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There is a plethora of important PDE whose initial value problem admits multiple weak solutions
arising from the same initial configurations. A notable such example can be found in the context of
incompressible fluids with constant density, satisfying the incompressible Euler equations:{

∂u
∂t +∇uu+∇p = 0
∇ · u = 0

,(1)

where u = u(x, t), x ∈ Rn, t ∈ R, is the fluid velocity vector and p(x, t) the pressure.

Definition. A vector function u(x, t) ∈ L2
loc is called a weak solution of the incompressible Euler

equations, if it satisfies the following integral form of (1):{ ∫
Rn×R u

∂v
∂t + u · ∇uv dxdt = 0∫

Rn×R u · ∇ϕdxdt = 0
,(2)

for every divergence free vector v ∈ C∞0 (Rn+1,Rn), ∇ · v = 0, and function ϕ ∈ C∞0 (Rn+1,R).

Scheffer in [12] first made the striking discovery of the existence of weak solutions of (2) which
are compactly supported in space-time for n = 2. This implies in particular the non-uniqueness of
the trivial solution u ≡ 0, considered as a solution arising from trivial initial data. A different and
simpler construction of such solutions was later given by Shnirelman [13] again for n = 2.

In contrast to the non-uniqueness phenomenon of weak solutions, one can show that C1 solutions
u, p of (1) are determined uniquely by the value of u at a single time slice u(x, t0) and that the total
kinetic energy, 1

2

∫
|u|2dx, is a constant function of time, i.e., the energy of u is conserved.

The students undertaking this project should focus on understanding the nature of the afore-
mentioned non-unique ‘unphysical’ solutions to the Euler equations following Shnirelman [13]. They
should be able to convey the idea behind the simpler construction in [13] and present adequate
details on the analytical part of the argument.

[We note in conclusion that this project could serve as an introduction to very recent research
resolving a long standing problem in the subject, namely, to find the lowest regularity for which
solutions to (2) conserve energy. We elaborate briefly here. Onsager conjectured in ’49 [14] that for
n = 3 a weak solution u in the Hölder space CtC

α
x , α > 1

3 , must conserve energy and that there

should exist weak solutions u ∈ L∞t Cαx , for α < 1
3 , that do not conserve energy. The first part of

the conjecture was positively confirmed by Constantine, E and Titi [5], following a weaker result
of Eyink [8]. On the other hand, the existence of low regularity solutions to (2) with nonconstant
in-time kinetic energy, up to the threshold Hölder exponent 1

3 , had remained unsolved until recently.
Major advances were achieved in the past few years by De Lellis and Székelyhidi [6, 7], where the
authors managed to adapt a method originating in Nash’s proof of his C1 isometric embedding
theorem [11], called ‘convex integration’, constructing weak solutions in L∞t C

α
x , α < 1

10 , that do not
conserve energy. Following the preceding developments, after a series of papers [9, 2, 1, 3], Onsager’s

Date: 1st February 2017.

1



2

conjecture was finally settled by Isett [10], who constructed weak solutions in L∞t C
α
x , for all α < 1

3 ,
having compact support in time. A simplified, more general result was obtained by Buckmaster, De
Lellis, Székelyhidi and Vicol [4] two days ago!]
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[3] T. Buckmaster, C. De Lellis, and L. Székelyhidi Jr, Dissipative Euler flows with Onsager-critical spatial regularity,

Comm. Pure Appl. Math. 69 (2016), no. 9, 1613-1670.
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