W → M gl(X,G,β) which

is clearly inverse to the canonical morphism M gl(X,G,β) → W .

The finiteness and representability of δ and δ′ follow immediately from Theorem

5.13. ♠

We now analyze the obstruction theories in (5.16). For short-hand, write

Mv := M(X ,β(v)), Mev
v := Mev(pv)(X ,β(v)),

M :=
∏

v∈V (G)

Mv, M
ev

:=
∏

v∈V (G)

Mev
v

Mgl := Mgl(X , G,β), Mgl,ev := Mgl,ev(q,p′)(X , G,β)
Mv := M (X,β(v)), M :=

∏

v∈V (G)

Mv

M
gl := M

gl(X,G,β).

Denote by Cv → Mv and C → M gl the universal curves over Mv and M gl,

respectively, by Cv → M the pull-back of Cv under the projection from the

product M to Mv and write π : C =
∐

v Cv → M v. We also have universal

morphisms f : C → X , f : C → X , and the subschemes of special points to

be considered ι : Z → C, ι : Z → C and projections p = π ◦ ι and p = π ◦ ι.
Here Z is the union of the images of the punctured sections in p′ and the nodal

sections in q, while Z is the union of punctured sections in
⋃
v pv. With κ the

partial normalization along the nodal locus Z ′′ ⊂ Z as defined before Lemma 4.4,

there is also the universal morphism f̃ = f ◦ κ : C̃ → X and the subscheme

Z̃ = κ−1(Z) → C̃ of special points on C̃ with projection p̃ : Z̃ → M gl. We have
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the following commutative diagram with two cartesian squares:

(5.17)

C̃

κ
��

π̃

��

//

f̃

%%
C =

∐
v Cv

π
��

f
// X

C

π
��

f

66

M gl δ
//

εgl
��

M =
∏

v Mv

ε
��

Mgl,ev // M
ev

=
∏

vM
ev
v .

The discussion in §4.2 provides an obstruction theory G → L
M /M

ev for M relative

to M with

(5.18) G = Rπ∗

(
f
∗
ΩX/B ⊗ ωπ(Z)

)
.

Recall that this obstruction theory is obtained by taking the cone of a morphism

of perfect obstruction theories provided by Proposition 4.3:

Lε∗F −−−→ E

Lε∗Ψ

y
yΦ

Lε∗LM
ev
/M −−−→ L

M /M

Pulling back to M gl, we now have four deformation/obstruction situations with

corresponding perfect obstruction theories. Given T → M gl a morphism from an

affine scheme and fT : CT → X , hT : ZT → X , f̃T : C̃T → X , h̃T : Z̃T → X the

pull-back of the universal morphisms from the universal curve and universal sec-

tions and their pull-backs to C̃, respectively, these are as follows. All deformation

situations are relative Mgl.

(M gl/Mgl) Deforming fT : CT → X :

E = Rπ∗(f
∗ΩX/B ⊗ ωπ) −→ LM gl/Mgl .

(Mgl,ev/Mgl) Deforming hT : ZT → X :

Lε∗F = p∗(h
∗ΩX/B) −→ Lε∗LMgl,ev/Mgl .

(M /M) Deforming f̃T : C̃T → X :

Lδ∗E = Rπ̃∗(f̃
∗ΩX/B ⊗ ωπ̃) −→ Lδ∗L

M/M.

(M
ev
/M) Deforming h̃T : Z̃T → X :

Lδ∗Lε∗F = p̃∗(h̃
∗ΩX/B) −→ Lδ∗Lε∗LM

ev
/M.
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Lemma 5.16. There is a morphism of distinguished triangles

Lδ∗Lε∗F −−−→ Lδ∗E −−−→ G −−−→ Lδ∗Lε∗F[1]y
y

∥∥∥
y

Lε∗F −−−→ E −−−→ G −−−→ Lε∗F

with G = Lδ∗G = Rπ̃∗(f̃
∗ΩX/B ⊗ ωπ̃(Z̃)).

Proof. Recall we write Z = Z ′ ∪ Z ′′, where Z ′ is the union of the images of the

punctured sections in p′ and Z ′′ is the union of the images of the nodal sections

in q. With Z̃ ′ = κ−1(Z ′) and Z̃ ′′ = κ−1(Z ′′) we have Z̃ = Z̃ ′ ∪ Z̃ ′′ and hence the

following commutative diagram of OC̃-modules with exact rows.

0 −−−→ OC̃(−Z̃ ′′) −−−→ OC̃(Z̃
′) −−−→ OZ̃(Z̃

′) −−−→ 0y
y

y
0 −−−→ OC̃ −−−→ OC̃(Z̃

′) −−−→ OZ̃′(Z̃ ′) −−−→ 0.

The statement then follows by tensoring this diagram with κ∗ωπ ⊗ f̃ ∗ΩX/B and

arguing similarly as in the proof of Lemma 4.4. For example, since κ∗ωπ(−Z̃ ′′) =

ωπ̃, taking Rπ̃∗ of this tensor product leads to

Rπ̃∗(f̃
∗ΩX/B ⊗ ωπ̃) = Lδ∗E.

Further details are left to the reader. ♠
Theorem 5.17. In the above situation and notation, we have

(1) There is a commutative diagram

M gl(X,G,β) //

��

M (X,βgl)

��

Mgl(X , G,β) // M(X ,βgl)

which exhibits M gl(X,G,β) as an open and closed substack of the fibre

product Mgl(X , G,β)×M(X ,βgl)M (X,βgl). The relative obstruction theory

for M (X,βgl) → M(X ,βgl) pulls back to give a relative obstruction theory

for M gl(X,G,β) → Mgl(X , G,β), which is the obstruction theory

E → LM gl(X,G,β)/Mgl(X,G,β)

described above.

(2) The obstruction theory

G → L
M gl(X,G,β)/Mgl,ev(q,p′)(X,G,β)

for

M
gl(X,G,β) → Mgl,ev(q,p′)(X , G,β)

coincides with the pull-back of the obstruction theory

G → L
M /M

ev
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described above.

(3) If ε!gl and ε! denote Manolache’s virtual pull-back defined using the two

given obstruction theories, then for α ∈ A∗

(
Mgl,ev(q,p′)(X , G, β)

)
, we have

the identity

ε!δ′∗(α) = δ∗ε
!
gl(α)

Proof. (1) It is clear that the fibre product Mgl(X , G,β) ×M(X ,βgl) M (X,βgl)

consists of the disjoint union of all M gl(X , G,β′), where β′ runs over all col-

lections of data (A′(v), g′(v), u′v,E) such that g′(v) = g(v), u′v,E = uv,E and∑
vA

′(v) =
∑

vA(v), where β is the collection of data (A(v), g(v), uv,E). In-

deed, this is because punctured maps to X do not remember curve classes. This

shows that M gl(X,G,β) must be a union of connected components of the fibre

product, giving the first claim.

The statement about obstruction theories then follows from the functoriality

statement Lemma 4.1 and the construction in §4.2 of the relative obstruction

theory for M (X,βgl) → M(X ,βgl).

(2) The morphism of triangles in Lemma 5.16 form the back face of the following

diagram with the solid arrows given:

Lδ∗Lε∗F //

��

))❙❙
❙❙❙

❙❙❙
Lδ∗E //

��

&&◆
◆◆

◆◆
◆

G

&&▲
▲

▲
▲

Lδ∗Lε∗LM
ev
/M

//

��

Lδ∗L
M /M

//

��

Lδ∗L
M /M

ev

≃

��

Lε∗F //

))❙❙
❙❙❙

❙❙❙
E //

''❖
❖❖

❖❖
❖❖ G

&&▼
▼

▼

Lε∗LMgl/M
// LM gl/M

// LM gl/Mgl

The four arrows facing to the front in the cube on the left are the four obstruction

theories listed above. The top and bottom faces of this cube are commutative by

Proposition 4.3. The front face is the morphism of distinguished triangles of the

cotangent complexes for the compositions M gl → Mgl → M and M → M
ev →

M and hence is also commutative.

The pull-back by δ of the obstruction theory with point conditions G → L
M/M

now provides the dashed morphism of triangles on the top face of this diagram.

Since the lower square in (5.17) is cartesian, Lδ∗L
M /M

ev → LM gl/Mgl is an iso-

morphism. Thus we also obtain the dashed arrow G → LM gl/Mgl on the lower

right, which makes the lower face commutativeand defines a perfect obstruction

theory for M gl/Mgl as claimed.

(3) This follows from the morphism δ′ being finite and representable, hence

projective, and the push-pull formula of [Man12, Thm.4.1,(iii)]. ♠
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