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INTRODUCTION
Few notions of mathematical physics capture the imagination like that of black hole.

The concept was first encountered in explicit solutions of the Einstein vacuum equa-
tions:

(1) Ric(g) =0,

specifically the celebrated Schwarzschild solution (M, g)senw- As was understood al-
ready by Lemaitre [30], there is a region B C Mgy of this spacetime with the property
that observers in B cannot send signals to “far-away” observers. Following J. Wheeler,
this region B is known as the black hole (or, in French translation, le trou noir).

More generally (and more precisely), one defines the black hole region of an asymp-
totically flat spacetime (M, g) as the collection of spacetime points B C M not in the
causal past of an ideal conformal boundary at infinity, so-called future null infinity,
traditionally denoted Z; in symbols:

(2) B=M\J (IY).

In the explicit examples of Schwarzschild or Kerr, the existence of a black hole re-
gion B is accompanied by another salient feature: Every timelike or null geodesic 7(s)
entering the interior of B is future incomplete. In particular,

(3) (M, g) is future-causally geodesically incomplete.

In the case of Schwarzschild, the curvature grows without bound along all incomplete
v(s) as the affine parameter s approaches its supremum value. In Kerr, the origin of
incompleteness is in some sense even more bizarre; it represents not the breakdown of
local regularity but of global causality.

Trapped surfaces and the theorems of Penrose

The physical implications of the above two properties (2), (3) are profound. His-
torically, however, they were very difficult to accept. A common point of view in the
early years of the development of general relativity was to bet on an obvious way out
of dealing with their consequences:
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Could it be that the above “black hole” (2) and incompleteness proper-
ties (3) are pathologies, due to the high degree of symmetry of explicit
solutions?

One of the great successes of the global geometrical approach first pioneered by
Penrose in the 1960s, was that it provided a definitive answer to the above question in
the negative.

The key to this answer is provided by a fundamental notion introduced by Pen-
rose [37], that of a closed trapped surface.

To motivate this notion, let us begin for sake of comparison with a standard 2-sphere
S in Minkowski space R**! of radius 1.

c c c C

S

If we consider the future of S, denoted J*(5), its boundary in R*™! has two connected
components, the two null cones C' and C' depicted. Considering the second fundamental

form x, x of S viewed as a hypersurface in each of the above null cones, respectively,
we have that

try = —2 <0, try =2 > 0.
We call try, try the future erpansions because they measure the change in the area
element of the flow of S along the null generators of the respective cones.

Given now a general 4-dimensional time-oriented Lorentzian manifold (M, g), and a
closed two surface S, we may again define the two second fundamental forms y and y
corresponding to viewing S as a hypersurface in each of the two connected comgonents
of the boundary of J*(.S) intersected with a tubular neighborhood of S in M. (Again,
these are null hypersurfaces generated by the two sets of null geodesics orthogonal to

)

We say that S is trapped if both its future expansions are negative:

try <0, try < 0.

=\

Penrose’s celebrated incompleteness theorem then states:

This is depicted here:

THEOREM 0.1 (Penrose, 1965). — Let (M,g) be globally hyperbolic with a mnon-
compact Cauchy hypersurface, and let M satisfy Ric(V,V) > 0 for all null V. It
follows that if M contains a closed trapped surface, then it is future causally geodesi-
cally complete.
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Future causal geodesic incompleteness means that there exists an inextendible future-
directed timelike or null geodesic v whose maximum affine parameter is bounded above.

Note of course that when the vacuum equations (1) are assumed, the condition
Ric(V, V) > 0 is trivially satisfied.

The Einstein vacuum equations have a well-posed Cauchy problem (see Section 1.1.4).
The statement of the theorem is such that it can be immediately applied to the maximal
Cauchy development of asymptotically flat vacuum initial data (if it is assumed that the
spacetime contains a trapped surface S), since the assumption of global hyperbolicity
holds (by fiat!) for Cauchy developments (see Section 1.1.5). Let us note that by
Cauchy stability, the existence of a closed trapped surface is now manifestly a stable
property under perturbation of initial data. We obtain in particular the following:

COROLLARY 0.2. — Let (X, g, K) be a sufficiently small perturbation of Schwarzschild
data for the Finstein vacuum equations (1). Then the mazimal Cauchy development
(M, g) contains a closed trapped surface S and is geodesically incomplete.

Concerning the black hole property, again one can state a very general result, as-
suming that one can define an appropriate notion of conformal boundary “at infinity”,
denoted ZT, representing future null infinity. Without going into the details of such a
definition (see Section 1.3), let us state:

THEOREM 0.3 (See [23, 45, 15]). — Under the assumptions of the previous theorem, if
Y is asymptotically flat and TT is a suitable conformal boundary representing future
null infinity, then

SNJ(TT) =0,
m particular

(4) MNJT(Z7) # 0.

Because this result makes reference to the causal structure, in depicting this, it is
more appropriate to draw the light cones as if they are Minkowskian, so causal relations
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can be readily understood. Now, however, the area element is not to be inferred by the
“size” of the cross-sections, and the signs of the expansions must be labelled:

-

— —_—

— —
. T

Our depictions in what follows will typically be of this form.

Similarly to Corollary 0.2, it follows that for sufficiently small perturbations of
Schwarzschild data, the resulting Cauchy development (M, g) will still contain a (non-
trivial) black hole region B (where the latter is defined simply in the sense of (2); see
however Section 14!).

The main result: the dynamic formation of trapped surfaces

General as the above results may be, they do not shed light on whether black holes
actually form in nature. The reason is that the assumption of the existence of a trapped
surface is already a very strong assumption about the geometry of spacetime, one that—
though stable—a priori may have nothing to do with properties of spacetimes that arise
in physically interesting systems. Indeed, the only way previously known to ensure the
assumption is to assume that there is a trapped surface S already in the initial data X:

or (as in Corollary 0.2) that one is close to Schwarzschild or Kerr (in which case, any
initial data hypersurface-which would have to have 2 asymptotically flat ends!-contains
points that are themselves contained in either a trapped surface or-worse!l-a marginally
anti—trapped(l) surface).

To link the above theorems with physical phenomena of gravity, one must answer the
following question:

(M An anti-trapped surface is one where the expansions y and X are both positive. By marginally, we
mean that positive here is to be taken in the French sense. Note that the names future-trapped and
past-trapped are sometimes used for what we have called trapped and anti-trapped.
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Do trapped surfaces form in evolution from the collapse of a reqular (and
arbitrarily dispersed) initial state, with trivial topology and geometry much
like our own?

This lecture will report on a landmark result of Christodoulou—whose proof is pub-
lished as a 580 page monograph [14]-which resolves the question posed above in the
affirmative, for the Einstein vacuum equations (1)! Trapped surfaces form in evolu-
tion in vacuum collapse, in fact, they form from initial conditions which are infinitely
dispersed.

THEOREM 0.4 (Christodoulou [14], 2008). — Trapped surfaces form in the Cauchy de-
velopment of vacuum initial data which are arbitrarily (in fact infinitely!) dispersed.

The formal statements of the above result are most naturally posed in terms of a
characteristic initial value problem. One first formulates the problem on a finite initial
cone where the data are in fact trivial up to a sphere of radius ry. The quantity rq is
arbitrary and can be taken as a measure of the dispersion of the data.

trx <0 try <0

See Theorem 2.1. The notion of “arbitrarily” dispersed can then be promoted to “in-
finitely” dispersed, by sending r; — oo. This can be formulated as the problem of
prescribing scattering data “at past null infinity” Z—, such that Z~ is itself past com-

plete.
trxy <0 trx <0

N . ,
/
N\ M y
N e = = — — - s &
%, / NS . ____-- 7 \\\ &
AN (S
% / ’ e
%, N /i o
©, N &
> ’ &
% N s §
%, S 7 % &
% S “ Y

Such data at past null infinity Z~ has the interpretation of representing incoming radi-
ation. This leads to the formulation in Theorem 13.1.
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Outline of the exposition

This exposition will begin in Section 1 by reviewing those aspects of the Cauchy
problem for the Einstein equations which are necessary for formulating these more pre-
cise versions of Theorem 0.4, recalling in particular the hyperbolicity of the equations,
the well-posedness of the Cauchy and characteristic initial value problems, the proof of
stability of Minkowski space, and its applications to the problem of gravitational radia-
tion, in particular, rigorously defining a conformal boundary Z* at infinity. We will then
proceed in Section 2 to give the statement of Theorem 2.1. This theorem in turn rests
on a semi-global existence statement, Theorem 3.1, which is formulated in Section 3.
Sections 4 to 10 then give details of the proof of Theorems 3.1 and 2.1. Section 11 gives
a very brief exposition of a more recent approach to understanding the structure of the
proof, due to Klainerman—Rodnianski [28], leading to various simplifications. Applica-
tions to the incompleteness theorems are given in Section 12, and the formulation of
the result with data at past null infinity Z~ (Theorem 13.1) in Section 13. Finally, in
Sections 14 and 15, the work is put in the context of open conjectures concerning black
holes which are yet to be resolved!

(For the convenience of the reader, we note that various important formulae, equa-
tions, etc., are collected in a series of Appendices.)

The short pulse method and large data problems for non-linear wave equa-
tions

One should say at the onset that, general relativity aside, Theorem 0.4 is a “large-
data”, “large-time” result for a highly non-linear, supercritical system of hyperbolic
PDEs, in more than 2 space-time dimensions, and such problems have hitherto for the
most part been considered intractable.

From the PDE perspective, one of the main innovations of the work is the introduction
of a new method for understanding large data results. This can be termed the “short
pulse method”.

In broad terms, the “short pulse method” seeks to introduce in a controlled way a
certain large amplitude in the data, the pulse, compensated by a shortness in its char-
acteristic length, the latter controlled by a parameter §. This gives rise to a hierarchy
of large and small quantities, which are coupled via the non-linear equations governing
the theory. Given cooperative structural properties in the equations, one hopes that
the evolution of data can be shown to respect this hierarchy, in essence because large
amplitude parts are always appropriately coupled with sufficient smallness.

It is remarkable but in the end quite fitting that it is the Einstein equations (1),
daunting in their complexity but so rich in structure, which have provided us with
such a monumental realisation of what promises to be a very fruitful general method
to obtain large-data results, with many potential applications to nonlinear hyperbolic
and other partial differential equations.
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1. THE HYPERBOLIC AND RADIATIVE PROPERTIES OF THE
EINSTEIN VACUUM EQUATIONS

As announced in the Introduction, any discussion of the main result at a level more
precise than Theorem 0.4 requires certain generalities about the Einstein equations to
be reviewed. We thus introduce these very briefly in this section.

1.1. Hyperbolicity and the initial value problem

The most well-known aspect of the Einstein vacuum equations (1), which guided in
particular Einstein to their discovery, is of course their “general covariance”, or, in more
modern language, their geometric content.

This miraculous geometric structure, however, in some sense obscures two other,
equally fundamental aspects of (1):

The FEinstein equations are hyperbolic and solutions radiate to infinity.

The relevance of hyperbolicity was already partially understood by Einstein in 1918,
who was in fact the first to predict gravitational waves on the basis of his theory [20].
The conceptual issues involved, however, were confusing, and, as with several other
issues in the theory, Einstein himself famously backtracked in the 1930’s. The interested
reader can consult [24].

1.1.1. Harmonic coordinates. — The most direct way to view the essential hyperbol-
icity of (1) is via the harmonic gauge, i.e. in coordinates z* which themselves satisfy
the covariant wave equation

(5) Og2" =0,

where ¢ is itself the spacetime metric. This is equivalent to requiring the following
contraction of the Christoffel symbols to vanish:

(6) re, = 0.
In such coordinates, the Einstein vacuum equations take the form

(7) Og9"" = Q" (9,Vyg)

where () is quadratic in Vg, and this is manifestly a system of quasilinear wave equa-
tions. This gauge was introduced by de Donder [19].

The equations (7) are known as the reduced Finstein equations. General uniqueness
and existence statements for scalar equations of the form (7) were proven by Friedrich—
Lewy [22] and Schauder [42], respectively, using energy methods. Another approach
to the analysis of equations of type (7) is through the construction of a parametrix
(Hadamard, Petrovsky, Sobolev).
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1.1.2. The domain of dependence. — The results on quasilinear wave equations of type
(7) were given an immediate application to the Einstein equations by Stellmacher [43],
who used the reduced equations (7) to prove a domain of dependence property for (1),
capturing the important property of causality, in particular, uniqueness for smooth
solutions to the initial value problem.

For the problem of existence, however, it is not immediate how to pass from (7) to
(1)—it turns out that the necessary link is provided precisely by the so-called constraint
equations, satisfied by initial data.

1.1.3. Vacuum initial data and the constraint equations. — The geometric formulation
of initial data for (1) is provided by a triple

(27g7 K>7

where ¥ is a 3-manifold to be a spacelike hypersurface in the evolving spacetime (M, g),
and g and K are tensors to be the induced first and second fundamental forms, respec-
tively, of X.

Whereas, however, initial data for the reduced Einstein equations (7) are free, initial
data (X, g, K) for the actual Einstein equations are manifestly not! For, if (X, g, K)
indeed imbedded in a Ricci flat manifold (M, g), then the contracted Gauss and Codazzi
equations would imply

(8) Ry + (trK)* — |[K[2 =0, divK — dtrK = 0.
These are the so-called Finstein constraint equations.

1.1.4. Local well posedness for the Cauchy problem. — The connection of (8) with the
problem of passing from (7) to (1) was given in seminal work of Choquet—Bruhat [2].

Specifically, Choquet-Bruhat [2] proved that given a smooth solution of the constraint
equations (8), then corresponding initial data could be set up for (7) such that (6) held
to first order. Given local existence® for (7), the solution of (7) is then shown a
posteriori to satisfy (6) because the quantity T'g, itself satisfies a homogeneous wave
equation (in view again of (7)). It follows that one has constructed a solution of the
Einstein equations (1).

This resolves the question of local existence for (1).

1.1.5. The maximal Cauchy development. — In standard ODE theory for integral
curves x(t) of a vector field, one can trivially “maximalise” the local existence state-
ment to infer the existence of a maximal solution, x : (7_,7,) — R", where —oo <
T < T, < oo. This is semantically useful as one can then talk about the solution.

In general relativity, there is a subtlety associated with this procedure, as the differ-
ential structure of spacetime is not given a priori, so there is not an obvious ordering
on the domains on which solutions are defined.

@ n [2], this is actually proven using a parametrix construction, but it can be obtained using the
energy method of [42]. Most modern proofs essentially follow the method of [42], but parametrix
constructions have found new applications. Cf. the references in Section 1.1.6.
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This was really only clarified in the late 1960’s with the construction of the so-called
maximal Cauchy development [3]®). This notion depends on the concept of global
hyperbolicity, introduced by Leray [31], which ensures that the domain of dependence
argument holds globally. Global hyperbolicity is the assumption that the spacetime
admits a so-called Cauchy hypersurface, a hypersurface > with the property that every
inextendible causal curve intersects X precisely once. The maximal Cauchy development
is then uniquely characterized as the globally hyperbolic spacetime admitting the data,
into which all other such spacetimes embed isometrically.

(Recall how the assumption of global hyperbolicity appears explicitly in the statement
of the incompleteness theorem, Theorem 0.1, of the Introduction.)

We summarize the well-posedness statement below:

THEOREM 1.1 (Choquet-Bruhat, Choquet-Bruhat—Geroch [2, 3])

Let (3, g, K) be a smooth vacuum initial data set, i.e. a smooth solution of the Fin-
stein vacuum constraint equations (8). Then there exists a unique, smooth maximal
Cauchy development (M, g) satisfying the Einstein vacuum equations (1), such that 3
1s a Cauchy hypersurface in M with induced first and second fundamental form g, K,
respectively.

,o- M.g) N
7 \\
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’ —— =
[ T - z
*: = =~ -~ — /II
\ ~ (3,9, K) /7,
\\ ~ . / /’
\\ ~ —— [//
\\ \, ot y/
1.1.6. Regularity. — The above statement derives from a quantitative statement in

spaces of finite differentiability. The question of proving existence and uniqueness in
spaces of low regularity is one of much recent activity with many potential applications
to the problem of singularity formation. We refer to [27, 39].

1.1.7. The characteristic initial value problem. — An alternative to the standard
Cauchy problem is the characteristic initial value problem, where initial data is pre-
scribed on either a null cone emanating from a vertex, or a bifurcate null hypersurface
emanting from a spacelike 2-surface. As in the case of Cauchy data, a characteristic
initial data set must satisfy constraints analogous to (8).

In the case of transversely intersecting initial null surfaces we have

) Interestingly, this construction, among other things, appeals to Zorn’s lemma.
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THEOREM 1.2 (Rendall [41]). — Consider an appropriate smooth vacuum character-
istic initial data set defined on (what will be) null hypersurfaces Ny and Ny intersecting
transversely on a spacelike surface Sy = Ny N No. There exists a non-empty mazimal
development (M, g) of the initial data bounded in the past by a neighbourhood of Sy in
Ny U Ns.

The above theorem actually is proven by reducing the above problem in a clever way
to the usual Cauchy problem.
In the case of initial data prescribed on a null cone C' emanating from a vertex o,

then suitable conditions would need to be given on the vertex to ensure a solution. A
particularly simple case is when the data are trivial up to a surface Sy. In this case,
the question of existence reduces to Theorem 1.2, with N; the part of C' to the future
of Sy, and N the trivial Minkowski ingoing cone C' emanating from Sy. It is in fact in
this form that we will appeal to the above in Section 2.

From one point of view, the characteristic initial value problem is more natural than
the standard Cauchy problem, because a certain piece of the data can be specified
freely, from which the constraints may then be solved simply by integration along the
null generators of cones. This will become apparent in the present work, in fact we shall
review in detail in Section 4 a very useful parametrisation of this free data in terms of
a non-standard geometric object 1. (Cf. with the spacelike case, where the constraint
equations (8) are a highly non-trivial underdetermined elliptic system.) On the other
hand, although in the smooth category, Theorems 1.1 and 1.2 are analagous, the quanti-
tative statement (expressed in Sobolev spaces of finite differentiability; cf. Section 1.1.6)
behind well-posedness is different, as there is a fundamental loss in derivatives associ-
ated to the latter problem [34].

A related issue is that the development (M, g) given by Theorem 1.2 does not contain
a full neighbourhood of the initial data hypersurface, only one of the 2-surface Sy. This
problem has in fact been very recently overcome by Luk [33].
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1.2. The Bianchi equations

The above route to hyperbolicity, though adequate for the issue of well-posedness,
does not capture precisely the radiating properties of the solution.

A much more geometric way to view both the local hyperbolicity properties, but also,
the global radiative properties, is to view the wave-like features of the Einstein equations
as fundamentally arising at the level of the Bianchi equations.

Recall that for a general pseudo-Riemannian metric, the Riemann curvature tensor
satisfies the equations

(9) Vie,Ragpys = 0.

If the manifold is four-dimensional and Ricci flat, i.e. if the Einstein vacuum equations
(1) are satisfied, then one obtains also

(10) VRapys = 0.

The above set of equations (9), (10) can be thought of as a generalisation of the Maxwell
equations and (in the Lorentzian signature) capture the basic hyperbolic and radiative
properties of (1) in a geometric way.

1.3. The Newman—Penrose formalism, null infinity and peeling

Considerable insight in understanding these properties is gained by introducing a
null frame and decomposing all relevant quantities with respect to that frame. This
approach was originally pioneered by Newman—Penrose [35]. The structure equations
of a general null frame coupled with the Bianchi identities written in terms of the frame
is known as the Newman—Penrose formalism.

Using the above formalism, it was found that if one imposed the existence of a smooth
(or at least C?) conformal compactification of spacetime defining a boundary “future
null infinity”, denoted Z", then a certain hierarchy of fall-off immediately followed for
various curvature components with respect to the frame. This hierarchy was in fact
first discovered in [38] and is known as peeling.() This then allowed for the definition of
rescaled Newman—Penrose curvature scalars, thought of now as functions on Z*, which
were in turn related to rescaled spin coefficients, the latter including the radiative
amplitude, the quantity directly measured (cf. the definition (11) in Section 1.5). This
gave a very powerful approach to defining and geometrically understanding the problem
of gravitational radiation.

1.4. Stability of Minkowski space

The above approach to defining Z and examining its properties, though extremely
suggestive, rested on a priori assumptions on the global behaviour of spacetime M.
In view of Theorem 1.1, however, the proper place for posing such assumptions is on
mnitial data 3.

(D1In the language of the present work, this is in fact precisely the ug-decay hierarchy in Section 5.4.3.
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At the time of [35], it was in fact not clear that there were any examples of complete,
one-ended initial data other than trivial data (i.e. data which develop to Minkowski
space) leading to a spacetime for which one could define any reasonable notion of
future null infinity Z.

The first (and essentially still only!) such problem which has since been globally
understood is the case where initial data are a small perturbation of trivial data. This
is the celebrated stability of Minkowski space [16]:

THEOREM 1.3 (Stability of Minkowski (Christodoulou-Klainerman, 1993))

For asymptotically flat initial data (2, g, K) satisfying a global smallness condition,
the mazximal vacuum Cauchy development (M, g) is geodesically complete, asymptoti-
cally approaches the flat metric in all directions, and admits complete asymptotic struc-
tures “future null infinity” T and “past null infinity” I~ , such that moreover®

J(IH) = JHI7) = M.

The monumental proof of the above theorem uses in part what can be thought of as
a refinement of the Newman—Penrose formalism.

A fundamental insight of the work, however, is that the null frame should not be
arbitrary but must be related to the choice of a suitable maximal time function ¢ and
an optical function u, i.e. which together define two foliations ¥; and C!, of spacetime,
intersecting in 2 spheres S, ;:

The asymptotic structure future null infinity Z* is constructed explicitly by “attach-
ing” to each cone C,, a sphere at infinity with coordinate ¥ € S? defined via propagation
along the null generators of C,. The set Z* can then be viewed in the obvious way as
a conformal boundary of M. For the general data considered here, the regularity is
only shown to be C**. See the comments below. Finally, the completeness statement
is then that Z* is naturally parameterized by (—oo, 00) x S2.

)In view of (2), this last statement is the assertion that the spacetime does not contain a black hole
region (or its time reversed notion, namely white holes).
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The structure equations corresponding to an appropriate null frame-adapted to the
above foliation—satisfy the so-called optical equations, which relate their connection
coefficients and curvature. For example, the shear x of the cone C, satisfies

v = thy = e an — v~ B
These equations are much more powerful than the general structure equations of the
Newman-Penrose formalism, because they can be used to capture a new global elliptic
structure which had not been identified previously. This type of structure will play a
role in the present work as well, as is discussed in Section 8.

In the proof of Theorem 1.3, the above structure had of course to be coupled with the
hyperbolic, radiating aspects of the problem, captured at the level of energy estimates
for the curvature tensor (which satisfies (9), (10)), as well as higher derivatives. These
estimates are proven by an adaptation of the vector field method. This general idea
will also be fundamental to the current work and will be discussed in Section 9.

Besides being a fundamental work in itself, Theorem 1.3 revealed several surprises
about the nature of gravitational radiation, with bearing on the very physical tenability
of the regularity assumptions on the conformal compactification described in Section 1.3.
See in particular Sections 1.5.2 and 1.5.3 below.

Let us note that a variant of the foliation defined by a maximal time function ¢ and an
optical function w is to consider a double null foliation defined by two optical functions
u, u whose level sets are ingoing and outgoing cones. See [10, 26]. This will be in fact
intimately connected to the framework of the present work.

Other extensions of stability of Minkowski space are contained in [1]. Finally, a
harmonic gauge proof of a version of stability of Minkowski space is given in [32].

1.5. Applications

1.5.1. A general construction of I*. — Essentially by domain of dependence argu-
ments(®), one can show from Theorem 1.3 that given now an arbitrary asymptotically
flat initial data set (X, g, K'), not necessarily satisfying global smallness, in fact only
assumed to be vacuum outside a compact set, one can still attach a piece of asymptotic
boundary ZT to its Cauchy development, parameterized by (—oo,u;) x S? such that,
as before, {u} x S? is “attached at infinity” to appropriate cones C,,.
Gravitational radiation is then described by limiting rescaled quantities, on ZF.
Most fundamentally, one defines the radiative amplitude = (per unit solid angle) to
be the traceless symmetric two-tensor = defined by
(11) Z(u,¥) = lm ry.

w,F—00 T

Similar considerations apply of course to Z~. This, in particular, will allow one to
formulate important physical conditions, such as “absence of incoming radiation”. See
in particular Theorem 1.4 in Section 1.5.3 below.

(©)alternatively, more directly by applying the double null foliation of [10, 26]
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1.5.2. Christodoulou memory. — Gravitational wave experiments can be idealized as
the study of the relative displacement of two test masses my, ms with respect to a third
reference mass my, all located at large distance r and angular direction 1 from a source.
If the experiment is in the radiation zone of the source, then the whole configuration
should be viewed instantaneously as sitting at a position (u, ) € Z* for finite retarded
time wu, evolving in u. The u-rate of change of this relative displacement is determined
precisely by the radiative amplitude =(u, ¥7).

It turns out the Einstein equations at null infinity (See Chapter 17 of [16]) give the
relation

1
Wy = —==
0 2
where ¥ is defined by
(12) S(u,9) = lim r?y.
Cly,7—00

Thus, for a suitable configuration of the test masses, the maximal change in displace-
ment can be related to

(13) Y(u, ) =X (W) = —% /u =(u, ),
where
(14) ¥E = lim %(u,v).

u—=£oo

On the other hand, by examining the complete set of equations satisfied by the
rescaled curvature components along null infinity Z*, remarkably (see [5]), one can
relate

div(St — )
to
(15) F(9) = ¢ / 2P (u, 9)du,

more precisely to F' — F, where F' denotes the mean over S?. The expression (15) has
the interpretation of total energy radiated per unit solid angle.
Using this expression, the total relative displacement, which is captured by

(X7 -%7)

can be related to (15).

For some physically interesting gravitationally radiating systems, it turns out that
(15) can be of the same order of magnitude as the maximum in u of the right hand side
of (13). See [5].

It follows that the total displacement of an appropriate configuration of test masses
can be of the same order as the maximal displacement and may under certain circum-
stances be easier to measure. This effect is now known as the Christodoulou memory
effect. See also the account by Kip Thorne [44].
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1.5.3. The end of peeling. — A final achievement connected to the proof of the stability
of Minkowski space was showing that the naive peeling properties suggested by the
original analysis of [35] were in fact not appropriate for physically interesting solutions
of the initial value problem.

This was proven in [12]. Since the statement is not widely known, we give a very
short account here.

Recall by Section 1.5.1 above that the results of Theorem 1.3 concerning Z+, 7~
apply for general asymptotically flat data which are vacuum in a neighborhood of
spatial infinity.

Recalling the radiative amplitude = from (11), let us define, in analogy with (14),

7 = lim u’Z.

U—r—00
Note the weight in u. Finally, let us define the curvature coefficient 3, with respect to
a suitable null frame, as in Appendix 17.3. Peeling would have it that, for all cones C,

meeting Z7, the asymptotic behaviour of 3

¢, 1s given by

(16) B=00"".

To examine the appropriateness of (16), let us assume more generally that
(17) B = B,(u,)r*logr + O(r™?),

for some B, (u,v) which possibly vanishes.

We have then the following remarkable result:

THEOREM 1.4 (Christodoulou [12], 1999). — Let (M, g) be an asymptotically flat
space time arising from a Cauchy hypersurface, vacuum in a neighborhood of spatial
infinity.

Assume that the Bondi mass is constant along past null infinity I~ for advanced
time u sufficiently large.(V

Then, if 5 on the cones C,, satisfies the asymptotics (17), then B, is given explicitly
by the formula:

1 o Lo o
(18) B, = —Z(Wd,{v + *Veulrl) (divE™).
(Note in particular that By, thought of as a function on I, is independent of u.)
Thus, either

1. The right hand side of (18) vanishes, or
2. B, # 0 in (17) and peeling fails.

(" This is precisely the assumption of “no-incoming radiation”. Equivalently, one assumes that the
analogue of = defined on Z~ vanishes identically for u sufficiently large.
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The above theorem thus precisely identifies the origin of the logarithmic obstructions
to peeling in terms of the asymptotic fall-off of the radiative amplitude = as spacelike
infinity is approached.

Why not try just to restrict to data which lead to a == = 07 It turns out that =~
has an interpretation in the post-Newtonian approximation in the simplest case of a
spacetime arising from n particles falling from rest at infinity. In this context, the right
hand side of (18) can be explicitly computed in terms of a moment of the configuration.
In particular, B, is indeed generically non-vanishing.

Thus, generic physically admissible data will not exhibit peeling at future null infinity
and the appropriate regularity for conformal compactifications is not better than C'*.

2. MORE PRECISE STATEMENT OF THE RESULT

With this background on the Cauchy problem for the Einstein equations, we can now
state a more precise version of Theorem 0.4. This will concern a statement for a finite
characteristic initial value problem. The statement with data at past null infinity is
deferred to Section 13.

2.1. The initial cone

The initial hypersurface will be a future null geodesic cone Cj of a point o.

We will assume however that the initial data are trivial in a neighbourhood of the
vertex o.

To describe the geometric interpretation of the data, as with the spacelike Cauchy
problem, it is convenient to assume that we already have a spacetime into which the
cone embeds.

Let T be a unit timelike future-directed vector at o and let I'y be the geodesic gen-
erated by T. We can define the null vector L at o so as its projection to the span of T

is T', and we can extend L along C, geodesically. Let s be the affine parameter defined
by L.

Let ro > 1 be a constant.

Our assumption will thus be that the initial data are trivial for s < rg, i.e. that they
correspond to those of the corresponding truncated cone in Minkowski spacetime.

By the domain of dependence theorem, the solution will contain a Minkowski region
which can be represented precisely as the past of a backwards light cone C, emanating
from a point e along I'. Moreover, the length of the segment of I'y connecting o and e
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is 2rg.

We will define an advanced time function v on C, such that u|c, = s — 1. Later,
this will be extended to the spacetime (to be constructed!) by the condition that its
level sets are ingoing null hypersurfaces C,,. (See Section 3.1.)

Let us denote by ¢ the induced metric and x the 2nd fundamental form of the
sections of C, corresponding to constant values of the affine parameter s. Let x denote
the trace-free part of y, and denote

L.
(19) e =3I

2.2. The trapped surface formation theorem

We may now state a version of the main theorem on the formation of trapped surfaces.

THEOREM 2.1 (Trapped surface formation). — Let k, [ be positive constants, k > 1 >
[. For characteristic initial data as described above, suppose

r2 [0 k
20 0 du > —
(20) 87 J, c Q_SW’

where the integral is taken along the segment of each generator of C, corresponding to
the range [0, 8] of u for some 6 > 0.

€

L

N
VL
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Then, if 6 is suitably small, the maximal development of the data contains a trapped
sphere S of area

(21) Area(S) > 4nl?.

This function e actually only depends on the conformal class of ¢, which is in fact
free data. We will discuss how to actually prescribe data in Sections 4 and 5. See in
particular Section 5.3 for a discussion of the smallness condition on §.

Remark 2.2. — The Einstein equations are clearly scale invariant under homotheties.
Given a > 0, we may thus replace ro — arg, 6 — ad, k — ak, [ — al in the above
statement. The formulation of the theorem has essentially set the scale to 1, and this
corresponds to the order of the area radius of the trapped surface to be formed.

Remark 2.3. — As already announced in the Introduction, we will extract in Section 13
a limiting statement from Theorem 2.1, where ry — oo and () is thus pushed to past null
infinity Z~. It should already be clear, however, that the function rZe will correspond
in the limit ry — oo to the analogue of |Z|?, as defined in (11), but now according to
past null infinity, i.e. with x in place of . Thus assumption (20) will correspond to a
very natural condition on the flux of incoming radiation per unit solid angle. Cf. the
role of this quantity in Section 1.5.2.

3. THE GAUGE AND THE SEMI-GLOBAL EXISTENCE THEOREM

The bulk of the work in obtaining Theorem 2.1 is proving a semi-global existence
theorem. This will refer to a gauge defined by a double null foliation. The existence of
the gauge will be part of the theorem, but as usual, it will be convenient to discuss its
properties assuming it has already been shown to exist.

3.1. The double null foliation and canonical coordinates

3.1.1. The optical functions u, u. — Recall the definition u|c, = s—rq from Section 2.1,
We shall extend u to the future of C, so that its level sets are the future boundary of
the part of the initial cone enclosed by the sets of constant u in C,. We denote these
level sets by C,.

We introduce a function u conjugate to u, the level sets of which are future null
geodesic cones with vertices on 'y, and such that u|p, measures arc length from o along
[y minus ro. We denote the level sets of u by C,. We refer to u, u as our optical
functions.

Finally, define the hypersurfaces H; by u 4+ u = t.

In general, the foliation we are describing will only exist up to a Cj, for some small
0 and up to a hypersurface H. as above, for 0 > ¢ > ug. Let us denote such a region
by M..
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Let us make one final assumption on such an M,.: There are no cut or conjugate
points along Cy, €, in M, \ T.

Restricted to M, \ 'y, we have then that C,, C, are smooth null hypersurfaces, H,
defined above is a spacelike hypersurface, and Syﬂ;: C,, Ny, are spacelike 2-surfaces
diffeomorphic to S2. N

In what follows, all constructions will refer to some such M..

3.1.2. The three null frames. — We define first the null geodesic vector fields

L/M — _2<g71>,ul/ayuj L/M — _2<g71),uuayu.

From these we define 2 by the relation:
—g(L', L) = 2072

Q2 is the inverse density of the double null foliation.
We define two additional pairs, the normalised pair

L=QL, L=QI

satisfying — g(L, i) = 2 and finally the equivariant pair:

L:QQL/7 L:QQL/

satisfying Lu =0,Lu =0, Lu = Lu = 1.

3.1.3. Canonical coordinates. — Let &, define the flow generated by L. Recall the
definition Sy, = C, NC,.

Note that ®, : S, , — Sutru is a diffeomorphism. We can define similarly the flow
@ generated by L. Similarly ®_: S, — Suutr is a diffeomorphism.

Thus, given local coordinates (9!, 9?) in a patch U on the sphere S ,,,, we can extend
these to @, (P, (U)) C Syutu, by pullback. Thus, given two patches Uy, Us covering S
with coordinates ¥4, (1')4 respectively, the region M.\ Ty is covered by two coordinate
patches with coordinates (u, u, 9, 9%) and (u, u, (')}, (¢¥')?), and (u, u) range in a region
D, depicted below:

D. = (D{)c U Dy,

We may call these coordinate systems canonical coordinates.
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Let us note that in such coordinates the metric takes the form
g = —20*(du @ du+ du @ du) + ¢ , . (d0* — b du) @ (d0” — 0" du)
where b? is governed by the torsion ¢ (defined in Appendix 17.2.2) by the relation

obA A
L — 402t
ou ¢

expressed in canonical coordinates.

For the problem of prescribing initial data, it will be convenient to choose a particu-
larly nice coordinate system on the sphere, namely stereographic coordinates. We refer
to Section 2.1 of [14] for the details.

3.2. The existence theorem

We may now state the semi-global existence theorem which is the heart of the work:

THEOREM 3.1 (Existence theorem). — Consider data as described in Section 2.1. If
0 1s suitably small, then the mazimal vacuum development of the data contains a region
M_y on which the gauge described in Section 3.1 can be constructed, bounded in the
future by the spacelike hypersurface H_y and the incoming null hypersurface Cy, such
that the cones C,, and C,, do not contain cut or conjugate points.

Remark 3.2. — Under the assumptions of the trapped surface formation Theorem 2.1,
the surface S5_;_s will in fact be trapped, as will, by continuity, all surfaces S, with
u, u sufficiently close to §, —1 — 9, respectively. As previously announced, we shall
discuss the smallness assumption on ¢ in Section 5.3. Let us emphasise that indeed, the
smallness assumption can be satisfied simultaneously in both Theorems 2.1 and 3.1.



1051-21

4. FREE DATA

Before examining more closely the issue of smallness of § and its significance, we must
address the question: How does one actually parametrize the data?

We have already remarked that free data for the vacuum Einstein equations (1) in
this context is precisely the conformal geometry of the initial cone. It will be essential,
however, to have an explicit convenient parametrization of the space of free data. This
will be provided by the geometric object ¢ to be described immediately below.

4.1. The geometric object v

We proceed with how to explicitly isolate the conformal geometry of the null cone
with respect to our gauge.

4.1.1. The conformal factor ¢. — On C,, let us write
H5u0 = @500,

where
du@iglsﬁ,uo = dﬂg‘so,uo'

It follows that we may write

d,ug‘su’uo - (¢ SM’uO)Qd’u%Sﬁ,uo

for a scalar function ¢.
In terms of canonical coordinates, we have

Hs0.g = 0 d

where g represents the metric of the standard sphere. We may then write

det g(u, o, 9) = (@(w, 9))?|uol?y/det §(9)

whence
ﬁAB(g, g, V) = |ug|? detg(ﬁ) map(u, )
where detm = 1.

4.1.2. m and . — The object m is in fact a 2-covariant symmetric positive definite
tensor density of weight —1. We can see its transformation rule explicitly: Consider 2
charts ¥ and ¥ covering S%. Writing ¢ = f(1J) we may express

of4

598 V) = T (9).
We see then that

m(9) = | det T(9)| " T (9)ym/ (9")T(9).
If we restrict attention to stereographic charts on S? (as discussed in Section 3.1.3),

then the matrix O = W is orthogonal, symmetric of determinant —1.
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We can write the matrix
o Z+X Y
n Y 7 —X
where Z2 — X? — Y2 = 1, i.e., this corresponds to the upper hyperboloid H; .
If we consider now the exponential map:
(22) exp: S — Hy,

where S denotes the space of symmetric trace-free matrices, this defines an analytic
diffeomorphism.
We can thus express m = exp 1y where ¢ € S

a b

(23) b(0) = OW)Y' (¥)OW).

We shall see in the following Section that indeed i) determines the whole set of initial

and 1) transforms as

data, once the Einstein equations are imposed.

To be completely concrete, one should consider a pair (¢,1’) each defining a map
[0, 8] X Dy, for a p > 1, where the latter denotes the stereographic disc of radius strictly
greater than 2, where ¢ and 1" in the overlapping region transform as above.

It will often be useful, however, to supress this and consider v as a single geometric
object®

0,6] x S = S
with 9 € S2.

4.2. Determining the rest of the data

Given an arbitrary choice of ¢, one can then determine the remaining data by im-
posing the Einstein equations. See Appendix 17.4-17.6.

4.2.1. Determining e. — From (90), noting that 2 = 1 on C,,, we have

Otry 2
ou Xlg:
We obtain
2 0¢
24 et
.1 28’&,43
(25) Can = 50T

(®) As such it is a funny object, namely, the logarithm of a tensor density of weight —1.
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We thus have ) )
l(gfl)AC(Afl)BD%%.

8 ou Ou

Note the function e is conformally invariant, i.e. it is independent of ¢. Given, say
stereographic coordinates, we may express it in terms of m and thus (inverting (22)) in
terms of .

Lo
6:§|X|g—

4.2.2. Determining ¢. — We have the linear equation

oAl
aTQ + egb = 0.
The initial conditions are
0¢ 1 1
u=0 = ]_’ — |lu=0 = —t = —.
¢|7 0 8@|7 0 2 rX|SO,uO |u0|

Thus, ¢ is determined in terms of e and thus of .

Note that ¢ is a concave function. Let us call data regular if ¢ > 0. This means
precisely that C,, has no conjugate points. When we refer to “arbitrary data” in what
follows, we shall always implicitly assume this condition.

4.2.83. The rest. — Continuing, one can obtain the initial values of all connection co-
efficients (see Section 17.2) and all curvature components (see Section 17.3) on C,,, in
terms of 1. For instance try is now defined by (24), x is defined by (25) (in view of the
fact that g, is defined by m which is defined by 1), etc.

5. THE SHORT PULSE ANSATZ AND HIERARCHY

We have shown that free data is indeed completely parametrized by the geometric
object 1. In trying to understand the key to Theorems 2.1 and 3.1, it is useful to think
of such v (restricted in u to [0, d]) as arising in a particular way. This will shed light
both on the mechanism behind the result and on the quantities that determine the
smallness of 9.

This way of defining 1 is what we shall call the short pulse ansatz.

5.1. The short pulse ansatz

Let 1y be a “seed” map v : [0,1] x S? — S which extends smoothly to s < 0.
Now given ug < —1, 0 < § < 1, define for 9 € S?,

s
(26) Y(u,¥) = ——ho(=,9).

Jug| 6

Note that this assumption is indeed compatible with the transformation rule (23). This
1 defines now a mapping [0, 6] x S? — S.
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5.2. Parametrization of initial data

One way of viewing the above ansatz is that for each fixed 9, it simply gives a specific
way of parameterizing general data (restricting them in u to [0, d]).

That is to say, given initial data on (), determined by % as in Section 4, and given
§, restricting ¢ to [0,6] x S? — S, we may define 1 by (26).

The statements of the Theorems will be more transparent if one thinks about fixing
1o and defines ¥ (and thus data on C,,) from 1) after § has been chosen; we shall freely
move between both points of view.

5.3. The smallness assumption on ¢

We are now ready to return to the issue of smallness of ¢ in the statement of Theo-
rems 3.1 and 2.1. Small with respect to what? And are the assumptions simultaneously
satisfiable?

Let us first take the point of view that we have given fixed data on C,, which
determines v as in Section 4. Let us note that ¢ must extend smoothly to 0.

Then, given §, we may define 1y as in Section 5.2 immediately above.

Let us now define M,

(27) My = [[vbollor(o,17x52)-

The smallness condition on ¢ in both Theorems 2.1 and 3.1 can now be expressed as
follows. There is a continuous, positive non-increasing function F'(Mg) such that

(28) § < F(Ms).

In this approach where the data are first fixed, it follows that v (and thus Msg)
depends on 9. But in this approach, one sees that Mgz — 0 as 6 — 0. Thus, for fixed
data, the smallness assumption (28) will indeed hold for sufficiently small §.

Alternatively, one can begin by fixing v¢)g. Then My is fixed, and clearly for o suffi-
ciently small, (28) holds. It follows that considering the rescaled data defined by 1 as
in (26), then the statement of Theorem 3.1 holds.

The status of assumption (20) of Theorem 2.1 is somewhat different. For one sees
that the quantity f06 edu is critical with respect to the rescaling defined by (26). Thus,
(20) is essentially an assumption about the seed function .

This assumption can be made more explicit by replacing (20) with the assumption

1 1 /
(29) S I
8 Jo 8 Jo

2 2

>k

0 9
Js (5,9) ds (5,9)
(for all ¥ in two respective stereographic charts, as discussed in Section 4.1); this is
directly computable from 1)y and it implies that (20) holds for all data rescaled by (26),
with k replaced by 14 2(k—1). (See the statement of Theorem 7.1 of [14].) Let us note
finally that the necessity of satisfying the transformation rule (23) is not an obstacle

for satisfying both inequalities of (29).
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Thus, in summary, starting with a seed function ) satisfying (29), then for § sat-
isfying (28), with Mg = Mjs(1)g), then rescaled data determined by (26) will lead to
developments satisfying the conclusions of both Theorems 3.1 and 2.1.

5.4. The initial data hierarchy

We fix now 9y and will consider the corresponding initial data set on C,,, restricted
to u < 6, which as we saw in Section 4.2 above, can be completely determined by
defining ¢ by (26). As before, we define My, by (27) with respect to this fixed .

One thing we have slipped under the rug is the question of whether, starting from vy
and defining ¢ by (26), one indeed obtains “regular” data, in the sense of Section 4.2.2.
We note, however, that one easily sees that initial data are indeed regular if §|uo| =2 is
sufficiently small depending on Mj.

5.4.1. Invariant norms. — Note first some basic control of the geometry: the eigen-
values of |ug| > ¢ relative to g are bounded above and below by fixed positive constants
provided that ¢ is suitably small depending on M;.

It follows that we can compare coordinate |-| norms, defined with respect to canonical
coordinates in say two stereographic charts, with invariant norms: If £ is a type T}/ S-
tensorfield (see Appendix 17.1 for this notion!), then

-1 — —
Caltol 78] < [€lg < Copgluol™PIE].
Let us define invariant norms C¥ by:
— n m m n
[€ller = mlﬂggks?f (0" [uo|™ V" D ¢l y) -
Now we say
§ = My (6"[uol*)
if for all k,
1€ller < 0 |uol® Fie(Mia)

for some F}, a nonnnegative nondecreasing continuous function.
5.4.2. The initial connection coefficient hierarchy. — Just as one determined the data,
one can now give bounds for the connection coefficients on the initial cone C,,,, as these

are defined in Appendix 17.2.
In the above notation, these bounds are as follows:

X =M (672 uo| ™)

2
try — — = M (|ug| )

|uo|
¢ =My (6"ug|?)
2 U
try + — — 2—— = M3 (d|ug| >
X ‘u0| |u0‘2 3( | 0| )

X = M; (6" |uo| )
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w = M3(8|uo|~?).

5.4.3. The curvature components. — Recall that the curvature components in a null
frame are denoted by the geometric objects «, 3, p, o, 3, a, defined in Appendix 17.3.

Similarly to the above, we obtain the following initial data hierarchy for curvature:
o = My (6732 |ue|™)
B =My (6~ "?|ug| %)
ps 0 = My(Jug| ™)

B = M (d]uo|™)

(30) a = M; (6% |ug| ).

5.4.4. The nonlinearity of the hierarchy. — We note that the above curvature hierarchy
is nonlinear, in the sense that, had one used a linearised analysis, one would have
obtained

5—3/2’ 5—1/2’ 51/2’ 5’ 53/2.

Let us note that to estimate correctly the latter two components 3, a one must use the
Bianchi identities (92) and (91) respectively. We see, for instance, that in the identity
(91), the last two terms, though lower order from the point of view of differentiation,
are dominant from the point of view of behaviour in §. This is a characteristic difficulty
of the problem at hand.

Remark 5.1. — Let us note that the above non-linear d-dependence of the curvature
hierarchy is not unrelated to the non-linearity of the equations at infinity responsible
for the memory effect discussed in Section 1.5.2. On the other hand, taking the limit
as uy — 0o (see Section 13), we see that the wp-dependence of the hierarchy reflects
precisely the peeling hierarchy of [35]. This is still consistent, however, with the analysis
of Section 1.5.3 concerning the validity of peeling. For as noted there, the analogue of
B., defined with respect to past null infinity Z—, is constant in u (as the roles of u and
u are now reversed). Thus, it is the triviality of the data in the region u < 0 that here
imposes the analogue of B, = 0, and thus peeling to indeed hold at past null infinity.

Remark 5.2. — Denoting by M; the norms on the right hand side, it is also instructive
to reflect upon the i-dependence of the hierarchy. One sees that although ¢ is at the
order of the metric and (, x, w are at the order of first derivatives of the metric, the
latter appear in Section 5.4.2 with ¢ = 3. This is related to the loss of derivatives
inherent to the characteristic initial value problem (cf. the remarks in Section 1.1.7).
We shall not track this aspect of the hierarchy further in what follows.
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5.5. Preservation of the hierarchy

The key to both the semi-global existence Theorem 3.1 and the trapped surface
formation Theorem 2.1 is precisely the d-hierarchy motivated by the above behaviour
of the norms in Sections 5.4.2 and 5.4.3 above.

This hierarchy will be encoded in the very energy estimates for curvature (and higher
order so-called Weyl fields) that control the solution at top order. See Section 9.7. From
there, it will filter down to all lower order estimates.

In particular, the connection coefficients will be bounded pointwise:

9] < 0(1)
‘QtrX‘F %' < O(S|ul™?)

2
Qtry — — | < O(|Ju| %)
) |ul
X <O |ul™)
X < O(8"[ul™®)

[l < O(ul~?)

lwl < O(d]ul™)
and curvature® will similarly be bounded pointwise:
(31) o] < O@*2[ul™)
(32) 8] < O(8"2[ul )
(33) ol < O(Jul)
(34) o < O(Jul?)
(35) 18] < O(3]ul™)
(36) laf < O(6°?|ul~?).

Let us defer any further discussion of how these bounds are actually attained, and
first turn briefly in the next section to showing that, given the semi-global existence
Theorem 3.1 with respect to our gauge, and the propagation of the hierarchy in the
form of the above bounds, we indeed obtain the result on formation of trapped surfaces,
Theorem 2.1. In fact, adding

[Vl < O(lu|™)

we will have written explicitly above precisely all those inequalities that we shall need!

) In examining the u dependence of (36), the reader may notice that a weaker bound is propagated
than that suggested by the data (cf. (30)). This is because, although peeling can be shown to hold for
smooth data of the type considered, the estimates at the level given do not propagate peeling. This is
related to the actual failure of peeling for general initial data as discussed in Section 1.5.3.
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6. PROOF OF THEOREM 2.1

The proof of Theorem 2.1, given the semi-global existence Theorem 3.1 and the
connection-coefficient estimates collected in Section 5.5, is in fact almost immediate,
and we shall be able to essentially give the complete details in this short section.

6.1. Raychaudhuri on the cone C_;
We will integrate the Raychaudhuri equation (90), written in the form

1
Dy’ = = (irx)? = |3

on the cone C_{_s.

Defining
f=lulPlxP?,
we have
Dtry’ < —(146)7%f.

We note that 5

149

and thus, denoting by ¥(u,Jy) the ¥-dependence of the null generators of C'"_; s ema-
nating from (0, —1 — 6, 7y) in canonical coordinates as they cross C,,, we obtain

tl")(,|507_1_5 =

/(= 2 1 “ / / /
It follows that if
5
(37) / flu, —1—6,9(u; 9p))du > 2(1 4 6)
0
for all ¥y € S?, then there is a u* € (0,d) such that for all u € (u*, §) we have

for all ¥y € S?, i.e. S, _1_s is a trapped sphere.
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6.2. Estimating the change in f from the short pulse hierarchy

We compute using the structure equation (88):

(39) Df=g
where

2 R
9= luf {— (mw m) 2 + 2<x,e>},

R R 1
6 =10 {W@n +n®n — §t1"xX} — wYx.

From the inequalities of Section 5.5, it follows that

(40) gl < O™ 2[ul 7).

Working in canonical coordinates, (39) has the form 0,f = ¢, and integrating we
obtain

16
flu, =1 —6,9) = f(u,uo, ) + / g(u,u,9)du.

uo

See

Vi
N X
N
) XN

From (40), we have

—1=6
- / 9, w, 9)]du > —0(5~172)

uo

and so conclude that
f(y> —1- 57 19) Z f(gv u0779> - 0(5_1/2>'

It follows that (37) is satisfied if

)
(41) / £ (s 0, 9(az; 00)) > 2+ O(5V2).
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6.3. The initial condition

Note that
(42) f<ﬂ7 u(]uﬁ) = 2|u0‘2€<ﬂ7 U‘Ouﬂ)

for e defined in (19). In comparing (41) with (20) in view of (42), there is only one
small subtlety remaining. The integration in (41) is not along the null generators of
the cone C,. This is of course a reflection of torsion. Nonetheless, using again the
hierarchy (now concerning only the initial data as in Section 5.4) one can easily relate
the two integrals modulo terms O(5'/2), thus showing that (20) implies (37) and thus
(38).

Let us note finally that the statement (21) concerning the area of the trapped sphere
is again easily derived given the assumptions of the Theorem 2.1 and the estimates of
the hierarchy given in Section 5.5.

7. THE PROOF OF THEOREM 3.1: A FIRST OVERVIEW

We now turn in the next three sections to the proof of the existence theorem, The-
orem 3.1, and the intimately related property of the propagation of the hierarchy of
Section 5.5.

As is typical for results concerning non-linear evolution equations, the proof is framed
as a continuity argument, known in this context as a bootstrap.

For the benefit of the reader not familiar with such arguments, we will eventually
want to outline in some detail how this is actually set up. It is hard, however, to
motivate the ingredients of the set-up before one has introduced the main estimates of
the proof, because it is the nature of the estimates themselves which define in particular
the so-called bootstrap assumptions at the heart of the continuity argument.

We thus defer the outline of the actual continuity argument to Section 10. In Sec-
tions 8 and 9 below, we shall thus only consider the question of how to estimate a
solution assumed to exist on a slab of spacetime of the form M., as in Section 3.1.

In broad terms, there are two parts to the problem of obtaining bounds, and this is
already familiar from the proof of the stability of Minkowski space (see Section 1.4):

1. Use the structure equations to control the connection coefficients given bounds on
the curvature.

2. Apply energy estimates to control curvature given bounds on the connection coef-
ficients.

These two parts will reflect the breakdown between Sections 8 and 9, respectively.
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8. CONTROLLING THE CONNECTION COEFFICIENTS FROM
CURVATURE

In the present section we will review the structure which allows us to control the
connection coefficients given bounds on curvature.

8.1. “Naive” propagation estimates

One may estimate “naively” the connection coefficients from curvature fluxes simply
by integrating the propagation equations (78), (79), (80), (81), etc., along the null
generators of the cones Cy, C,,.

This will indeed be used to derive L> estimates from L*° estimates of the curvature
(see Chapter 3 of [14]) and to derive L*(S)1? estimates for the 1st derivatives of the
connection from L*(S) bounds for the 1st derivatives of the curvature (see Chapter 4).

For instance
(43) X] < Clul™67*RE (o)
where, in the notation of [14]:

R (ar) = sup(|ul8*2|a).

As is apparent, however, these estimates “lose” a derivative, as the connection coef-
ficients are estimated at the same level as curvature, and not one degree better. The
reason is clear: solutions of transport equations do not gain in differentiability against
their right hand side. The presence therein of curvature thus necessitates the above
loss.

These naive estimates are not however useless. In particular, although they lose a
derivative, the estimates are sharp with respect to their d-dependence; having such an
estimate is important for the propagation of the hierarchy as in Section 5.5. Cf. Sec-
tion 8.2.4.

8.2. A hidden elliptic structure

We will see in this section a hidden elliptic structure that will allow us to overcome
the loss in regularity above. This has already appeared in the stability of Minkowski
space, but as it is one of the most beautiful aspects of the structure of the Einstein
equations, it is certainly worth repeating!

In the present work, this structure will be used specifically in order to obtain L*(S)
estimates for second derivatives of x, etc., from L*(S) estimates for first derivatives of
curvature (see Chapter 6), and cone L? estimates for 3rd derivatives of y, etc, from
cone L? estimates for 2nd derivatives of curvature. The latter are top order estimates.

(10by this notation, we mean L* estimates with respect to the measure of the Su,u spheres
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8.2.1. Raychaudhuri and try. — Like almost everything in general relativity, the story
begins with the Raychaudhuri equation (90)!

In its more general form (i.e. without imposing Ric = 0):
(44) Dtry’ = —Q?|\')? — Ric(L, L),

this equation was first exploited by Penrose to prove his famous incompleteness theorem,
Theorem 0.1. The significance of (44) in that context is that given the null curvature
condition, then the right hand side of (44) is non-negative, and from this it follows that
focal points form in finite time. From this in turn, geodesic incompleteness properties
can be inferred by global topological methods.

Equation (44) plays a similar role in the proof of Theorem 0.3.

In the context of the analysis of the vacuum Einstein equations, the relation (44)
takes on a new significance. The point is precisely that, in view of the vanishing of
Ric(L, L), no curvature term is present in (90).

In principle, this allows one to hope to estimate try without losing differentiability.
Rewriting (90) in the form:

1
(45) Dtry’ = —§QQ(trx’)2 — 92|X/|2,
we see, however, that for this to work, one has to also estimate the trace-free part x,

the so-called shear, which appears on the right hand side of (45). (See Appendix 17.2.)

Here comes the second part of the miracle, which has no analogue in the classical use
of (44) in the context of the proof of the incompleteness theorem.

Given control of try, then the quantity y, in view of the Codazzi equation (84),
satisfies what can be viewed as an elliptic equation on the spheres S, ,:

o _ 1 .
(46) divy' = dtry’ + Q=8 + St = ).

DO | —

The last two terms in brackets are clearly of lower order in differentiability. We see that

one expects X’ to have one more degree of angular regularity than the curvature form
B and the form dtry’. Thus, (46) coupled with (45)

2d elliptic system for x

allow one to obtain quantitative bounds for try, y, given bounds on curvature, gaining
one level of differentiability.

Note that a similar argument can of course be applied for try, X.
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8.2.2. The mass aspect functions p, p. — One would like to extend the above method
to estimate the remaining connection coefficients (n,ﬂ,w,g). In examining the equa-
tions (80), (81), etc., from Appendix 17.4, however, it is not at all obvious how this is to
be done, as there does not appear to be an immediate analogue of the good quantity try
satisfying an analogue of the transport equation (45), with no curvature terms present
on the right hand side.

One of the most beautiful discoveries associated with the original proof of the stability
of Minkowski space [16], is that there is indeed such a quantity!

The quantity is, however, at one level of differentiability higher than the connection
coefficients! Specifically, one defines i by

1 1. .
(47) =K+ oty — divy = —p + 5 (6% - divn.

We may also define a version associated with the C,

1
p=K+ Ztrxtrx — d,fvg.

We have that p satisfies the transport equation

1 1 R 1 , .
(48) Dy = —Qtrxu — §Qtrxﬂ +Q <_ZUX‘X|2 + 5“‘9(@2) + div(Q(2%F - — trx 1)),

with a similar expression for Dy. This transport equation has the property that there
are no curvature terms on the right hand side. To close, however, one still must somehow
retrieve estimates for 1, n and their derivatives on the spheres.

For this, recall the structure equation (82) from Appendix 17.4. Rewriting also (47)
as an equation for divn, we see that for given u, the quantity 7 can be viewed as
satisfying the elliptic system

1

(49) divp = —p + 56X —

(50) altlp =0 — XA X

DO | —

Similar considerations hold for n given p.

We thus see that by simultaneously coupling both transport equations (48) and the
equation for Dy, to the elliptic system (49)-(50) and the analogue for 7, we can in
principle close the estimates.
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The quantity p has an important property. When integrated over the two-surface
Suus [ ¢ 1 retrieves the so-called Hawking mass:

ST (Suu) =14+ ! tryt / /
N o N MHaw uu) = P rxtrxy = = .
Area(Sy.) Hawki P, 167 Jsg,. XHX » a » K

With respect to the foliation considered in the proof of the stability of Minkowski space,
the Hawking mass of Sy, approaches the so-called Bondi mass associated to the “cut”
on Z% defined by the cone C,. Moreover,

lim (Area(Su,t)/élﬂ)?’/ZH(u, t,7)

t—o00

represents the energy per unit solid angle, the so-called news function N (u, ). See [5],
as well as Chapter 17 of [16]. Note that with = defined by (11), we have

o _ 1,

ou '

Thus, replacing now future null infinity Z* with past null infinity Z— and exchanging

2|“

the underlined and non-underlined quantities, we see that the change in N over a §-
interval along the generators of past null infinity measures precisely the limiting flux
which appears in the statement of Theorem 13.1.

For this reason, p and p are known as mass aspect functions, even though, strictly
speaking, this interpretation is only valid at infinity.

8.2.8. The quantity ¢. — For w, w, a suitable quantity is to be found one order further
down in differentiability. We define

¢ = pw — div(QB)

to obtain the transport equation
Dy + Qtrxgp = —20(3, ¥'w) + m
where m is of suitable order. For details, see Chapter 6.5 of [14].

8.2.4. Note on the d-hierarchy. — Without going into details, let us just remark that,
in the case of 1, n, w, the estimates obtained in the manner of the present section,
though bettter from the point of view of differentiabilty, are worse with respect to
that those obtained in Section 8.1 above.

The estimates are indeed sharp, however, in the case of x, x, and w, and this is
fundamental for the argument to close.

8.3. Sobolev inequality and uniformisation on S

There is one missing link in order to apply elliptic theory on the S, , spheres. For
elliptic estimates to hold, one needs to first retrieve some basic underlying geometric
information on the spheres.
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First and foremost, to do the necessary elliptic theory, one requires the Sobolev
inequality. This in turn is derived from the isoperimetric inequality

/ (f = F)?dpg < 1(Syu) ( / |¢zf\dﬂg>
Su,u Su,u

and 1(S,,,) is the isoperimetric constant. The latter can be estimated from the eigen-
values of the pullback ®;gg, , with respect to g|go. This in turn requires only a bound
on

9| Qrx|, 9|2
The ¢ factor is quite fortuitious; comparing with the bounds of Section 5.5, there is in
fact a 6%/2 to spare.

The other element which is required is the uniformisation theorem. For in order to
estimate in LP, one needs to transfer Calderon-Zygmund estimates from the standard
sphere to S, 4.

In the context of stability of Minkowski space, a version of uniformisation was
proven [16] depending only on L* bounds on curvature. In the present context, the
L bounds on curvature are not sufficiently good for these purposes, in view of their
bad d-dependence.(!V)

It turns out that uniformisation theory can in fact be obtained using only L*(S)
bounds on the Gauss curvature K. Moreover, from the equation

DK + QtryK = divdiv(Qy) — A(Qtry),

we see immediately that an L?(S) estimate on K can be obtained from L?(S) flux type
integrals of curvature. These flux integrals have the desired d-dependence so as for the
argument to close.

9. ENERGY ESTIMATES FOR CURVATURE

It is well-known that for hyperbolic equations in more than 2 spacetime dimensions,
estimates for the top order quantities must be in L? on appropriate hypersurfaces, for
all other norms would necessary lose derivatives.

In this section we will describe how to prove such estimates for curvature and its first
and second derivatives. It is the latter that will in fact be the top order quantities in
this approach.

These estimates are of a geometric nature, and as we shall see will require precisely
control on the connection coefficients in order to close. Thus, this and the previous
section are in fact strongly coupled.

(1) An analogous difficulty was encountered in Bieri’s work [1], where, in view of the fact that only
H' bounds of curvature were being assumed on the initial Cauchy hypersurface, one could in principle
only hope for L*(S) bounds on curvature. Thus, from pure regularity considerations, a version of
uniformisation was required assuming only L*(S)-curvature bounds.
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9.1. The energy method
Let us first briefly recall the energy method for the most classical example, a scalar
field .
We define the so-called energy-momentum tensor T[] by
1
Ty [] = 0,0 — §QWVWVW-

If 4 satisfies the covariant wave equation

(51> Dgw =0,
then
VAT, [¢] = 0.

More generally, for

0,0 = F,
we have
(52) VAT, Y] = FO,F.
9.1.1. Multiplier vector fields. — Given a vector field V', we may now define a 1-form

B[] = T [p]V”
as well as a scalar current
T = Vm, T[] + FV* 0,4,
where V)7 denotes the so-called deformation tensor of V', defined by
(V)ﬂ-;u/ - ng;w-
The relation (52) gives the divergence identity
VP[] = TV Y]

Applying the divergence theorem, we obtain an identity

| prwiwdom = [ 7V10)

We note that the integrands of both boundary and bulk terms are of the same order of
differentiability, quadratic in first derivatives.

If V is timelike, and OR consists of two homologous spacelike hypersurfaces ¥y, ¥,
then rewriting the above as:

(59 [ Prwindow = [ 7701+ [ PV wintdoun,
P R Yo

the left hand side is now non-negative, by the general property

(54) T(Vi, V) >0, Vi, Vo causal, future-directed.

It is in fact a coercive quantity in all derivatives of 1, where the coercivity constants
are determined by the geometry of »; and the choice of V.
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If we consider R defined by a suitable foliation ¥, ¢ € [0, 1], then Gronwall’s inequal-
ity allows one to use the above identity to estimate

|¢|ﬁ[1(21) < C|w|ﬁ[1(zo)>

where C' depends on the geometry of the foliation and the deformation tensor of the
vector field V.

This estimate is particularly simple when V is Killing and F' = 0, for then J" = 0.
The relation (53) then represents Noether’s theorem.

9.1.2. Commutation vector fields. — To obtain higher L” bounds (including pointwise
bounds), one must obtain energy estimates at a higher order of regularity. This is done
by introducing so-called commutation vector fields.

Note that if X is a vector field and [gy) = 0, then
Oy (X¢) = [0y, X]o = F(09, 0%).

It is again the deformation tensor of X that enters in the coefficients of the expression
F.

Given now also a multiplier vector field V', we may apply identity (53) to X1 to
bound say

[ i
3

and more generally
(55) / PY[Xy - X)) n.
P

To relate the quantity (55) to a higher order Sobolev norm of v, one needs to examine
the coercivity properties of the expressions in various directions. The most immediate
way to obtain coercivity in given directions is to include commutation vector fields X;
which span those directions.(? These higher order energy estimates in turn lead to
pointwise or higher L” estimates for lower order quantities via Sobolev imbedding type
theorems.

9.1.3. The vector field method. — The combined use of multiplier and commutation
vector fields is behind both the local well posedness and long time decay properties
for linear and non-linear wave equations. When used to prove decay results, both the
multiplier and the commutation vector fields have well-chosen weights. See Klainer-
man’s seminal [25] for how this approach captures the dispersive properties of (51) in
a way sufficiently robust for applications to non-linear stability properties. This is the
celebrated wvector-field method.

(12)One can also, however, sometimes use the equation (51) itself together with elliptic estimates to
control directions which are not in the span of the commutation vector fields.
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9.2. The Bel Robinson tensor

In the present work, one wishes to apply a version of the vector field method at the
level of the Bianchi equations for the Riemann curvature tensor (cf. the discussion in
Section 1.2). From the perspective of its algebraic structure, the Riemann curvature
tensor is a special case of an object known as a Weyl field, a subclass of the set of covari-

ant 4-tensors. The algebra and calculus of such fields are reviewed in Appendix 17.7.
For a Weyl field W, we define the totally symmetric, trace free quadratic expression
in W:
Qagys W] = WapsoW,, F5 7+ Wapp "W, 55 7) /2.
This is the celebrated Bel Robinson tensor.

If W satisfies the Bianchi equations (9), (10), then Q is divergence free
VQagpys[W] = 0.
More generally,
divQ [W] = (W, 7),

where J3,5 is a so-called Weyl current defined by (93).
In analogy with (54), Q has the remarkable property

(56) QW) (Vh, Vo, V5, V) >0, Vi causal, future-directed.

Thus Q can indeed be considered a close analogue to the T of Section 9.1.

9.3. Multiplier and commutation fields

The approach of using an adaptation of the classical vector field method with the
Bel Robinson tensor QQ in the role of the energy momentum tensor T was first taken
in the proof of stability of Minkowski space [16]. This will be the approach used here
to obtain estimates. In analogy with the classical vector field method, one must first
discuss the choice of multipliers and commutators.

9.3.1. Multiplier fields. — Let us first remark that, given a Weyl form W, to obtain a
1-form from Q[W], in general we must contract with 3 vector field multipliers!

P = QWIS VS

How are these chosen in the present work?
As multiplier fields, we shall always choose from

L, K
where K = u?L

Note that these are both causal, and thus, in view of (56), they generate non-negative
definite boundary terms if the divergence theorem is applied in a region bounded by
spacelike or null hypersurfaces with the appropriate orientations. The weight u? in K

is essential to track the correct behaviour with respect to w in the hierarchy.
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9.3.2. Commutation fields. — As commutation fields we will take
L, S, O; 1=1,2,3

where S = ulL + uL, and O; denote the so-called rotation fields.

The latter are defined most directly in canonical coordinates simply as the standard
rotations of the sphere S?. (See Chapter 8.3 of [14].) These will satisfy coercivity
properties to be discussed below in Section 9.5.

9.4. Deformation tensors and connection coefficients

As we shall see, just as in the classical vector field method, it is the deformation
tensors of the multiplier and commutation vector fields which will appear in our energy
identities. Thus, to estimate curvature, we will need in particular to estimate these
deformation tensors.

Since the vector fields are related to the null foliation, it should not be surprising that
our deformation tensors can in turn be estimated by connection coefficients. Indeed,
the deformation tensors of our multiplier and commutator vector fields are estimated
in Chapters 8 and 9 of [14] from precisely the type of quantities estimated in Section 8.

It is in this way that energy estimates are coupled to the estimates of Section 8. In
particular, it is through this that the J-hierarchy for connection coefficients (derived
with the help of the curvature hierarchy) will re-couple with the estimates required to
prove the propagation of the curvature hierarchy. We will discuss this in Section 9.10
in the context of the most difficult terms, the so-called borderline terms.

9.5. Aside: Sobolev inequalities and Coercivity

In analogy with our discussion of the classical vector field method, we know that
for energy identities to give control on geometrically natural L? quantities we need
coercivity properties, e.g. properties of the form

S0P +IER = O (ulPVER + [€]7).

To moreover then get control on higher LP, we need control on the relevant Sobolev

constants, both on the spheres S, , and the cones C,, C,.

The issue of the Sobolev inequality on the spheres has in fact already been discussed
in Section 8.3 and is addressed in Chapter 5 of [14]. The remaining issues are addressed
in Chapters 10 and 11 of [14].

Recalling the discussion in Section 8.3, we emphasise that control on coercivity,
Sobolev, etc., require at the very least some basic assumptions about the geometry
of the spheres and cones.

In the logic of the proof as described in Section 10, the basic bounds necessary for
these must be included as bootstrap assumptions, and are finally recovered from the
estimates proven. We have given already some flavour of the origin of this improvement
in Section 8.3 above. We shall not comment further on this in the present Section.
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9.6. Table of Weyl fields used, and the notion of index

Before proceeding, we collect here the complete list of Weyl fields to be used:

Order Weyl field W ‘
0’th order R
1’st order ZLR, EOiR, ESR
2'nd order ELZLR, EOiZLR, ZOiZOiEOjRa EoizsR, ZsﬁsR

We will define the index ¢ of a Weyl field by the rule:
(W) =t of L, operators in the above representation.

The significance of the index will become clear in Section 9.7 below.

9.7. The (n)-stratification and the exponents of the short pulse hierarchy

We now turn to what essentially is the heart of the whole method.

We wish to capture at energy level the curvature hierarchy of Section 5.5. It turns out
that the different 6-behaviour of the various curvature components «, 3, is distinguished
precisely by the freedom of choosing different combinations of multiplier vector fields.

(n)
This motivates the following: Given a Weyl field W, we define P [W] for n =0,1,2,3
by
PW]=PWI(L, L, L),

PIW] = PIW](K, L, L),

PW] = PIW|(K, K, L),
(3)
P[W]=PW|(K,K,K).
The (n) above measures the number of K’s used as multipliers.
Let us consider the case W = R. The point is now that for each n, different combi-

nations of curvature components appear in the flux terms associated to (nP)[R] Thus,
n provides a stratification of currents that will allow one to implement the curvature
hierarchy of Section 5.5. To be consistent with this hierarchy, it turns out that one
must “assign” d exponents to each n by the rule:

(57) =1 a=0 @=-1/2, g¢=-3/2

We shall refer to the above g, as the ezponents g, of the short pulse hierarchy.
This assignment essentially captures the fact that, when applied to curvature W = R,

(n)
we expect the boundary terms associated to P[R] in the energy identity to be like §—2%".
Of course, we must apply currents not only with W = R but with higher order Weyl
fields from the last two rows of our table in Section 9.6 above. But now, because L,
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differentiates in the u direction, we expect quadratic quantities with index ¢ to be 6=
worse than they would be otherwise.
This motivates the definition:

(n) (n)
(58) P=> §PW).
w

(In the case n = 3 we sum over all Weyl fields from our table in Section 9.6. In the

cases n = 1,2, we omit from the sum those containing an Lg in their representation.)
With the inclusion of the index factor, all terms in the sum (58) have the same

expected d-behaviour. In view of the above comments, we expect the boundary terms

(n)
of P in the energy identity to be like 624",
9.8. The divergence identity
In the previous section, we have successfully translated the d-hierachy of curvature

(n)
components in Section 5.5 into a d-hierarchy for energy currents P, stratified by (n),
and given by (57).

(n)
We are now ready to apply the divergence theorem for each P, n=20,...,3.
In the notation of (3.1), we will consider a domain as below

and integrate the divergence identity

. )
(59) divP = 7

over the darker shaded region (where this is to be envisioned rotated around I'y).
Denoting by £ the boundary term on C,, F' the boundary term on C,, and D the
boundary term on C,,, (“data”), we may write the resulting identity as:

(60) B(w) + Flu) = [ rduy + Dlw).

In view of our hierarchy (57), let us define

(n) (n)
E =sup <52q"E(u)) :
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the data terms:

and finally

(61) P=max{E,E,E,E,F}.
Our goal is thus to bound P using (60).

9.9. The excess index

In view of (59) and the above definitions, we must estimate

(62) 52 / Pldy, < 0(6%)

where e is the so-called excess index.

If it were always the case that e > 0, then the estimates would immediately close for
sufficiently small §. For irrespectively of the non-linear dependence of the right hand
side of (62) in P, we would have a smallness factor provided by §%.

On the other hand, if e < 0, then it would be hopeless to prove estimates, and the
hierarchy would essentially be inconsistent.

9.10. The borderline terms
The good news is that it turns out that

e > 0.

The bad news, however, is that there are terms which appear on the right hand side of
(59) for which one must take e = 0 in (62)

These are the so-called borderline terms.

To see these, let us examine the structure more carefully:

For each choice of mutliplier set and Weyl field W we have the identity

divP[W] = —(divQ)[W](Vi, V, V) — Q5[W] WWmas VIV + ..
= Te+ T
For the first term above, recall
divQ = (W, J).

For the fundamental Weyl field, namely curvature, J = 0. We see thus that the first
term only arises because of commutation fields. The error term 7, is thus introduced by
the commutation fields, while the error term 7, is introduced by the multiplier fields.

The number of terms that arise is immense! We shall thus simply summarise the end
result of very close case by case examination of all terms that arise (Chapters 13-15

of [14]).
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Let us introduce the notation:

(X);

X))~
Ozls, . = O

and let ()7 denote the trace free part.

We stress again that, in view of Section 9.4, deformation tensors are estimated from
connection coefficients and obtain their appropriate d-behaviour from there.
9.10.1. Multiplier borderline terms. — For 7,,, borderline terms e = 0 occur only for
n=1andn=3.

For n = 1, we have the borderline terms
(Wi, aW)pW),  (KiAa(W))o(W)

where we now use the a notation, etc., to describe the decomposition of an arbitrary
Weyl field.

For n = 3, we have
(D a))p(W),  (KiAa(W)a(W).

9.10.2. Commutation borderline terms. — For (77'2, borderline terms occur only in the
(1)
case n = 1 and 3, and moreover, they only occur in ) 7.

In searching for borderline terms, one must be careful. The border line terms are not
the principle terms. They are lower order (from the point of view of differentiability).

Let us define
J(X,Y)=T(X,L,Y)
similarly J.
Let us d_ecompose this as:
J=06—-Aj+ K¢
In the case n =1, we have Ap(W), Ka(W).
In A, what gives rise to borderline terms is

(X3

trx (2, @),

whereas in K, it is the expression
trX(X i A .

In the case n = 3, we have (0, a(W)), and the borderline terms in © are

trx(p(x)% )
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9.11. The reductive structure

And here we have arrived at what is the most amazing and unexpected aspect of the
structure!

The borderline terms as identified in Section 9.10 are cooperative with the stratifi-
cation introduced in Section 9.7 in a remarkable way: Despite the fact that the system

(n)
of inequalities satisfied by the & is still non-linear, it can be solved reductively so as
to grow (modulo terms lower order in ¢) sublinearly.
0 (@
We have already seen that for £, £ there are no borderline terms, hence:
© (0
(63) E<D+1,

I/\
b@

(64) YD

1)
Since borderline terms for £ (as identified in the previous section) are linear in «, this
leads to an inequality of the form below:

5) VoB L eV
0) (2)

which while non-linear, is sublinear in 5 gwen &, 5
(n)
(As an exercise the reader may want to examine how terms « appear in the £, in

view of the definitions of Section 9.7).
Similarly,

B G © @ /2, /6)
6) FeBiof? OV

The system closes!
We can also estimate now
CI R C))
(67) 5 <D+...,
which has in fact decoupled from the rest.
We have bound the quantity P of (61)!

10. THE LOGIC OF THE PROOF

With the discussion of the bounds on the connection and on curvature in the above
two Sections, we have given an overview of all the main ideas from the point of view of
analysis behind the proof of Theorem 3.1.

As discussed, however, already in Section 7, in the context of the logic of the proof
of Theorem 3.1, the estimates of Sections 8 and 9 collectively represent only one (but
by far the most important!) step of a continuity argument, where a region defined by
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a collection of bootstrap assumptions is successively enlarged. Specifically, the esti-
mates of the above mentioned Sections 8 and 9 correspond to the step: “improving the
bootstrap assumptions”.

We turn in this section to discuss in more detail the structure of the actual continuity
argument.

For the experts, we note that the continuity argument requires particular care because
the framework for “local existence” is different from that used to prove estimates. This
is handled in [14] in complete detail and with considerable technical artistry; in fact, the
set-up used serves as a model for the careful treatment of these issues. For the reader’s
convenience, we have specific page references to the various steps of the argument.

10.1. The set A

Let us recall the notation M, of Section 3.1, for a general ¢ € (ug, —1].
Let us also recall the notation P from (61).

We begin with a definition

DEFINITION 10.1. — Let data be fized and let A be the set of real numbers ¢ € (ug, —1],
such that

1. We have smooth solution in canonical coordinates on M \Ty and such that My\ Ty
is Minkowski. Moreover for ¢ > ug+ 0, the solution extends smoothly to the outer
boundary u = 6.

2. A collection of boostrap assumptions™® hold on M, (necessary for Sobolev inequal-

ity, coercivity inequalities, and some additional ones necessary for comparison of
energies).

ORORCINC)
(68) P <G(D,D,D,D)

for a function G to be discovered™ in the course of the proof.
(13)These are the bootstrap assumptions, proper, and are collected in Chapter 12, p 413 of [14]. We

shall refer more generally to these assumptions together with (68) as “bootstrap assumptions”.
(11 See formulas (16.16), (16.18) and (16.25) of [14].
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In Section 3.1, note that we depicted M, only in the case ¢ > ug + 6. If ¢ < ug + 9,
M. is the region obtained by rotating the region D, depicted below:

10.2. A#0

Let us note that by appealing to Rendall’s local well posedness result, Theorem 1.2,
one can solve the characeteristic initial value problem for smooth initial data in a small
neighborhood of Sy, .

Using the implicit function theorem and compactness, then one can write the solution
in the gauge of Section 3.1 in a region M, for some ¢ > ug:

(Dé)uo-&-e AN

7 Rendall

Moreover, the bootstrap assumptions corresponding to 2. in the definiton of A as well
as (68) can be seen to hold by continuity, for some ¢ > uq (depending on the data). We
have shown thus

PROPOSITION 10.2. — A is non-empty.

10.3. Semi-global existence

Set ¢* = sup . A. Theorem 3.1 in fact follows from the following:



1051-47

(n)
THEOREM 10.3. — If ¢ is suitably small depending on D, n = 0,1,2,3,; D, ﬂzll,
@;(trx), Ds(trx), ") then ¢t = —1 € A.

The proof is by continuity. One shows that if ¢ € A with ¢ < 1, then there exists an
e such that ¢+ € € A.

Let us first describe the argument if ¢ > ug + 0, which is somewhat simpler.
1. The first (and by far most important and difficult!) step is to improve the boot-

strap assumptions corresponding to 2. and the assumption (68). All together, this
concerns Chapters 3—Chapter 16.1 of the work!

More precisely, the logical order of this big step is as follows:

(a) One first notes that, essentially since the bootstrap assumptions are defined
by <, ¢* € A and the solution is defined in M... Given the bootstrap as-
sumptions corresponding to 2., one can control the the coercivity and Sobolev
constants allowing the energy fluxes defining P to be comparable to geomet-
ric L? bounds, etc. This is Chapters 10 and 11. (For instance, at this stage
we can estimate R appearing on the right hand side of (43) in terms of P.)

(b) The estimates on the connection (Chapters 3-7, discussed here in Section 8)
then apply in M.,. The bounds on the connection then allow for control
of the deformation tensor of the multiplier and commutation vector fields
(Chapters 8-9). Moreover, as suggested for instance in the discussion of
Section 8.3, the retrieved bounds are such that all the bootstrap assumptions
of 2. can then be improved.

(c) We now apply the divergence identity of Section 9.8 as in Section 9.8, and
the reductive structure of the system of inequalities (63)—(67) allows us to
improve inequality (68) for P, say by a factor of 1/2, for proper choice of
the function G. This is Chapters 12-16.1.

2. Because one will apply existence theorems that are most cleanly stated in the

smooth category, it is nessessary to first show uniform estimates in M. for all
higher norms. These estimates are now essentially linear. This is the entirety of
‘Chapter 16.2.

3. One now can use this to show that the solution extends smoothly to u + u = ¢*

and a smooth initial data set can be constructed for the reduced Einstein system.
See ‘ Chapter 16.3, pp. 551755.‘
4. Tt is convenient to extend the data so that the interesting part of the data is

contained in a compact set. The extension need not satisfy the constraints. See
| Chapter 16.3, pp. 555-56. |
5. One then solves the reduced Einstein equations following Choquet-Bruhat (cf. Sec-

tion 1.1.4). In the domain of dependence of the interesting part of the data, this

(15)These are all initial data quantities and bounded by a positive continuous increasing function of
Ms.
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is a genuine smooth solution of the Einstein equations as in Theorem 1.1. See
| Chapter 16.3, pp. 556-59. |

6. Using the implicit function theorem, one can express a suitable part of this so-
lution in the double null gauge of Section 3.1 and attach smoothly to M.. See
| Chapter 16.3, pp. 559-69. |

7. Compactness shows that this attachment covers some M., with € > 0, and since
the bootstrap assumptions were improved in step 1, by continuity they still hold,
for e suitably small. See ‘ Chapter 16.3, pp. 570-71.

The above steps are depicted below:
5. Choquet-Bruhat in harmonic coordinates
6. Attach subset of
4. Extend (constraint violating) - ggﬁglﬁn%fli?tp ?Sggggi theorem
so that data compact subse’g,:’

7. Compactness implies € > 0,
.~ and bootstrap assumptions still hold

,‘:: _ *‘:“, 2
utu=c"He \\\\

3. Extract smooth data™"|"
with respect to
harmonic coord. system

1. Improve bootstrap assumptions

:2. Show uniform smooth bounds

Let us note that the earlier stages of the openness argument (corresponding to ¢* <
uo + d) require an extra step, as the curve U + u = ¢* has not met the boundary u = 0.

This extra step is provided by appealing to Rendall’s local existence Theorem 1.2
after step 6 in the above outline, just as in the proof of Proposition 10.2 above, and
again appealing to the implicit function theorem and continuity for the construction of
the gauge. This is illustrated below:

I

N

1N Choqqet-Bruhat \\@\\d\
: N

| NN

Rendall

See | Chapter 16.3, pp. 569-70.
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11. THE KLAINERMAN-RODNIANSKI RELAXED HIERARCHY

Christodoulou’s short pulse method has been revisited in a more recent and very
insightful approach to the problem by Klainerman—Rodnianski [28, 29].

Let us make some very brief comments about this approach. The essential idea is to
slightly relax the “short pulse hierarchy” of Section 5.5, to a less precise hierarchy, in a
way which, though at first appears quite unnatural from the perspective of the behaviour
of ¥ under the ansatz of Section 5.1, is suggested by a certain scaling property of the
Einstein equations that the authors introduce.

At the level, say, of energy estimates for curvature as in Section 9, these scaling
properties then provide a systematic approach to predicting the excess index e (see
Section 9.9) of the non-linear terms which appear in the error terms 7 (see (62)): For
each arising term acquires a well-defined notion of signature which must be respected by
the Einstein equations. This is a very important point, because, in practice, enumerat-
ing and analyzing all terms leading to the final conclusions summarised in Section 9.10
constitutes much of the work.

A family of relaxations of the original hierarchy are in fact possible. In this context,
the authors first consider a certain subcritical hierarchy (with respect to their scaling).
This hierarchy can be shown to propagate following the scheme outlined in Sections 8
and 9 above, without having to enumerate carefully the structure of every nonlinear term
arising in T, as scaling and signature arguments ensure e > 0 and thus the absence of
borderline terms.

The propagation of this hierarchy allows one to state a semi-global existence theorem
in the style of Theorem 3.1, for fixed ug, again allowing large amplitude initial data.
This can be used, for instance, to prove a theorem on the formation of pre-scarred
surfaces, that is to say surfaces S such that try < 0 only in some proper open subset
Ucs.to

This subcritical scaling, however, is not compatible with the assumptions necessary
for bona-fide trapped surface formation, which requires a large initial amplitude spread
out over all directions of the sphere.

This difficulty can be overcome in the Klainerman-Rodnianski approach by slightly
modifying the above relaxed hierarchy yet again, now allowing for certain violations of
scaling. These are termed anomalies. As in Section 9.10, these anomalies will indeed
give rise to borderline terms in the energy estimates, and one will need again to identify
a reductive structure as in Section 9.11. There are far fewer such terms, however, and
these are easier to systematically analyse.

An added simplification of the Klainerman—Rodnianski approach is that the whole
argument is closed at one lower order of differentiability. In particular, one can cross off

(16)In connection to such surfaces, see also the comments in the last paragraph of p. 581 of Chapter
17 of [14].
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the entire lower line of the table of Section 9.6. This also leads to considerable simpli-
fications, which of course translate to only requiring rougher control of the connection
coefficients in Section 8.

There is of course, a price to be paid for this: Since the hierarchy is weaker and less
geometrically motivated, one obtains less control of solutions than is obtained in the
original approach. Nonetheless, control is sufficient to obtain the most basic geometrical
conclusions.

These ideas have since been extended to the problem of trapped surface formation for
the Einstein—-Maxwell equations by P. Yu [46]. Yet another approach to Christodoulou’s
short pulse method applied to the vacuum equations, using the well-known first order
symmetric hyperbolic reformulation due to H. Friedrich [21], is given in [40].

12. APPLICATIONS TO THE INCOMPLETENESS THEOREMS

The motivation for the notion of a trapped surface is its intimate relation with the
incompleteness theorem, Theorem 0.1. In particular, we would certainly like to apply
the result of Theorem 2.1 to derive analogous incompleteness statements for our own
initial value problem. So far, we have only considered initial data up to advanced time
u = 0. As the initial data is incomplete, the development will also be, but trivially so.

To make a sensible statement about incompleteness, we must first complete our choice
of inital data!

Fortunately, there is in fact an explict construction of complete initial data (see
Chapter 17, p. 579 of [14]) on C, by extending ¢ appropriately (note one must ensure
that the data is regular—cf. Section 4.2.2). For such data, we note then an immediate

corollary of Theorem 2.1 and Penrose’s incompleteness theorem?

COROLLARY 12.1. — Let (M, g), be the maximal development of complete initial data
on C,, satisfying the assumption of Theorem 2.1. Then (M,g) is future causally
geodesically incomplete.

Given a suitable choice of complete data which is moreover asymptotically flat in
a suitable sense, one can show that the solution exists for at least a finite retarded
time (See [10, 26]). This allows one to define a notion of future null infinity Z* as

() This theorem also holds when the assumption of a Cauchy hypersurface is replaced by the assump-
tion of having a complete null.
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in [16, 10, 26]:

o

The proof of Theorem 0.3 still applies in this context, and thus we obtain

COROLLARY 12.2. — Let (M, g), be the mazimal development of complete initial data
on C,, satisfying the assumption of Theorem 2.1. Then Ss_1_s N J (Z1) = 0. In
particular, the spacetime M contains a black hole region B in the sense of definition

2).

13. DATA AT PAST NULL INFINITY Z-

The estimates of the hierarchy are such that one can immediately take the limit of
the statement of Theorems 2.1 and 3.1 as ug — —oo.

Specifically, for a sequence of u) — —oo, one considers a sequence of initial data on
C., defined by a fixed 0 and fixed seed function ).
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Applying the estimates of the hierarchy, noting that we have also estimates at all orders,
it follows immediately by Arzela—Ascoli that there exists a subsequence which converges
to a smooth solution of the Einstein equations.

Moreover, in view of the uniformity of the estimates in wug, this limiting solution is
such that one can attach a past boundary Z~, to be thought of as past null infinity, and
for which the limiting data |u|?e(u, u, ) converge to what is denoted in [14] by e (u, )
and which is just the past null infinity analogue of the square of the radiative amplitude
=(u, ) defined in [16]. This has the interpretation of incoming radiative power per unit
solid angle and its integral along the null generators of Z~ for fixed ¥ thus corresponds
to incoming radiative energy per unit solid angle (cf. the quantity (15) in the context
of the discussion of the memory effect).

We thus obtain:

THEOREM 13.1. — Let 0 <l <1 < k be constants. Let us be given smooth asymptotic
initial data at past null infinity which is trivial for advanced times u < 0. Suppose that
the incoming energy per unit solid angle in each direction in the advanced time interval
[0, 6] is not less than k/8m. Then if & is suitably small, the mazimal development® of
the data contains a closed trapped surface S which is diffeomorphic to S? and has area

Area(S) > 4wl
See Chapter 17, pp. 580-81 of [14].

14. COMPLETENESS OF FUTURE NULL INFINITY AND
APPROACH TO KERR

The given definition (2) of the notion of black hole, though intimately connected with
Theorem 0.3, is in fact in reality too general.

For instance, if we imagine Minkowski space minus the future of two distinct points,
say both on the Euclidean subset R* ¢ R3*1:

R\ (J*(p) U T (q)),

then this is a globally hyperbolic spacetime containing a black hole, according to defi-
nition (2). Of course, the above spacetime is not a maximal Cauchy development. On
the other hand, one could easily imagine a maximal Cauchy development with 2 “first
singularities”, resulting in a causal geometry broadly similar to the above.

An additional distinguishing property of the future null infinity Z* attached to
Schwarzschild or Kerr, is that Z" is complete. This essentially means that the null
generators of ZT can be continued to both future and past to arbitrary values of
affine parameter, or, alternatively, in the setup of Theorem 1.3, that it is naturally
parametrized as (—oo, 00) x S2.

(18)We note that the uniqueness statement implicit in the characterization of the above as the maximal
development of data prescribed at ZT follows from work of Friedrich [21].
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Now, if one takes the data to the limit on past null infinity 7= as in Section 13
above, then, using ideas from the stability of Minkowski space, one can easily show the
past completeness of future null infinity Z* (and the existence of an asymptotically flat
Cauchy surface X).

Thus, in what follows, we need only consider the issue of future completeness of ZF.
Physically, this is the statement that asymptotic observers in the radiation zone can
observe ad infinitum.

Now it is widely believed that if Z* is complete and J~(ZT) # (), then the metric in
J~(Z") will eventually asymptote to the exterior of a collection of Kerr black holes, each
rapidly moving away from the other. Here, however, we confront a fundamental diffi-
culty. For, even if we were to start with Cauchy data arbitrarily close to Schwarzschild
or Kerr, it is unknown whether the resulting Z* is complete.

Nonetheless we have the following conjecture

CONJECTURE 14.1 (Nonlinear stability of the Kerr family). — Let |a] < M, et
(M, garr) denote the globally hyperbolic region of a subextremal Kerr manifold with two
ends, and let ¥, pr denote a Cauchy hypersurface. Let (3, g, K) be vacuum initial data
suitably close to Kerr data on X, 5. Let (M, g, K) denote its Cauchy development.
Then one can attach to M an appropriate asymptotic boundary I+ (with two connected
components!) T}, I}, such that both T}, I, are complete and such that g asymptotes
in J=(Z}) and J~(I}) to nearby subextremal Kerr metrics o, n, and Gapar, With
ap,ap close to a, and My, Mg close to M.

The above is more than just the statement of completeness of ZT; it is the statement
of asymptotic stability of the Kerr family. The point is, however, that, for supercritical

(19The Kerr family depends on two parameters, mass M and specific angular momentum a, and the
black hole case is |a| < M. The so called extremal case |a| = M is special and is best excluded from
the conjecture. See [17, 18] for background.
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quasilinear wave equations like the Einstein equations, these problems appear to be
necessarily coupled. Thus, one does not expect to be able to prove the completeness
property without understanding, quantitatively, the dispersion mechanism to a nearby
Kerr.

Even the linear scalar aspects of the dispersive properties of waves on Kerr black hole
backgrounds—a necessary prerequisite if Conjecture 14.1 is ever to be addressed, have
only recently been understood. See [17, 18] for a survey and many references.

Returning now to the problem at hand, even though understanding the global proper-
ties of J7(ZT) in the context of the initial data considered here is not strictly speaking
a stability problem, it may be that a resolution of the above conjecture nonetheless
opens the way to its solution as well, in conjunction of course with an extension of the
short pulse hierarchy to the whole exterior region. One can thus also conjecture:

CONJECTURE 14.2. — For suitable completions of the initial data on C, (orZ~) as in
Section 12 (or 13), then future null infinity Z+ is complete and the geometry in J—(ZT)
asymptotes to a subextremal Kerr geometry garq.

15. EPILOGUE: WEAK COSMIC CENSORSHIP

An even more ambitious problem than showing the completeness of null infinity for
the particular case of data as in Conjectures 14.1 or 14.2 is the following

CONJECTURE 15.1 (Weak cosmic censorship). — For generic asymptotically flat vac-

wum initial data, the mazimal development possesses a complete future null infinity
t.
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This is one of the great open problems of classical relativity! In view of Theorem 0.1,
one should view the above conjecture as the remaining analogue of the problem of global
existence in general relativity.

In the original formulation of the above, due to Penrose, the caveat generic was not
included. Christodoulou then showed [7] that for the analogue of the above problem for
the self-gravitating scalar field under spherical symmetry, i.e. the study of spherically
symmetric solutions to:

(69> RiC/JJ/ - %Rgmx — 87TT;L1/
(70) =0

1
(7].) Tp,V = auwaud) - éguuaud)auwa

then there exist regular asymptotically flat initial data for which Z" is incomplete!
(These examples satisfy also B = ().) We say that collapse has formed a naked singu-
larity.

Let us note that naked singularities have long been known to form when (69) is
coupled to certain other type of matter models. For instance, again Christodoulou [4]
in 1984, showed that the Oppenheimer-Snyder model of gravitational collapse of a
homegeneous spherically symmetric ball of dust [36] is in some sense unstable to the
formation of so-called shell-focusing naked singularities of infinite density.®? It is
widely thought that this behaviour is an artifice of the unrealistic equation of state.

The case of the scalar field, however, is different. Scalar field matter v satisfies a
linear equation (70) when g is considered frozen, so does not form singularities “on its
own accord”, and radiates to ZT just as with gravitational waves. Thus, the occurrence
of naked singularities for the scalar field model (69)—(71) strongly suggests that similar
phenomenon could happen in principle in the vacuum (1).

Indeed, the main motivation for considering (69)—(71) is precisely as a “poor man’s”
vacuum equations (1) which can be studied in spherical symmetry.2!)

Remarkably, Christodoulou was able to show [9]-again in the context of the scalar
field model (69)—(71) under spherical symmetry-that the previously constructed naked
singularities [7] are unstable to perturbation of initial data, in fact all naked singularities
are unstable, and that the analogue of Conjecture 15.1, as now formulated with the
caveat generic, thus holds. In fact, something stronger is shown, namely that the set of
data leading to an incomplete null infinity Z* have codimension at least 1 (in a suitable
sense) in the space of all spherically symmetric data.

(20)This is somewhat ironic because the notion of black hole was first really accepted on the basis of
this model!

(2D Note that Birkhoff’s theorem (cf. [23]) says that spherically symmetric vacuum solutions are nec-
essary Schwarzschild.
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The key to proving Conjecture 15.1 for the (69)—(71) under spherical symmetry was
proving that for such generic data, all “first singularities” are preceded by trapped
surface formation. This notion of “first singularity” can be formalised in the language
of terminal indecomposable past sets. See [23]. This motivates conjecturing a similar
property for the vacuum:

CONJECTURE 15.2 (Trapped surface conjecture [11]). — For generic asymptotically
flat initial data (X, g, k) the mazimal development (M, g) has the following property.
If P is a terminal indecomposable past set with P N'X of compact closure, then any
open domain ¥ O D D P N X has the property that the domain of dependence of D in
M contains a closed trapped surface.

The above conjecture would in fact imply (see [11]) a suitable formulation of Conjec-
ture 15.1 for the Einstein vacuum equations (1).

It is of course a long way from the very specific setup of Theorem 2.1 to a general
understanding of how and when trapped surfaces form. Again, however, the spheri-
cally symmetric case suggests that statements quite similar to Theorem 2.1 may be
unexpectedly useful for the general problem. One should of course be weary of naively
extrapolating from symmetric cases, where the very nature of the analysis is funda-
mentally simpler. On the other hand, the idea that a statement like Theorem 2.1, a
large-data result for the vacuum equations, could be proven in the absence of symme-
try assumptions would have seemed completely unrealistic only 5 years ago. Thus, the
framework of Theorem 2.1 together with its revolutionary proof, while special, at the
very least allow us to hope that, indeed, the above conjectures may one day be part of
the realm of mathematical analysis.
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17. APPENDIX

All concepts will refer to the double null foliation defined in Section 3.1.

17.1. The algebra calculus of S-tensor fields

S-tensor fields are defined as follows: ¢ is an S 1-form on M if £(L) = &(L) = 0.
(Thus ¢ is in fact specified by a smooth choice of 1 form on Sy, for each Sj,,.) A vector
field V' is an S-vector field if it is tangent to S, ). The notion then generalises to higher
order tensors.

Let us also define the following operation: Let 6 be a 2-covariant S-tensorfield. Let
ea be a local frame field for S, .. Define 6% by

(0) 7 = Oac(g™)".
This is a T} S-tensorfield. Note that
9(X,07Y) = 0(X,Y)
for any XY € 1,5, .
Now given two such objects 0, ¢, define the 2-covariant S-tensorfield 6 x ¢ by
0 x ¢ =g(6, ¢%), Le. (0 % ¢)ap = Oacody -

For two S 1-forms &, &', we denote by (§,¢’) the inner product of the 1-forms with
respect to ¢,

(&) =g E) =g, K="
while we denote by £&¢’ the symmetric trace-free 2-covariant S tensorfield defined by

(8 =¢@E+ - (684
Similarly, for a symmetric 2-covariant tensor field § and an S 1-form &, we define
0 =0 @ & + O — 6° - £.
This is symmetric and trace free in the last two indices. The ~ denotes transposition.

17.1.1. D and D. — We define the operators D, D on S-tensor fields. If X is an
S-vectorfield, £, X = [L, X] is also an S-vector-field. We define DX = £, X. On the
other hand, if £ is an S 1-form, then D¢ is the restriction of £.£ to T'Sz,. Similarly
for D.

For a T} S-tensorfield ¢, we denote by D6 the expression defined by considering ¢ on
each C, as extended to T'C', by the condition that it vanishes if one of the entries is L,
and restricting to 7'S,,, of the Lie derivative of this object with respect to L.

Similarly we define D.

Finally, we set D6 and D6 to equal the trace-free parts of D@, Do.
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17.1.2. div, ¥, cr]l and all that. — For S-vector fields, djv, cifrl are self-explanatory,
as is d operating on arbitrary S-forms.

For S vector fields X, Y, we define VY = IIVxY, where I is the projection to the
tangent space of the surfaces.

For a two-covariant S tensorfield 6, we define divé to be the S 1-form:

; A
divlg = ¥ 405"

17.2. The connection coefficients

Recall from Section 3.1 the basic quantities at the level of the metric: ¢, 2.
Recall also the three null frames of Section 3.1.2.
Here we define the connection coefficients x, x, 7,1, w, w.

17.2.1. The second fundamental forms x, x. — We define x to be the intrinsic second
fundamental form of €', and x the intrinsic second fundamental form of C',.
Specifically, x is a symmetric 2-tensor field on €, defined by

Now, any vector X € T,(, may be decomposed as PX + cL where PX € T,Suu. We

see easily that x(X,Y) = x(PX, PY). This makes x an S-tensor field.
It is useful to define also y/, ¥’ where L, L are replaced by L, L. Note that these are

related by x' = Q7'x, X' = Q 'x.

17.2.2. The torsion ¢ (and torsion formsn, n). — We define an S 1-form ¢ by

1 A A
((X)= §Q(VXL,L), X eT,Suu.
Reversing the role of L and L, we define (. We see immediately that ¢=—¢.

For a given C,, it is more natural to look at the torsion of Syu With respect to the
geodesic parameterisation. We can define

WX) = 20(VxLLL), 0(X) = 59(VxL, L),

We have
n=C_+dlogQ, Q:—C—i-dlogQ.
Thus, if one controls both 7, 1, one controls both ¢ and dlog .
The geometric meaning of the torsion: [L, L] is the S tangential vector field:

(L, L] = 402¢*.

This is precisely the obstruction to integrability of the distribution spanned by L, L,
i.e. of the orthogonal complement of 7,5, .

17.2.3. The quantities w, w. — We define finally
w = Dlog(, w = Dlog ).
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17.3. The curvature in a null frame

The non-zero components of the curvature tensor of a Ricci flat metric are the fol-

lowing

(72) a(X,Y)=R(X,L,Y,L)
(73) 5(X) = SR(X, L, L. 1)
(74) p=R(L L L L)
(75) o ¢(X,Y)=R(L,L,X,Y)
(76) B(X) = SR(X,L L )
(77) a(X.Y) = R(X, LY. L)

where o and « are trace free.

17.4. The structure equations of a null foliation
17.4.1. The first variation equations. —

Dg = 2Qx, Dg = 2Qx.
17.4.2. The second variation equations. —
(78) DY =0 x Y —«a
(79) DY =0 xx —a.

17.4.3. The torsion equations. —
(80) Dy =Q(x* -1~ 0)

(81) Dy = Q(x* -0+ )
1
(82) alrly = X ANX—0O
1
(83) cyfrly = —5X AX+o.
17.4.4. The Codazzi equations. —
(84) divy’ — dtry’ + X’ﬁ n—try'n=—-Q7'3
(85) divy' — diry’ + X’ﬁ - —try'n = Q74

Note that the equations involving x and x are not mutually coupled, while those
involving 7 and 7 are. On the other hand, the latter are linear in 1 and 7.
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17.4.5. Propagation equations for w, w. — We have

(86) Dw = Q*(2(n,n) — 0> — p)

(87) Dw = *(2(n,n) — [1* = p)-
17.4.6. The Gauss equation. — Let K denote the Gauss curvature of ¢. Then

1 1
K+ Strxtry — 5 (x, x) = p-

2 2
17.4.7. The remaining propagation equations. — These are:
- 1
(88) Q(QX):Qz(WTI+Y7?7+277®77+§(XXX-%-Xxx)—i-pg)
9 - 1
(89) D(QX)IQ(WQ+WQ+2Q®Q+§(X><X+XXX)+pg)-

17.5. The Einstein equations from the structure equations

The Einstein equations imply trae = 0, thus, from (78), we obtain
(90) Dtry’ = —Q2|\/|%.

This thus represents Ric(L, L) = 0.
We can eliminate 3, 8 in the torsion equations by using the Codazzi equations. The

torsion equations then become the Einstein equations Ric(L, X) = 0, Ric(L, X) = 0.
We may eliminate p from (86) using the Gauss equation to obtain:

Ric(L, L) = 0.
For the remaining Einstein equation Ric(X,Y) =0, for X,Y € T,,S, 4, we eliminate
p from (88), using the Gauss equation.

17.6. Bianchi identities
Da — %Qtrxa +2wa + Q{-V&B — (4n+ @B+ 3xp+ 3" %o} =0,
(91) Da — %Qtrxg +2wa + Q{Y®B + (4 — O)®B +3xp — 3*xo} =0,
Dp + thrxﬁ — OB —wh—Q {divar — (Qjj +2¢%) - a} =0,
Df ~ 20tryf — O+ — w8 + 2 {diva — (o — 2¢") - a} = 0
Q5+%Qtrxﬁ—QX~5+QB—Q{dp+*da+3np+3*?70+2f(ﬁ~£} =0,
(92) Dp + %Qtrxﬁ —Qx - B+wB+Q{dp—*do+3np— 3o+ 2Xﬁ B} =0,

Do+ 0o - 0 {divs + 2+ ¢,0) — ()} =0,
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Dp + gmw +Q {divﬁ +2n - B)+ %(X,g)} =0,

3 1
Do + §Qtrxa +Q {cdrlﬁ +(2n+¢,7B) — §X/\ a} =0,

e

1
Do + thrXU +Q {cy{rlﬁ+ (2n—¢,"B) + 5)2 /\Q} =

17.7. Weyl fields and Weyl currents

A Weyl field on a general 4-dimension Lorentzian manifold (M, g) is a tensorfield on
M with the same algebraic properties of the Weyl curvature tensor:

Wﬁa’yé = Waﬁé'y = _Waﬂ'y(% Wa[ﬁ’ytﬂ - 07 (g_l)MVWuowB =0.

Note that for a Weyl field W, we have that left dual *IW and a right dual W coincide
and again define Weyl fields. We have

(93) VWaprs = Tpys

Js4s inherits algebraic properties from W which define the notion of Weyl current.
The above can be thought of as an analogue of (one part of) the Maxwell equations.
In fact, for a Weyl field, the above is equivalent to

Via,Wpajse = €uapy T fhse-

Note that if W is a Weyl field, then in general £x W will not be a Weyl field because
it will not be trace free. This can be remedied by introducing a modified £xTW. This
moreover satisfies * L xW = L x* W.

Similarly, for Weyl currents 7, we define £y J satisfying *£xJ = LxJ*.

Note the conformal property: Suppose on (M,g), (W,J) is a Weyl pair. Then
defining the rescaled metric ¢/ = Q7 2g, W' = Q7'W, J' = QJF, then (W', J') is a Weyl
pair on (M, ¢').

As a consequence of the conformal property, we have

VG(EXW)aﬁ% = (X)jﬂvé(W)

where
(X) 5 = (x)
Tsys(W) = (LxT )5+ ) N Tons
i—1
and where
SN RISy x) A L u
Tpys = ) ™V, Wopas, Tpys = ) PMVMW&/&
(3) 1

X X v X v X v
) Tg6 = 3 ( Qs W5 + 7 @ Wis's + 7 4us W's, ).

Remarkably, ¢ is again a Weyl current.
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