
Part II Differential Geometry Example Sheet 4

Prof. M. Dafermos, Michaelmas 2016

1. Using geodesic polar coordinates, show that given p ∈ S, we can express the Gussian curva-
ture as

K(p) = lim
r→0

3(2πr − L)

πr3
,

where L is the length of the geodesic circle of radius r. [Hint: Taylor expansion.]

2. Find the geodesic curvature of a parallel of latitude on the 2-sphere.

3. Prove that on a surface of constant Gaussian curvature, the geodesic circles have constant
geodesic curvature. Moreover, prove this in two ways: by direct computation, and by showing
that rotation in a geodesic circle is a local isometry (cf. Problem 15 from the last example
sheet).

4. Let S be a connected surface and f, g : S → S two isometries. Assume that f(p) = g(p) and
dfp = dgp for some p ∈ S. Show that f(q) = g(q) for all q ∈ S.

5. Let p be a point on a surface S. Complete the outline in lecture to show that there exists
an open set V containing p such that if γ : [0, 1]→ V is a geodesic with γ(0) = p and γ(1) = q
and α : [0, 1]→ S is a regular curve joining p to q, then

`(γ) ≤ `(α)

with equality iff α is a reparametrization of γ.

6. Let S be a compact orientable surface which is not diffeomorphic to a sphere. Prove that
there are points on S where the Gaussian curvature is positive, negative and zero.

7. Let S be a compact oriented surface with positive Gaussian curvature and let N : S → S2 be
the Gauss map. Let γ be a simple closed geodesic in S, and let A and B be the regions which
have γ as a common boundary. Show that N(A) and N(B) have the same area.

8. Let S be an orientable surface with Gaussian curvature K ≤ 0. Show that 2 geodesics γ1
and γ2 which start from a point p ∈ S will not meet again at a point q in such a way that the
images of γ1 and γ2 form the boundary of a domain homeomorphic to a disk.

9. Let S be a surface homeomorphic to a cylinder with negative Gaussian curvature. Show that
S has at most one simple closed geodesic. Does the result remain true if “negative” is replaced
by “nonpositive”?

10. Let φ : U → S be an orthogonal parametrization around a point p. Let α : [0, `] → φ(U)
be a simple closed curve parametrized by arc-length enclosing a domain R. Fix a unit vector
w0 ∈ Tα(0)(S) and considerW (t) the parallel transport of w0 along α. Let ψ(t) be a differentiable
determination of the angle from φu to W (t). Show that

ψ(`)− ψ(0) =

∫
R

KdA.

Let S now be a connected surface. Use the above to show that if the parallel transport
between any two points does not depend on the curve joining the points, then the Gaussian
curvature of S vanishes identically.

Page 1 of 3



Part II Differential Geometry Example Sheet 4

11. Let St be a family of smooth oriented surfaces, where t ranges in an interval I ⊂ R
containing 0, such that, around each point p ∈ St, there exists a family of local parametrizations
xt(u, v), yt(u, v), zt(u, v) of St such that x(t, u, v), etc. are smooth maps and

(ẋt, ẏt, żt) = 2Ht(xt, yt, zt)Nt(xt, yt, zt),

where · denotes differentiation with respect to t, Ht denotes the mean curvature of St, Nt

denotes the normal of St, and it is assumed that Ht 6= 0 and Nt is continuous in t. We say that
St evolves under mean curvature flow.

Show that the map φt : S0 → St defined by taking (x0, y0, z0) 7→ (xt, yt, zt) is well-defined,
i.e. it does not depend on the parametrizations. Show that the map φ : I ×S0 → St is smooth.

Now let γ0 be a closed geodesic in S0, and define γt = φt ◦ γ. Let L(γt) denote the length.
Assume moreover that the Gaussian curvature satisfies K ≥ 0 along γ0. Show that

d

dt
L(γt)|t=0 ≤ −

4π2

L(γ0)
.

What can you infer from this?

The remaining two questions complete a circle of ideas in the course. They are non-examinable.

12. (The Poincaré–Hopf theorem) Let S be an oriented surface and V : S → R3 a smooth
vector field, that is, V (p) ∈ TpS for all p ∈ S. We say that p is singular if V (p) = 0. A
singular point p is isolated if there exists a neighborhood of p in which V has no other zeros.
The singular point p is non-degenerate if dVp : TpS → TpS is a linear isomorphism. (Can you
see why dVp takes values in TpS?) Show that if a singular point is non-degenerate, then it is
isolated.

To each singular point p we associate an integer called the index of the vector field at p
as follows: Let φ : U → S be an orthogonal parametrization around p compatible with the
orientation. Let α : [0, l]→ φ(U) be a regular piecewise smooth simple closed curve so that p is
the only zero of V in the domain enclosed by α. Let φ(t) be some differentiable determination
of the angle from φu to V (t)

.
= V ◦ α(t). Since α is closed, there is an integer I (the index)

defined by
2πI

.
= φ(l)− φ(0).

(i) Show that I is independent of the choice of parametrization (Hint: use Problem 10).
One can also show that I is independent of the choice of curve α, but this is somewhat harder.
In addition, one can prove that if p is non-degenerate, then I = 1 if dVp preserves orientation
and I = −1 if dVp reverses orientation.

(ii) Give examples of various vector fields on R2 with isolated singularities at the origin,
computing their indices. Draw pictures.

(iii) Suppose now that S is compact and V is a smooth vector field with isolated singularities.
Consider a triangulation of S such that

• every triangle is contained in the image of some orthogonal parametrization,

• every triangle contains at most one singular point

• the boundaries of the triangles contain no singular points and are positively oriented.
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Show that ∑
i

Ii =
1

2π

∫
S

K dA = χ(S),

where Ii denote the indices of the singular points. Thus, you have proved that the sum of the
indices of a smooth vector field with isolated singularities on a compact surface is equal to the
Euler characteristic. This is known as the Poincaré–Hopf theorem. Conclude that a surface
homeomorphic to S2 cannot be “combed”.

Finally, suppose f : S → R is a Morse function and consider the vector field given by the
gradient of f , i.e. ∇f(p), defined in turn by the relation 〈∇f(p), v〉 = dfp(v) for all v ∈ TpS.
(Show that ∇f(p) is indeed well defined and only depends on the first fundamental form of
S.) Use the Poincaré–Hopf theorem to show that χ(S) is the number of local maximum and
minima minus the number of saddle points. Use this to find the Euler characteristic of a surface
of genus two.

13. (The degree of the Gauss map) Let S be a compact oriented surface and let N : S → S2 be
its Gauss map. Let y ∈ S2 be a regular value of N . Rather than counting the preimages of y
modulo 2 as we did in the first lectures, we will count them with sign. Let N−1(y) = {p1, . . . pn}.
Let ε(pi) be +1 if dNpi preserves orientation K(pi) > 0, and −1 if dNpi reverses orientation
(K(pi) < 0). Now let

deg(N)
.
=

∑
i

ε(pi).

As in the case of the degree mod 2, it can be shown that the sum on the right hand side is
independent of the regular value and deg(N) turns out to be an invariant of the homotopy class
of N .

Now choose y ∈ S2 such that both y and −y are regular values of N . (Why can we do this?)
Let V be the vector field on S given by

V (p)
.
= 〈y,N(p)〉N(p)− y.

(i) Show that the index of V at a zero pi is +1 if dNpi preserves orientation and −1 if dNpi

reverses orientation.
(ii) Show that the sum of the indices of V equals twice the degree of N .
(iii) Show that deg(N) = χ(S)/2.

For comments, email M.Dafermos in dpmms.
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