Analysis of Partial Differential Equations Example sheet 3 (Chapter 3)

Prof. M. Dafermos, Prof. C. Mouhot

- **1**. In the lectures, we have seen that $H^s(\mathbb{R}^d) \subset L^{\infty}(\mathbb{R}^d)$ for s > d/2. Give an example of a function $f \in H^1(\mathbb{R}^2)$ but $f \notin L^{\infty}(\mathbb{R}^2)$.
- **2**. (Poincaré-Wirtinger) Let $\Omega \subset \mathbb{R}^d$ be an open, bounded domain. Show that there exists a constant $C(\Omega)$, depending on the domain, such that

$$\forall u \in H^1(\Omega), \quad \int_{\Omega} |u - \bar{u}|^2 \, \mathrm{d}x \le C(\Omega) \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x, \tag{1}$$

where $\bar{u} = \frac{1}{|\Omega|} \int_{\Omega} u(x) dx$.

3. (Hardy) Let $\Omega \subset \mathbb{R}^d$ be a C^1 bounded domain. Define the distance function $d:\Omega \to \mathbb{R}_+$ by $d(x) := \operatorname{dist}(x, \partial \Omega)$. Show that there exists a constant C > 0 such that

$$\left\| \frac{u}{d} \right\|_{L^2(\Omega)} \le C \|\nabla u\|_{L^2(\Omega)} \text{ for all } u \in H_0^1(\Omega).$$
 (2)

4. (Rellich) Let $\Omega \subset \mathbb{R}^d$ be an open and bounded domain. Prove that any sequence uniformly bounded in $H^1(\Omega)$ is relatively compact in $L^2(\Omega)$ i.e., if $\{u_n\} \subset H^1(\Omega)$ is a sequence such that $\|u_n\|_{H^1(\Omega)} \leq C$ for some constant C independent of n, then there exists a subsequence $\{u_{\varphi(n)}\}$ (with $\varphi : \mathbb{N} \to \mathbb{N}$ strictly increasing) and a limit function $u \in L^2(\Omega)$ such that

$$\|u_{\varphi(n)} - u\|_{L^2(\Omega)} \to 0$$
 as $n \to \infty$.

- **5**. (Riesz–Fréchet–Kolmogorov) Let $\Omega \subset \mathbb{R}^d$ be open.
- First consider $\omega \subset\subset \Omega$ i.e., ω open with $\bar{\omega}\subset\Omega$. Consider a bounded $\mathcal{G}\subset L^2(\Omega)$. Suppose

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \delta < \operatorname{dist}(\omega, \partial \Omega) \text{ such that}$$

$$\forall h \in \mathbb{R}^d, |h| < \delta \text{ and } \forall u \in \mathcal{G}, \quad \int_{\omega} |u(x+h) - u(x)|^2 dx \le \varepsilon.$$
 (3)

Prove that $\mathcal{G}|_{\omega}$ is relatively compact in $L^2(\omega)$. (Notation: $\mathcal{G}|_{\omega}$ denotes the elements of \mathcal{G} restricted to ω).

• Second, assume that $\Omega = \mathbb{R}^d$ and consider again a bounded $\mathcal{G} \subset L^2(\mathbb{R}^d)$. Suppose

$$\forall \varepsilon > 0, \ \exists \delta > 0 \text{ such that } \forall h \in \mathbb{R}^d, \ |h| < \delta \text{ and } \forall u \in \mathcal{G}, \quad \int_{\mathbb{R}^d} |u(x+h) - u(x)|^2 \, \mathrm{d}x \le \varepsilon.$$
 (4)

In addition to (4), suppose also that

$$\forall \varepsilon > 0, \ \exists \omega \subset\subset \mathbb{R}^d \text{ such that } \|u\|_{L^2(\mathbb{R}^d \setminus \omega)} < \varepsilon \ \forall u \in \mathcal{G}.$$
 (5)

Then, deduce that \mathcal{G} is relatively compact in $L^2(\mathbb{R}^d)$.

6. (Fredholm Alternative) Let $u \in H^1(\Omega)$ be a weak solution of the following Neumann problem:

$$\begin{cases} b(x) \cdot \nabla u - \nabla \cdot (A(x)\nabla u) = f & \text{in } \Omega, \\ -A(x)\nabla u \cdot n = g & \text{on } \partial\Omega. \end{cases}$$
 (6)

where $f \in L^2(\Omega)$, $g \in H^1(\Omega)$. Here, A(x) denotes a symmetric matrix of measurable coefficients $A^{ij}(x)$ such that there exist $\alpha_0 > 0$, $\alpha_1 > 0$ with

$$\alpha_0 |\xi|^2 \le A^{ij}(x)\xi_i \xi_j \le \alpha_1 |\xi|^2$$
 for a.e. $x \in \Omega, \ \forall \xi \in \mathbb{R}^d$ (7)

and b(x) is a vector of coefficients $b_i(x) \in L^{\infty}(\Omega)$ which satisfies $\nabla \cdot b = 0$ weakly in Ω and $b \cdot n = 0$ on $\partial \Omega$. Prove that (6) has a unique weak solution modulo an additive constant if and only if the source terms satisfy the following compatibility condition:

$$\int_{\Omega} f(x) \, \mathrm{d}x = \int_{\partial \Omega} g(x) \, \mathrm{d}\sigma(x),\tag{8}$$

where $d\sigma(x)$ is the surface measure on $\partial\Omega$.

[Hint: Employ the Poincaré-Wirtinger inequality and use Lax-Milgram in the quotient space $H^1(\Omega)/\mathbb{R}$.]

7. (Mean Value Theorem) Let $\Omega \subset \mathbb{R}^d$ be open. A function $u \in C^2(\Omega)$ is said to be harmonic if $\Delta u = 0$ in Ω . Suppose u is harmonic in Ω . Let $x_0 \in \Omega$ and r > 0 so that the closed ball $\bar{B}(x_0, r) \subset \Omega$. Show that:

$$u(x_0) = \frac{1}{r^{d-1}\omega_d} \int_{S(x_0, r)} u(y) d\sigma(y),$$
(9)

where ω_d is the surface area of the unit sphere in \mathbb{R}^d and $S(x_0, r)$ is the sphere of radius r centered at x_0 .

- 8. (Liouville's Theorem) Prove that every bounded harmonic function on the whole space \mathbb{R}^d is constant. Deduce that any harmonic function v(x) on the whole space \mathbb{R}^d which satisfies $|v(x)| \to 0$ as $x \to \infty$ vanishes identically.
- **9.** (Dirichlet Principle) Let $\Omega \subset \mathbb{R}^d$ be an open, bounded domain. For a source term $f \in L^2(\Omega)$, show that solving for $u \in H_0^1(\Omega)$ satisfying

$$\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(10)

is the same as solving for $u \in H_0^1(\Omega)$ the following minimisation problem:

$$F(u) = \inf_{v \in H_0^1(\Omega)} F(v), \tag{11}$$

where

$$F(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx - \int_{\Omega} f v dx.$$

10. (Helmholtz decomposition) Let $\Omega \subset \mathbb{R}^d$ be an open and bounded domain. Suppose $b(x) \in (L^2(\Omega))^d$ is a vector field in Ω . Show that there exists $u \in H_0^1(\Omega)$ and $v \in (L^2(\Omega))^d$ such that

$$b(x) = \nabla u(x) + v(x)$$

with

$$\nabla \cdot v = 0 \ \text{ weakly in } \Omega \quad \text{and } \int_{\Omega} \nabla u \cdot v \, \mathrm{d}x = 0.$$

11. (Cacciopoli) Let $\Omega \subset \mathbb{R}^d$ be open. Let $x_0 \in \Omega$ and $0 < \rho < \bar{\rho}$ be such that the ball $B(x_0, \bar{\rho}) \subset \Omega$. Suppose $u \in H^1(\Omega)$ satisfies

$$-\Delta u + \mathbf{b} \cdot \nabla u + c u = 0 \text{ in } \Omega, \tag{12}$$

where $\mathbf{b} \in \mathbb{R}^d$ and $c \in \mathbb{R}$. Show that there exists a constant C such that

$$\int_{B(x_0,\rho)} |\nabla u|^2 \, \mathrm{d}x \le \frac{C}{(\bar{\rho} - \rho)^2} \int_{B(x_0,\bar{\rho})} |u|^2 \, \mathrm{d}x. \tag{13}$$

Take $\mathbf{b} = 0$ and c = 0 in (12). Deduce from (13) that

$$\forall k \in \mathbb{N}, \quad \|u\|_{H^{k}(B(x_{0}, \rho))}^{2} \le C(\rho, \bar{\rho}, k) \|u\|_{L^{2}(B(x_{0}, \bar{\rho}))}^{2} \tag{14}$$

and

$$\forall k \in \mathbb{N}, \quad \|u\|_{C^{k}(B(x_{0},\rho))}^{2} \le C(\rho,\bar{\rho},k)\|u\|_{L^{2}(B(x_{0},\bar{\rho}))}^{2}. \tag{15}$$

What can we infer from (15)?

[Hint: Use 'Cut-off functions' as was done in lectures for the interior regularity results.]

12. (Higher order boundary regularity) Let $\Omega \subset \mathbb{R}^d$ be an open bounded domain and let P be a second order uniformly elliptic operator in divergence form

$$Pu = -\partial_i(a^{ij}(x)\partial_j u) + b^i(x)\partial_i u + cu(x)$$

Prove higher order boundary regularity, i.e. if $u \in H^{m+1} \cap H^1_0$ is a weak solution of Pu = f, with $\partial \Omega \in C^{\infty}$, $a^{ij} \in C^{m+1}(\overline{\Omega})$, $b^i \in C^{m+1}(\overline{\Omega})$, $c \in C^{m+1}(\overline{\Omega})$, $f \in H^m(\Omega)$ then $u \in H^{m+2}(\Omega)$, and $\|u\|_{H^{m+2}(\Omega)} \leq C(\|u\|_{H^{m+1}(\Omega)} + \|f\|_{H^m(\Omega)})$. What does C depend on? Deduce that if $a^{ij} \in C^{\infty}(\overline{\Omega})$, $b^i \in C^{\infty}(\overline{\Omega})$, $c \in C^{\infty}(\overline{\Omega})$, $f \in C^{\infty}(\overline{\Omega})$, then $u \in C^{\infty}(\overline{\Omega})$.

13. (Maximum Principle - Divergence Form) Let A(x) be a symmetric matrix (i.e., $A_{ij} = A_{ji}$) with measurable coefficients such that there exist $\alpha_0 > 0$, $\alpha_1 > 0$ with

$$\alpha_0 |\xi|^2 \le A_{ij}(x)\xi_i \xi_j \le \alpha_1 |\xi|^2$$
 for a.e. $x \in \Omega, \ \forall \xi \in \mathbb{R}^d$. (16)

Also, let $c(x) \in L^{\infty}(\Omega)$ and $c(x) \geq \lambda > 0$. Suppose $u \in H^{1}(\Omega)$ verifies in the weak sense:

$$-\nabla \cdot (A(x)\nabla u) + c u \ge 0 \text{ on } \Omega, \tag{17}$$

i.e. suppose that

$$\int_{\Omega} A(x) \nabla u \cdot \nabla \phi \, \mathrm{d}x + \int_{\Omega} c \, u \phi \, \mathrm{d}x \ge 0, \quad \forall \, \phi \in C_0^{\infty}(\Omega) \text{ with } \phi \ge 0 \text{ in } \Omega.$$
 (18)

Show that

$$\inf_{x \in \Omega} u(x) = \inf_{x \in \partial \Omega} u(x).$$

[Hint: Use the density of $C_0^{\infty}(\Omega)$ in $H_0^1(\Omega)$. Take $-(u - \inf_{x \in \partial \Omega} u(x))^-$ as test function. We have employed the following notation: $h^- := \min(0, -h)$.]

14. (Nonlinear Equations) Let $\Omega \subset \mathbb{R}^d$ be an open and bounded domain with smooth boundary $\partial\Omega$. Consider the Dirichlet problem

$$\Delta u = \epsilon |u|^p + 1, \qquad u|_{\partial\Omega} = 0 \tag{19}$$

for $\frac{d}{d-2} > p > 1$.

(14.a) Prove, for sufficiently small ϵ , the existence of a unique weak solution u of (19) in $H_0^1(\Omega)$ as follows: Let $B: L^2(\Omega) \to H_0^1(\Omega)$ denote the map taking f to the unique weak solution of $\triangle u = f + 1$. Let $Q: H_0^1(\Omega) \to L^2$ denote the map given by $u \mapsto \epsilon u^p$. (Show that indeed, under the restriction of p, this defines a bounded map on the spaces claimed.) Show that $B \circ Q$ defines a contraction on $H_0^1(\Omega)$ and argue that a fixed point of $B \circ Q$ is a weak solution of (19).

- (14.b) Show that in fact $u \in C^{\infty}(\overline{\Omega})$ and u vanishes on $\partial\Omega$.
- (14.c) Can you allow higher p? How high?
- 15. (Parabolic Equations) Let $\Omega \subset \mathbb{R}^d$ be open. We consider the initial-boundary value problem (IBVP):

$$\begin{cases}
\frac{\partial u}{\partial t} + Pu = f & \text{in } \Omega \times (0, T), \\
u = 0 & \text{on } \partial\Omega \times [0, T], \\
u = g & \text{on } \Omega \times \{t = 0\},
\end{cases} \tag{20}$$

where P is a second order partial differential operator in divergence form:

$$Pu := -\sum_{i,j=1}^{d} \frac{\partial}{\partial x_i} \left(a_{ij}(t,x) \frac{\partial u}{\partial x_j} \right) + \sum_{i=1}^{d} b_i(t,x) \frac{\partial u}{\partial x_i} + c(t,x)u.$$

Define a time-dependent bilinear form for $u, v \in H_0^1(\Omega)$ and for a.e. $t \in [0, T]$:

$$B[u,v;t] := \sum_{i,j=1}^{d} \int_{\Omega} a_{ij}(t,x) \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} dx + \sum_{i=1}^{d} \int_{\Omega} b_{i}(t,x) \frac{\partial u}{\partial x_{i}} v dx + \int_{\Omega} c(t,x) u v dx.$$
 (21)

We give the following definition for a weak solution of the IBVP (20): A function $u \in L^2((0,T); H_0^1(\Omega))$ with $u' \in L^2((0,T); H^{-1}(\Omega))$ is a weak solution to (20) if

(i)
$$\langle u', v \rangle + B[u, v; t] = (f, v)$$
 for each $v \in H_0^1(\Omega)$ and for a.e. $t \in [0, T]$ and (ii) $u(0) = g$, (22)

where $\langle \cdot, \cdot \rangle$ is the dual product between $H^{-1}(\Omega)$ and $H^1_0(\Omega)$ whereas (\cdot, \cdot) is the standard L^2 inner product. [If you prefer, you may restrict this problem to $f \in L^2$ and define (f, v) to be the L^2 inner product.] The idea is to construct approximate solutions to (20) by considering an orthonormal basis $\{\varphi_k\}_{k=1}^{\infty}$ of $L^2(\Omega)$. Define approximations for $n \in \mathbb{N}$:

$$u_n(t) := \sum_{k=1}^n d_n^k(t)\varphi_k, \tag{23}$$

where the coefficient functions $d_n^k:[0,T]\to\mathbb{R}$ for $k=1,\cdots,n$ are chosen such that:

$$d_n^k(0) = (g, \varphi_k) \text{ for } k = 1, \dots, n \qquad \text{and} \qquad (u_n', \varphi_k) + B[u_n, \varphi_k; t] = (f, \varphi_k). \tag{24}$$

(15.a) Using an existence result from the theory of ODEs, show that for each $n \in \mathbb{N}$ there exists a unique function $u_n(t)$ of the form (23) satisfying (24).

[Hint: Use the Cauchy-Lipschitz Theorem.]

The next task is to consider the finite dimensional approximations u_n for $n \in \mathbb{N}$ and pass to the limit as $n \to \infty$. In order to apply some compactness results, we need to derive uniform (in n) estimates on $\{u_n\}$. The next question addresses this aspect.

(15.b) There exists a constant C depending only on $\Omega, T, a_{ij}, b_i, c$ such that

$$||u_n||_{L^{\infty}([0,T];L^2(\Omega))} + ||u_n||_{L^2((0,T);H_0^1(\Omega))} + ||u'_n||_{L^2((0,T);H^{-1}(\Omega))} \le C(||f||_{L^2((0,T);L^2(\Omega))} + ||g||_{L^2(\Omega)}).$$
(25)

(15.c) Using the apriori estimates (25) and compactness results, arrive at the associated limit function with the approximate solutions (23). Show that the limit function is indeed a weak solution of (20) in the sense of (22) by passing to the limit in (24).

[You may assume the following: If $v_n \rightharpoonup v$ in $L^2((0,T); H_0^1(\Omega))$ and $v_n' \rightharpoonup w$ in $L^2((0,T); H^{-1}(\Omega))$, then w = v'.]

(15.d) Show that a weak solution of (20) is unique.

[Hint: Assume that f = g = 0 in (20) and show that the solution u = 0.]