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. The initial value problem in general
relativity. Stability of Minkowski space.
Strong and weak cosmic censorship

conjectures.

. Symmetry and the IVP. Spherical
symmetry. Penrose diagrams.

. Examples: self-gravitating Higgs fields,
Yang-Mills fields, sigma models (wave

maps), collisionless matter (Vlasov).

. Weak cosmic censorship and the role of

trapped surfaces.

. Price’s power-law-tails and the stability of
black holes.

. The internal structure of black holes and

“mass inflation”. Strong cosmic censorship.




1. The IVP in general

relativity
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Causal structure

An n-dimensional spacetime (M, g) is a C?

Hausdorff manifold with a time-oriented C*!

Lorentzian metric.

We call V. € TM timelike if g(V, V) < 0, null if
V #0 and g(V,V) =0, and spacelike if
g(V,V)>0. If V£0and g(V,V) <0, we call

V' causal.

A time-orientation on M is defined by a

continuous timelike vector field T' defined on all

of M.

A causal vector V' is called future directed if
g(V,T) <0, and past directed if g(V,T) > 0. A
parametrized C! curve v : I — M is said to be
timelike, null or spacelike according to whether
its tangent vector <y is timelike, null or
spacelike, respectively. If 7 is everwhere causal,
v is called causal, and if + is future directed,

then v is called future directed.




A C? paremetrized curve v : I — M is said to

be a parametrized geodesic if Vs = 0. The
parameter s € I with respect to such a map is

called an affine parameter.

Let S C M. The causal future of S, denoted
JT(S) is defined as the set of all points which
can be reached from S by a future pointing
causal curve. The causal past of S, denoted
J7(5), is defined to be the set of all points
which can be reached from S by a

past-pointing causal curve.

The chronological future I7(S) is defined
similarly where “causal” above is replaced by

“timelike” .

A subset S C M is said to be achronal if
SNIT(S)=0.




A submanifold of M is called spacelike if its
induced metric is Riemannian, null if its
induced metric is degenerate, and timelike if its
induced metric is Lorentzian. (For embedded

curves, this definition coincides with the

previous.) Also, one can easily see that a

hypersurface is spacelike, timelike, or null if
and only if its normal is everywhere timelike,

spacelike, or null, respectively.




A curve is called inextendible if it is not a
proper subset of another curve.

Definition 1 A spacetime (M, g) is said to be
future causally geodesically complete if all
inextendible future-directed causal geodesics
take on arbitrary large values of any affine

parameter.

A spacetime which is not future causally
geodesically complete is called future causally

geodesically incomplete.

Definition 2 A spacetime (M, g) is said to be

globally hyperbolic if there exists a spacelike
hypersurface . such that all inextendible causal
curves in M intersect ¥ precisely once. Such a

Y. 15 then called a Cauchy surface.




The initial value problem for the
vacuum

Let us assume in what follows that all
manifolds, functions are C'*° unless otherwise

noted.

In the case of the vacuum, the theory is
completely described by a 4-dimensional
spacetime (M, g) satisfying the equation

R, — %ng = 0, or equivalently I, = 0.

Definition 3 Let X be a 3-mantfold, g;; a
Riemannian metric, and k;; a symmetric
2-tensor on X. We call (X, gij, kij) a vacuum

initial data set if
vjkz'j — Vitrk = O,

R — |k|? + (trk)* = 0.




Theorem 1 (Choquet-Bruhat) Let
(2, gij, kij) be an initial data set. Then there
exists a unique spacetime (M, g) satisfying the

following
1.

3. (M, g) is globally hyperbolic with ¥ as a

Cauchy surface,

4. If (M, §) satisfies 1-3, then

~

(M, g) C (M, qg) isometrically.

We call (M, g) the maximal Cauchy
development of (X, gi;, ki)




From the point of view of this course, to
“study” general relativity means to relate
properties of initial data sets with properties of

their maximal Cauchy development.

All conjectures/results to be stated /proven in

this course will be of that form.




Penrose’s incompleteness theorem

Let (M, g) be a 4-dimensional spacetime, and
let £ C M be a spacelike surface. Given p € F,
there exists a neighborhood p € U such that
UnNJgF(E)\ I (E) is a null hypersurface with
two connected components, and U N E can be

thought of as a boundary of either.

Definition 4 We say that a spacelike surface
E Cc M s trapped if for all p € E, the mean
curvature of E/ at p as a subset of both of the

above null hypersurfaces is negative.

Theorem 2 (Penrose) Let (X, g;j, kij) be an
initial data set and let (M, g) be its mazximal
Cauchy development. Suppose that X is
non-compact, and (M, g) contains a closed
(compact without boundary) trapped surface

E C Y. Then M s future-causally geodesically

incomplete.




Notes:

1. The conditions are satisfied in particular if
E C Y. Such data can be explicitly

constructed.

. No examples are known for the vacuum for
which the assumptions of the theorem are

satisfied and X is “regular”.

. The theorem does not say what “goes

wrong” and forces (M, g) to be incomplete.

In particular, it is not a “singularity

theorem” .




Asymptotic flatness

The primary object of study in this course will
correspond physically to what is known as an
isolated system. This motivates

Definition 5 A data set (X, g;;, ki;) is said to
be strongly asymptotically flat if there exists a
compact C C % such that X\ C is diffeomorphic
to R*\ {r <1}, and such that, with respect to

the Euclidean coordinates x* of R>, we have

gi; = (1 +2M/r)d;; + 04(7“_3/2),

kij — 03(7“_5/2).




Positive energy theorem

Theorem 3 (Schoen-Yau) Under the

assumptions of the above definition, M > 0,
and M =0 ’Lﬁ (E,gij, k’LJ> C (R3+1, 5@])




Stability of Minkowski space

Theorem 4 (Christodoulou-Klainerman)
Let (2, gij, kij) be an asymptotically flat initial
data set “sufficiently close” to trivial data. Let
(M, g) denote its mazimal Cauchy
development. Then (M, g) is future-causally
geodesically complete. Moreover, (M, g) tends
to Minkowski space along all past and future
directed geodesics in a suitable sense. In
particular, it 1s possible to associate to g an

asymptotic structure known as null infinity.

Applications. Rigorous formulation of the
notion of gravitational radiation, Bondi mass
law formula, “Christodoulou memory” effect.

Note. The existence of “null infinity” can be
inferred for all asymptotically flat initial data
sets. Weak cosmic censorship: null infinity is

“long enough”.




Conjecture 1 (Penrose) Let (X, gij, ki;j) be
“generic” compact or asymptotically flat initial
data, and let (M, g) denote their mazimal
Cauchy development. Then (M, g) is

inextendible as a manifold with C° metric,

i.e. there does not exist a (M, §) such that § is
C% and (M, g) C (M, §) as a proper subset.

The above conjecture is known as strong

cosmic censorship.




Matter

In the case of matter, in addition to (M, g),
the unknowns now include a number of matter
fields ¥, ... W,, defined on M, the Einstein

equations take the form

1
RMV — §guyR = QTMU,

where 7}, is a known function of g, ¥;, and to
yield a closed system, the equations of motion

of the ¥,; must be appended.

For large classes of these systems, theorems
analogous to Theorem 1 can be again proven.
Moreover, the Penrose incompleteness theorem
holds as long as T'(L, L) > 0 for all null vectors
L, and the positive energy theorem holds as
long as T (W, W) > 0 and T*Wj is

non-spacelike, for all timelike vectors W.




Symmetry and the I.V.P.
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Symmetry: There is a Lie group GG which acts
on (M,g,...), by isometry, and preserves the
matter fields (...).

The assumption of symmetry is evolutionary,

l.e.:

Assume that a Lie group G acts on

(2, gij, Kij, - . .), preserving g, K, and the

initial matter fields.

Then G acts on the maximal development
(M,g,...), preserving g and the initial matter
fields.




Spherical symmetry

G = SO(3) (group of rotations in R3).

We will restrict to asymptotically flat initial
data.

More specifically, we will require that initial
3-manifold (32, g) is a warped product of [0, c0)
with S? (one end) or (—oo, 00) with S? (two

ends), and has metric

ds® + 7“2’y

where v is the standard metric, and r is a

function of s.

In other words, § = 3/50(3) is a
one-dimensional manifold (in the case of 1 end,
with boundary, and » = 0 on the boundary).
As s — +oo, r — o0o. If m; : ¥ — S denotes the

natural projection, then

\/A'rea, (71 “(p))/4m.




Proposition 1 Let (3,9, K, ...) be spherically
symmetric initial data, in the sense described
above, and let (M,g,...) denote its maximal
Cauchy development. Then SO(3) acts by
isometry on (M, g) so as for Q = M/SO(3) to
inherits the structure of a 2-dimensional
manifold (possibly with boundary I" which we
call the centre) on which a Lorentzian metric
gi;dy'dy’ is defined. Let m : M — Q denote
the natural projection. The group orbits in M
are either spacelike spheres or points, so this

induces a function

defined by r(p p))/4m. This
function is called the area—radlus Then

F={peQ:rp) =0}, T£0if TNS#£0, in

which case I' 1s a connected timelike curve

through S. The metric g;; and r together yield




Q is foliated by “ingoing” null rays emanating

from S.

It is also foliated by the collection of
“outgoing” null rays emanating from I' U S.

Parametrizing these rays by functions v, u,
respectively, we define global null coordinates
on O, which we can select to be bounded.
Moreover, we will select v, u to be oriented

towards the future.

The coordinate-range of O with respect to such

coordinates u and v, considered as a subset of

R? is known as a Penrose diagram.




We will always restrict consideration to the
future J1(S) U S, i.e. we shall denote
QN JT(S)US in what follows, again by Q.

One end:

Two ends:

The boundary 8@2@\ @ is necessarily
achronal.

(Here Q refers to the topology of the plane.
The point of these depictions is that we can

apply causal and topological relations to the
boundary 0Q as well!)




The Einstein equations under spherical

symmetry in null coordinates

gudzrdr’ = —Q*dudv + 2~y apdrde®
Tydxtdz” = 2T,,dudv + Typdz?dz?

Why is there no T, 4 component?
Note: guy = —%QQ. g’ = —202,
Non-vanishing Christoffel symbols.
AB = =9 T0uryAB
AB = —9g rOuryAB
4 = (0,r)r 1o
Féu — (aur)r_ldé
e = 9,logQ?
Y = 0,log?

A _
FBC'_




Along a constant-v ray, we can choose

coordinates such that I';;,, = 0.

Ry, 804F3u — aurga + Fgurfgb’ - ng’rga
o Z(FZXAI‘ZXA) o FguFZu
A

—20,0, logr — 2(0, log r)2

2

Suppose 1, > 0, 1T}, > 0.

Since, by the Einstein equations, R, = 271, it
follows that in such coordinates we have along
the constant-u ray that 0,0,r < 0. Thus, if
O,y <0atv=V, then 9,7 <0atov>YV.

Similarly for R,, on a constant-v ray, and thus

for O,r.




This allow us to talk unambiguously about

future null infinity Z7.

(We will restrict to the 1-end case for now. Let
0, be “outgoing”.)

Definition 6 The set ZT is defined by

It = {(u,v) € 0Q : VR > 0,
A(u,v"),v <v:r(u,v) > R}.

Let us assume that 0,7 < 0 along . (No

antitrapped surfaces.)

Proposition 2 0,r < 0 everywhere, i.e. no

antitrapped surfaces form.

Proposition 3 If ZT 40, then ZT is a

connected subset of the ingoing null curve in

R emanating from i°.




Definition 7 We define the regular region R
by
R={pe Q:0,r <0,0,r >0,

the marginally trapped region A by
A={pe Q:0,r <0,0,r =0}
and the trapped region 7 by

T={pe Q:0,r <0,0,r <0}

Proposition 4 J=(Z7) C R. If (u,v) € A,
then (u,v") € TUA for all (u,v") € Q with
v' >wv. If (u,v) €T, then (u,v") € T for all
(u,v’") € Q with v > v.




The calculations correctly:

OOy —4—174@2(1 + 49720, 1r0,7)

+ Ty (1)
_Tuv

1 2 —2
+ 1P (L+4Q7%0,r0,r)

1
o Z Q2gAB TAB

—TQ_ZTuu

—TQ_QTW




The Hawking mass

Define m = % (1 4 4Q729,70,7).

Compute:
Opm = 2r*Q % (T Opr — T Our) (5)
Oum = 2r2Q % (TyOur — Ty Opr) (6)

Thus

Proposition 5 Suppose T, > 0, T}, > 0,
Tyww > 0. Then, in RUA, 9,m >0, 0,m <0.




S is asymptotically flat implies 9,7 > 0 on S in
a neighborhood of ig, and m < My = supg m.

Thus, by (6), m < My in J—(Z7).

By (5), m extends to a (not necessarily
differentiable) function M (u) on Z7: If
(u,v) € ZT, then

M (u) = lim m(u,v")

v —v

Proposition 6 The function M (u) is
monotonically non-increasing in u, and

We call M (u) the Bondi mass at retarded time
u, and we call My = liminf M (u) the final

Bondr mass.




2m

Let us define the “mass ratio” u = =*, and

also v = 0,r, A = 0,7. We compute that

1
—ZQQ(l — 1) = .

Thus, as Q2 > 0, and v < 0, we have that 1 —

and A have the same sign.




By regularity of I', m =0 on I', in fact © =0

on I.

Proposition 7 If SNT' # 0, then m >0 on
SNR. Suppose SNA#D, pe SNA, and
X =8n{v>wv(p)} satisfies

XCAUR.

Then any q € X satisfies m(q) > +r(p).

Consequently, My > %r(p).

The last statement of the above proposition is
an example of what is known as a Penrose

inequality.

Proposition 8 We have m >0 in R. In
particular, My > 0.




Proposition 9 Suppose T\, = Ty, = Ty = 0.
Then Q s Schwarzschild or Minkowsk: space.

Proposition 10 Suppose S’ C Q is spacelike
and m=C, A\> 0, along S". Then m = C for
all p € Q such that

J=(p) N JH(S) c DH(S') N {A >0}

Moreover, J—(p) N JT(S') is isometric to a
piece of Schwarzschild.




The extension assumption

Let pc R\T, and ¢ € RN I (p) such that

J~()NJ @)\ {p} CRUA:

\\ y %7

Then p € RU A.

RUA

In the evolutionary context, this assumption
can be stated informally as the proposition
that a “first singularity” emanating from the

non-trapped region can only arise from I'.




Now assume Z7 is non-empty, and assume
Q\ J(Z71) is also non-empty. Claim: If
AUT # 0, then Q\ J~(Z7) # 0.

Define H™ = QN aJ—(TH).

Theorem 5 If Q\ J (Z7) # 0, then the set
J(Z7) looks like

i.e. HT terminates at it. Moreover, along H™,

we have the Penrose inequality v < 2My. In
particular it € 7.




Theorem 6 If Q\ J (Z7) # 0, then I" is

future complete.

This is the statement that the affine length of
ingoing null rays, measured by an affine
parameter normalized appropriately on an
outgoing null ray, tends to infinity.

The “weak cosmic censorship” conjecture is the

statement that ZT be complete for generic

initial data for suitable Einstein-matter

systems.

Thus, restricted to spherical symmetry, for
systems satisfying the extension criterion, it
follows that to prove weak cosmic censorship, it
suffices to prove that generically a marginally

trapped surface forms.




Suppose A U 7T is non-empty. We can define

the outermost apparent horizon A’ to be

{(u,v) e A: (v,v) € R,Vu' < u}.
Proposition 11 If AUT # 0, then A" is a

(possibly disconnected) achronal curve. There

exists a v’ such that for all v > v, the constant

v ray intersects A'. Moreover, there exists a v"
such that for v >v", r <2My on A'.




Examples: scalar fields and

collisionless matter
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The massless scalar field

1 (@7
Tww =GP — §9u1/¢’ D0

Oy = 9", =0

Under spherical symmetry we compute:
Loy = 07

Loy = (av¢)27Tuu — (au¢)27
TAB — _gABguv u¢av¢

Setting 6 = r0,¢, ( = rd,¢, the wave equation

can be written

A




We would like to show that the extension
hypothesis holds for this matter model.

In general, showing this has two parts:

1. proving a priori estimates in J~(p), and

2. proving a local existence theorem in a

suitable norm.

The norm of the local existence theorem
dictates the strength of the a priori estimates

that must be proven.

We will turn first to the estimates.




A prior: estimates

Proposition 12 Let (uy,v1) € Q be such that

there exists ug < u, vg < v such that
[ug, ut| X [vg,v1] \ (u1,v1) C RUA.

(_/Lf 1,7,7) T )

(UO, Uo)
Then there exists a constant C > 0 such that
9| < C,10.0| < C, 00| < C, (9)

[logr| < C, |log —0y,r| < C,
[log Q%] < C,

in [ug,ur] X [vg,v1] \ (u1,v1).




Proof. Consider the segments

{ug} X [vg,v1] U lug, u1] x {vg}. By
compactness, we have

0<rg<r<Ry<oo (12)
on these segments, and
0<m < My < . (13)

By monotonicity we have 90, > 0, 9,r < 0,
d,m >0, 0,m <0, and thus the estimates

(12), (13) apply everywhere in

[uo,ul] X [’U(),’Ul] \ (ul,vl).




Now consider the quantity k = —3Q%v 1.

Again, by compactness, we have that
0<cp<k<Cy<ooon {ug}t X [vg,v1]. By
monotonicity, we have x > 0 and 9,k < 0, and
thus

0< k<K

everywhere in [ug, u1] X [vg, v1] \ (u1,v1).




Consider the quantity v on {vg} X [vg, v1].

By compactness, we have vy < |v| < Ny on
{vo} X [vg,v1]. We can write the equation

8/&0/074 = - asS

L
OV = ——RKU,
/'/i

and thus

—1
V]_ — VOQ_KOTO (’Ul—’UO)

< |y < Npeforo ' (vi=v0) — .,

Note also the upper bound for A provided by

A=r(l—-p) < Kp.




We turn to (. Again, by compactness, there
exists a constant such that |(| < Zy on

[UO, ul] X {’UO}.

Now, consider the equation (7). Integrating in

u, we have

C(u,v) = ((u,vo) /_—Hydv

and thus
HV

Cluv)] < |C(u,vo)| + / i

r

|C(U, ’U())l

+\// ¢92/ﬁ)_1d’17/ kV2r—2dp

2
—I—N’I“O_l\/KO(’Ul — ’U())

\// 02k~ 1dv




On the other hand, considering the equation,

1 _
Opm = 592/4, 1

We have that

Y1
/ 5(92/€_1d?7 < m(v) —m(vg) < M.

So, plugging into the estimate for (, we obtain

finally:

[C(u,v)| < Zo +N7“0_1\/K0(’01 —v0)VM = Z.




Since ¢ is bounded |¢| < @y on {ug} X [vg, v1],

we estimate ¢ now by

¢(u, v)




As for 6, again, we have that |#| < ©¢ on
{ug} x [vg,v1]. Now we can estimate 6

integrating (7).
A

0 T

Bl(w0) < [8(up, )| + /

S @0—|‘7“0_12K(U1 —’LL()) — 0.




Now we have a lower bound for k from noting

that, by compactness, 0 < kg < Kk on

{ug} x |vg, v1], and then integrating the

2
%

equation

to obtain

—Z%r 1yl U1 —uUQ
K 2 Kge€ 0o 1l ),

In particular, since Q? = —4kv, we have
obtained upper and lower bounds on Q2. This

completes the proof. O




A local existence theorem for a
characteristic initial value problem.

Proposition 13 Let Q.7,¢ be C? functions
defined on ug X [vg,v1] U [ug, u1] X vy satisfying
the constraint equations (3)—(4). Let C' be such
that

D(uo, )t < C,|o(-, vo)ler < C,

‘ lOg f(', U0)|Cl S C,

[log ©°(-, v0)| < C, |log Q*(uo, )| < C.

Then there exists a constant € > 0, depending
only on C such that, defining

2, = min(ug + €, u1), v1 = min(vg + €, v1), there
exist unique C? functions (Q,r, ¢) on

[ug, U1] X [vg, D1] coinciding with (Q,7, @) on the
initial segments, and satisfying the
Finstein-scalar field equations (1)—(4). If

Q,7, ¢ are initially C>, then (Q,r,¢) are O

mn [UO,al] X [’U(),@l].




Local existence theorems typically proceed as

follows:

1. Reformulation of the problem as a fixed
point problem for a map ® in a complete

metric space

2. Prove estimates for ®

3. Apply the contraction mapping principle

Example. Local existence for o.d.e.’s




Contraction mapping principle in complete
metric spaces (e.g. closed subsets of Banach

spaces).

Let X be a complete metric space, and let

® : X — X be such that there exists a constant
v < 1 with d(®(x), ®(y)) < vyd(x,y) for all

x,y € X. Then ® has a unique fixed point xg,

i.e. a unique point xy such that ®(zq) = x¢.




Proof of Proposition 13.

Let X be the set of functions {(€2,r,¢)} defined
on [ug, u1] X [vg, 1], where € is still to be
determined, such that Q.7 > 0, Q is C° and

r, ¢ are C1.

Define a distance

d((1,71, 1), (2,72, $2)) =

max(|log 2y — log Qs|co, [logry — logra|con,

|p1 — P2|cn).

The distance function d makes X into a

complete metric space. Let Xr be

(1, d) € X :d(Q,r,¢),(1,1,0) < E}




We define now a map ® : X — &g,
d(Q, 7, ¢) = (Q, 7, gg), where

logQ = logQ(ug,v) + log Q(u, vo) (14)

— log Q(ug, vo)

//(—921+4Q 20y T0yT)

’LL(), —I_ gb u, UO Qb(UO,’U()) (16)

/ —1/ Oy 9O, 1) dvdi




We first show, for F sufficiently large this is
indeed a map X — Xg.

It is more than clear that Q is C° and positive.

That r, ¢ are C! follows immediately by

differentiating under the integral, in view also

of regularity of initial data.




Estimating naively (14) we obtain
~ 1

log Q) < 3C + € (164E + et E? + E2> :

Estimating naively (15) we have

1
F < 2e% + ¢ (163E - €3EE2> ,

1

7 2 G_C . 62 (Z€3E _|_€3EE2> .

Estimating naively (16) we obtain

0| < 3C + 2P E2el.




Differentiating (15) in u and v, we obtain

1
0,7 < Ce® + ¢ (1€4E + €4EE2> :

0,7 < Ce® + € (ie‘lE + 64EE2> :
Differentiating (16) in in u we obtain
0,0 < 2C + ePeEePE
and in v, we obtain

0,0| < C + e(e3PEcEel E + e EePE).

Thus, if € is small enough (how small depends

only on C' and F) then X is preserved by ®.




Now we can similarly bound differences:

For € sufficiently small we obtain that ® is a

contraction.




The contraction principle assures a fixed point

(Qv r, ¢) S XC-

Clearly, €2, r, ¢ satisty the evolution equations
(1)-(2), and agree with Q, 7, and ¢ initially. In
particular, € is in fact C*.

But now since, setting 0,r = v, 0,7 = A,

1
Ov=—-rQ* +v(r A\ =A+vB

4

where A and B are differentiable in u. Since v
can be expressed explicitly in terms of v(-, vg),
A and B, and since v(-,vp) is initially
differentiable in wu, it follows that v is
differentiable in u everywhere in

o, 1] X [vo, V1].

Similarly for A\. Thus 7 is in fact C?. It follows

now, via similar reasoning, that ¢ is C?, and

is C2.




Moreover, the last argument showed in fact
that 0,0,0,r and 0,0,0,r are defined. Thus,

we can compute

Dy (9, (2~20,,7)) (17)

Claim. (17) equals O, (—1Q *Ty.,).

Thus, the constraint equations (3) and (4) are
also satisfied since they are satisfied initially!!

So we have indeed a C? solution in
[ug, u1| X [vg,v1]. Higher regularity follows

similarly if it is assumed initially. O




