Analysis of Partial Differential Equations
Example sheet 3 (Chapter 3)

Prof. M. Dafermos, Prof. C. Mouhot

1. In the lectures, we have seen that H*(RY) ¢ L>°(RY) for s > d/2. Give an example of a function
f e H'(R?) but f ¢ L®(R).

2. (Poincaré-Wirtinger) Let @ C R? be an open, bounded domain. Show that there exists a constant
C (), depending on the domain, such that

Yue H'(Q), /Q|u —al*dz < C(Q) /Q |Vu|? de, (1)

v,
where & = — [ u(z)dz.
9 Jo

3. (Hardy) Let Q@ C R? be a C! bounded domain. Define the distance function d : Q@ — R, by
d(x) := dist(z,0). Show that there exists a constant C' > 0 such that

Il

4. (Rellich) Let  C R? be an open and bounded domain. Prove that any sequence uniformly bounded
in H'(Q) is relatively compact in L*(Q2) ie., if {u,} C H'(Q) is a sequence such that ||u,| g1 < C
for some constant C' independent of n, then there exists a subsequence {uy )} (With ¢ : N — N strictly
increasing) and a limit function u € L?(£2) such that

L2(@) < O||VUHL2(Q) for all v € Hol(Q) (2)

H“sa(n) - u||L2(Q) —0 as n — oo.

5. (Riesz—Fréchet-Kolmogorov) Let 2 € R? be open.
e First consider w CC Q i.e., w open with @ C Q. Consider a bounded G C L?(Q2). Suppose

Ve >0, 36 >0, ¢ < dist(w,0Q) such that
(3)

VheRe |n|<d and Vu € G, /|u(x+h)—u(m)|2dx§6.
Prove that G|, is relatively compact in L?(w). (Notation: G|, denotes the elements of G restricted to w).
e Second, assume that 2 = R? and consider again a bounded G C L?(R%). Suppose

Ve >0, 35> 0 such that Vh € R, |h| < and Yu € G, / lu(x +h) —u(z)Pdz <e  (4)
Rd

In addition to (4), suppose also that
Ve >0, 3w cC R? such that lull 2 (ravw) < € Vu € G. (5)

Then, deduce that G is relatively compact in L?(R9).



6. (Fredholm Alternative) Let u € H'(£2) be a weak solution of the following Neumann problem:
{ b(x) - Vu—V-(A@)Vu)=f in Q, )

—A(z)Vu-n=g on OfQ.

where f € L?(Q), g € H'(Q2). Here, A(z) denotes a symmetric matrix of measurable coefficients A% (x)
such that there exist ag > 0, ay > 0 with

aol€)? < A (2)&6 < arlé)? forae. 2 €Q, VECR? (7)

and b(z) is a vector of coeflicients b;(x) € L*°(£2) which satisfies V - b = 0 weakly in @ and b-n =0
on 0. Prove that (6) has a unique weak solution modulo an additive constant if and only if the source
terms satisfy the following compatibility condition:

f@)de = [ g(r)do(z), (8)
Jferia= ],

where do(z) is the surface measure on 92.
[Hint: Employ the Poincaré—Wirtinger inequality and use Laz—Milgram in the quotient space H'(Q)/R.]

7. (Mean Value Theorem) Let Q2 C R? be open. A function u € C%(Q) is said to be harmonic if Au =0
in Q. Suppose u is harmonic in Q. Let zo € @ and r > 0 so that the closed ball B(xzg,r) C . Show that:

1
weo) = i [, wwdoty) (9

where wy is the surface area of the unit sphere in R% and S(z¢,r) is the sphere of radius r centered at .

8. (Liouville’s Theorem) Prove that every bounded harmonic function on the whole space R? is constant.
Deduce that any harmonic function v(z) on the whole space R? which satisfies |v(z)] — 0 as  — oo
vanishes identically.

9. (Dirichlet Principle) Let © C R? be an open, bounded domain. For a source term f € L?(Q), show
that solving for u € HJ () satisfying

—Au=f inQ,
(10)
u=~0 on 0,
is the same as solving for u € H}(Q) the following minimisation problem:
F(u)= inf F(v), (11)

veH (Q)

where

F(U):%/Q|Vv|2dm—/ﬂfvdx.

10. (Helmholtz decomposition) Let 2 C RY be an open and bounded domain. Suppose b(x) € (L?(£2))?
is a vector field in 2. Show that there exists u € H}(2) and v € (L?(Q2))? such that

b(x) = Vu(z) + v(z)
with

Vv =0 weakly in and/Vu'vdx:().
Q



11. (Cacciopoli) Let © C R? be open. Let 29 € Q and 0 < p < p be such that the ball B(zg,p) C €.
Suppose u € H' () satisfies

—Au+b-Vu+cu=0in, (12)
where b € R? and ¢ € R. Show that there exists a constant C' such that
/ |Vu|?dz < %/ lul? dz. (13)
B(zo,p) (p—p) B(z0,p)

Take b =0 and ¢ = 0 in (12). Deduce from (13) that

VkeN, HUH?‘I’V(B(:EO,;))) < C(pp, k)”u”zL?(B(gcg,p)) (14)
and
VkeN, Hu||20k(B(7;0,p)) < C(p,p, k)HuHQL?(B(xO,ﬁ))' (15)

What can we infer from (15)?
[Hint: Use ‘Cut-off functions’ as was done in lectures for the interior reqularity results.]

12. (Higher order boundary regularity) Let 2 C R? be an open bounded domain and let P be a second
order uniformly elliptic operator in divergence form

Pu = —0;(a" (x)0;u) + b'(x)0u + cu(x)

Prove higher order boundary regularity, i.e. if u € H™ N H{ is a weak solution of Pu = f, with
0N € C=®, a¥ € C™L(Q), b € C™H(Q), c € C™FTY(Q), f € H™(Q) then u € H™2(Q), and
ull gmz) < Cllullgm+i) + [ flam@)). What does C' depend on? Deduce that if a”/ € C*°(9),
bl e C®(), c € C=(Q), f € C=(Q), then u € C>().

13. (Maximum Principle - Divergence Form) Let A(z) be a symmetric matrix (i.e., A;; = Aj;) with
measurable coefficients such that there exist ag > 0, oy > 0 with

olé)? < A ()& < aqlé]? forae. z € Q, VE R (16)
Also, let c¢(x) € L>(Q2) and c(x) > A > 0. Suppose u € H'(Q) verifies in the weak sense:
-V (A(z)Vu)+cu >0 on Q, (17)

i.e. suppose that

/ A(z)Vu - V(bdas—i—/ cupdr >0, Vo¢e Cy(Q) with ¢ >0 in Q. (18)
Q Q
Show that
i) = )
[Hint: Use the density of C§°(Q) in HY(Q). Take —(u— 1Endf9u(x))_ as test function. We have employed

the following notation: h™ := min(0, —h).]

14. (Nonlinear Equations) Let © C RY be an open and bounded domain with smooth boundary 99.
Consider the Dirichlet problem
Au = e|ul? + 1, ulog =0 (19)

ford%‘lQ>p>1.

(14.a) Prove, for sufficiently small ¢, the existence of a unique weak solution u of (19) in HZ(Q2) as
follows: Let B : L?(Q2) — H(Q) denote the map taking f to the unique weak solution of Au = f + 1.
Let Q : H}(2) — L? denote the map given by u + euP. (Show that indeed, under the restriction of p,
this defines a bounded map on the spaces claimed.) Show that B o Q defines a contraction on H}(€2) and
argue that a fixed point of B o @) is a weak solution of (19).



(14.b) Show that in fact u € C°°(2) and u vanishes on 9.

(14.c) Can you allow higher p? How high?

15. (Parabolic Equations) Let 2 C R? be open. We consider the initial-boundary value problem (IBVP):

%—i—Pu—f in Qx (0,7),
u=0 on 09 x [0,T7, (20)
u=gy on Q x {t =0},

where P is a second order partial differential operator in divergence form:

Pu::—'zd: aiz(a”tw )-i—

3,j=1

(t, z)u.

Define a time-dependent bilinear form for u,v € Hg(2) and for a.e. t € [0,T]:

Ou Ov
Blu, v; t] Z/a” t,x) E szd —I—Z/ i(t,x) vdx+/ c(t, x)uvde. (21)

i,j=1
We give the following definition for a weak solution of the IBVP (20): A function u € L?((0,T); HZ(£2))
with u/ € L2((0,T); H=Y(Q)) is a weak solution to (20) if
(i) (v, v) + Blu,v;t] = (f,v) for each v € H}(Q) and for a.e. t € [0,T]
and (ii) u(0) = g,
where (-, -) is the dual product between H ~1(Q2) and H{ (2) whereas (-, -) is the standard L? inner product.
[If you prefer, you may restrict this problem to f € L? and define (f,v) to be the L? inner product.]

The idea is to construct approximate solutions to (20) by considering an orthonormal basis {¢}32, of
L?(Q2). Define approximations for n € N:

(22)

Up(t) == Zdﬁ(t)wk, (23)
k=1

where the coefficient functions d* : [0,7] — R for k =1,--- ,n are chosen such that:

dfz(o) = (97<Pk) for k = L n and (U'{nv(pk) + B[”na‘ﬁkvt] = (fv QDk) (24)

(15.a) Using an existence result from the theory of ODEs, show that for each n € N there exists a unique
function wu, (t) of the form (23) satisfying (24).
[Hint: Use the Cauchy—-Lipschitz Theorem.

The next task is to consider the finite dimensional approximations u,, for n € N and pass to the limit
as n — oo. In order to apply some compactness results, we need to derive uniform (in n) estimates on
{u,}. The next question addresses this aspect.

(15.b) There exists a constant C' depending only on Q, T, a;;, b;, ¢ such that

etml 0,2 ) + il 20,y + Itz o myst—cony < € (I eecomyizacony + Nl - (25)

(15.c) Using the apriori estimates (25) and compactness results, arrive at the associated limit function
with the approximate solutions (23). Show that the limit function is indeed a weak solution of (20) in
the sense of (22) by passing to the limit in (24).

[You may assume the following: If v, — v in L*((0,T); H}(Q)) and v}, — w in L*((0,T); H~1(Q)), then
w=1"]

(15.d) Show that a weak solution of (20) is unique.
[Hint: Assume that f = g =0 in (20) and show that the solution u = 0.]



