PROJECT: NON-UNIQUENESS OF WEAK SOLUTIONS TO THE
INCOMPRESSIBLE EULER EQUATIONS

SUPERVISOR: GRIGORIOS FOURNODAVLOS

There is a plethora of important PDE whose initial value problem admits multiple weak solutions
arising from the same initial configurations. A notable such example can be found in the context of
incompressible fluids with constant density, satisfying the incompressible Fuler equations:

(1) %nLVouer:O
V-u=0 ’

where u = u(z,t), x € R",t € R, is the fluid velocity vector and p(x,t) the pressure.

Definition. A vector function u(z,t) € L2 _ is called a weak solution of the incompressible Euler

equations, if it satisfies the following integral form of ([T)):

(2) f]Ran U% +u-Vyvdrdt =0
Jgnyrw- Vedrdt =0 ’

for every divergence free vector v € C§°(R"1 R"™), V- v = 0, and function ¢ € C§°(R" "1 R).

Scheffer in [I2] first made the striking discovery of the existence of weak solutions of which
are compactly supported in space-time for n = 2. This implies in particular the non-uniqueness of
the trivial solution u = 0, considered as a solution arising from trivial initial data. A different and
simpler construction of such solutions was later given by Shnirelman [I3] again for n = 2.

In contrast to the non-uniqueness phenomenon of weak solutions, one can show that C! solutions
u, p of are determined uniquely by the value of u at a single time slice u(z, o) and that the total
kinetic energy, %f |u|?dz, is a constant function of time, i.e., the energy of u is conserved.

The students undertaking this project should focus on understanding the nature of the afore-
mentioned non-unique ‘unphysical’ solutions to the Euler equations following Shnirelman [13]. They
should be able to convey the idea behind the simpler construction in [I3] and present adequate
details on the analytical part of the argument.

[We note in conclusion that this project could serve as an introduction to very recent research
resolving a long standing problem in the subject, namely, to find the lowest regularity for which
solutions to conserve energy. We elaborate briefly here. Onsager conjectured in ’49 [14] that for
n = 3 a weak solution u in the Hélder space C;CS, o > %, must conserve energy and that there
should exist weak solutions u € Lg°C%, for a < %, that do not conserve energy. The first part of
the conjecture was positively confirmed by Constantine, E and Titi [5], following a weaker result
of Eyink [8]. On the other hand, the existence of low regularity solutions to with nonconstant
in-time kinetic energy, up to the threshold Holder exponent %, had remained unsolved until recently.
Major advances were achieved in the past few years by De Lellis and Székelyhidi [6, [7], where the
authors managed to adapt a method originating in Nash’s proof of his C'! isometric embedding
theorem [I1], called ‘convex integration’, constructing weak solutions in L*CY, a < %, that do not
conserve energy. Following the preceding developments, after a series of papers [9, 2, [T, 3], Onsager’s
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conjecture was finally settled by Isett [I0], who constructed weak solutions in L°CY, for all a < %,
having compact support in time. A simplified, more general result was obtained by Buckmaster, De
Lellis, Székelyhidi and Vicol [4] two days agol]
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