
Analysis of Partial Differential Equations

Example sheet 3 (Chapter 3)

Prof. M. Dafermos, Prof. C. Mouhot

1. In the lectures, we have seen that Hs(Rd) ⊂ L∞(Rd) for s > d/2. Give an example of a function
f ∈ H1(R2) but f 6∈ L∞(R2).

2. (Poincaré–Wirtinger) Let Ω ⊂ Rd be an open, bounded domain. Show that there exists a constant
C(Ω), depending on the domain, such that

∀u ∈ H1(Ω),

∫
Ω

|u− ū|2 dx ≤ C(Ω)

∫
Ω

|∇u|2 dx, (1)

where ū =
1

|Ω|

∫
Ω

u(x) dx.

3. (Hardy) Let Ω ⊂ Rd be a C1 bounded domain. Define the distance function d : Ω → R+ by
d(x) := dist(x, ∂Ω). Show that there exists a constant C > 0 such that∥∥∥u

d

∥∥∥
L2(Ω)

≤ C‖∇u‖L2(Ω) for all u ∈ H1
0 (Ω). (2)

4. (Rellich) Let Ω ⊂ Rd be an open and bounded domain. Prove that any sequence uniformly bounded
in H1(Ω) is relatively compact in L2(Ω) i.e., if {un} ⊂ H1(Ω) is a sequence such that ‖un‖H1(Ω) ≤ C
for some constant C independent of n, then there exists a subsequence {uϕ(n)} (with ϕ : N→ N strictly
increasing) and a limit function u ∈ L2(Ω) such that∥∥uϕ(n) − u

∥∥
L2(Ω)

→ 0 as n→∞.

5. (Riesz–Fréchet–Kolmogorov) Let Ω ⊂ Rd be open.
• First consider ω ⊂⊂ Ω i.e., ω open with ω̄ ⊂ Ω. Consider a bounded G ⊂ L2(Ω). Suppose

∀ ε > 0, ∃ δ > 0, δ < dist(ω, ∂Ω) such that

∀h ∈ Rd, |h| < δ and ∀u ∈ G,
∫
ω

|u(x+ h)− u(x)|2 dx ≤ ε.
(3)

Prove that G|ω is relatively compact in L2(ω). (Notation: G|ω denotes the elements of G restricted to ω).

• Second, assume that Ω = Rd and consider again a bounded G ⊂ L2(Rd). Suppose

∀ ε > 0, ∃ δ > 0 such that ∀h ∈ Rd, |h| < δ and ∀u ∈ G,
∫
Rd

|u(x+ h)− u(x)|2 dx ≤ ε. (4)

In addition to (4), suppose also that

∀ ε > 0, ∃ω ⊂⊂ Rd such that ‖u‖L2(Rd\ω) < ε ∀u ∈ G. (5)

Then, deduce that G is relatively compact in L2(Rd).
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6. (Fredholm Alternative) Let u ∈ H1(Ω) be a weak solution of the following Neumann problem:{
b(x) · ∇u−∇ · (A(x)∇u) = f in Ω,

−A(x)∇u · n = g on ∂Ω.
(6)

where f ∈ L2(Ω), g ∈ H1(Ω). Here, A(x) denotes a symmetric matrix of measurable coefficients Aij(x)
such that there exist α0 > 0, α1 > 0 with

α0|ξ|2 ≤ Aij(x)ξiξj ≤ α1|ξ|2 for a.e. x ∈ Ω, ∀ ξ ∈ Rd (7)

and b(x) is a vector of coefficients bi(x) ∈ L∞(Ω) which satisfies ∇ · b = 0 weakly in Ω and b · n = 0
on ∂Ω. Prove that (6) has a unique weak solution modulo an additive constant if and only if the source
terms satisfy the following compatibility condition:∫

Ω

f(x) dx =

∫
∂Ω

g(x) dσ(x), (8)

where dσ(x) is the surface measure on ∂Ω.
[Hint: Employ the Poincaré–Wirtinger inequality and use Lax–Milgram in the quotient space H1(Ω)/R.]

7. (Mean Value Theorem) Let Ω ⊂ Rd be open. A function u ∈ C2(Ω) is said to be harmonic if ∆u = 0
in Ω. Suppose u is harmonic in Ω. Let x0 ∈ Ω and r > 0 so that the closed ball B̄(x0, r) ⊂ Ω. Show that:

u(x0) =
1

rd−1ωd

∫
S(x0,r)

u(y)dσ(y), (9)

where ωd is the surface area of the unit sphere in Rd and S(x0, r) is the sphere of radius r centered at x0.

8. (Liouville’s Theorem) Prove that every bounded harmonic function on the whole space Rd is constant.
Deduce that any harmonic function v(x) on the whole space Rd which satisfies |v(x)| → 0 as x → ∞
vanishes identically.

9. (Dirichlet Principle) Let Ω ⊂ Rd be an open, bounded domain. For a source term f ∈ L2(Ω), show
that solving for u ∈ H1

0 (Ω) satisfying {
−∆u = f in Ω,

u = 0 on ∂Ω,
(10)

is the same as solving for u ∈ H1
0 (Ω) the following minimisation problem:

F (u) = inf
v∈H1

0 (Ω)
F (v), (11)

where

F (v) =
1

2

∫
Ω

|∇v|2 dx−
∫

Ω

fv dx.

10. (Helmholtz decomposition) Let Ω ⊂ Rd be an open and bounded domain. Suppose b(x) ∈ (L2(Ω))d

is a vector field in Ω. Show that there exists u ∈ H1
0 (Ω) and v ∈ (L2(Ω))d such that

b(x) = ∇u(x) + v(x)

with

∇ · v = 0 weakly in Ω and

∫
Ω

∇u · v dx = 0.
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11. (Cacciopoli) Let Ω ⊂ Rd be open. Let x0 ∈ Ω and 0 < ρ < ρ̄ be such that the ball B(x0, ρ̄) ⊂ Ω.
Suppose u ∈ H1(Ω) satisfies

−∆u+ b · ∇u+ c u = 0 in Ω, (12)

where b ∈ Rd and c ∈ R. Show that there exists a constant C such that∫
B(x0,ρ)

|∇u|2 dx ≤ C

(ρ̄− ρ)2

∫
B(x0,ρ̄)

|u|2 dx. (13)

Take b = 0 and c = 0 in (12). Deduce from (13) that

∀ k ∈ N, ‖u‖2Hk(B(x0,ρ))
≤ C(ρ, ρ̄, k)‖u‖2L2(B(x0,ρ̄))

(14)

and
∀ k ∈ N, ‖u‖2Ck(B(x0,ρ))

≤ C(ρ, ρ̄, k)‖u‖2L2(B(x0,ρ̄))
. (15)

What can we infer from (15)?
[Hint: Use ‘Cut-off functions’ as was done in lectures for the interior regularity results.]

12. (Higher order boundary regularity) Let Ω ⊂ Rd be an open bounded domain and let P be a second
order uniformly elliptic operator in divergence form

Pu = −∂i(aij(x)∂ju) + bi(x)∂iu+ cu(x)

Prove higher order boundary regularity, i.e. if u ∈ Hm+1 ∩ H1
0 is a weak solution of Pu = f , with

∂Ω ∈ C∞, aij ∈ Cm+1(Ω), bi ∈ Cm+1(Ω), c ∈ Cm+1(Ω), f ∈ Hm(Ω) then u ∈ Hm+2(Ω), and
‖u‖Hm+2(Ω) ≤ C(‖u‖Hm+1(Ω) + ‖f‖Hm(Ω)). What does C depend on? Deduce that if aij ∈ C∞(Ω),

bi ∈ C∞(Ω), c ∈ C∞(Ω), f ∈ C∞(Ω), then u ∈ C∞(Ω).

13. (Maximum Principle - Divergence Form) Let A(x) be a symmetric matrix (i.e., Aij = Aji) with
measurable coefficients such that there exist α0 > 0, α1 > 0 with

α0|ξ|2 ≤ Aij(x)ξiξj ≤ α1|ξ|2 for a.e. x ∈ Ω, ∀ ξ ∈ Rd. (16)

Also, let c(x) ∈ L∞(Ω) and c(x) ≥ λ > 0. Suppose u ∈ H1(Ω) verifies in the weak sense:

−∇ · (A(x)∇u) + c u ≥ 0 on Ω, (17)

i.e. suppose that ∫
Ω

A(x)∇u · ∇φ dx+

∫
Ω

c uφdx ≥ 0, ∀φ ∈ C∞0 (Ω) with φ ≥ 0 in Ω. (18)

Show that
inf
x∈Ω

u(x) = inf
x∈∂Ω

u(x).

[Hint: Use the density of C∞0 (Ω) in H1
0 (Ω). Take −(u− inf

x∈∂Ω
u(x))− as test function. We have employed

the following notation: h− := min(0,−h).]

14. (Nonlinear Equations) Let Ω ⊂ Rd be an open and bounded domain with smooth boundary ∂Ω.
Consider the Dirichlet problem

4u = ε|u|p + 1, u|∂Ω = 0 (19)

for d
d−2 > p > 1.

(14.a) Prove, for sufficiently small ε, the existence of a unique weak solution u of (19) in H1
0 (Ω) as

follows: Let B : L2(Ω) → H1
0 (Ω) denote the map taking f to the unique weak solution of 4u = f + 1.

Let Q : H1
0 (Ω) → L2 denote the map given by u 7→ εup. (Show that indeed, under the restriction of p,

this defines a bounded map on the spaces claimed.) Show that B ◦Q defines a contraction on H1
0 (Ω) and

argue that a fixed point of B ◦Q is a weak solution of (19).
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(14.b) Show that in fact u ∈ C∞(Ω) and u vanishes on ∂Ω.

(14.c) Can you allow higher p? How high?

15. (Parabolic Equations) Let Ω ⊂ Rd be open. We consider the initial-boundary value problem (IBVP):
∂u

∂t
+ Pu = f in Ω× (0, T ),

u = 0 on ∂Ω× [0, T ],

u = g on Ω× {t = 0},

(20)

where P is a second order partial differential operator in divergence form:

Pu := −
d∑

i,j=1

∂

∂xi

(
aij(t, x)

∂u

∂xj

)
+

d∑
i=1

bi(t, x)
∂u

∂xi
+ c(t, x)u.

Define a time-dependent bilinear form for u, v ∈ H1
0 (Ω) and for a.e. t ∈ [0, T ]:

B[u, v; t] :=

d∑
i,j=1

∫
Ω

aij(t, x)
∂u

∂xj

∂v

∂xi
dx+

d∑
i=1

∫
Ω

bi(t, x)
∂u

∂xi
vdx+

∫
Ω

c(t, x)uvdx. (21)

We give the following definition for a weak solution of the IBVP (20): A function u ∈ L2((0, T );H1
0 (Ω))

with u′ ∈ L2((0, T );H−1(Ω)) is a weak solution to (20) if

(i) 〈u′, v〉+B[u, v; t] = (f, v) for each v ∈ H1
0 (Ω) and for a.e. t ∈ [0, T ]

and (ii) u(0) = g,
(22)

where 〈·, ·〉 is the dual product between H−1(Ω) and H1
0 (Ω) whereas (·, ·) is the standard L2 inner product.

[If you prefer, you may restrict this problem to f ∈ L2 and define (f, v) to be the L2 inner product.]
The idea is to construct approximate solutions to (20) by considering an orthonormal basis {ϕk}∞k=1 of
L2(Ω). Define approximations for n ∈ N:

un(t) :=

n∑
k=1

dkn(t)ϕk, (23)

where the coefficient functions dkn : [0, T ]→ R for k = 1, · · · , n are chosen such that:

dkn(0) = (g, ϕk) for k = 1, · · · , n and (u′n, ϕk) +B[un, ϕk; t] = (f, ϕk). (24)

(15.a) Using an existence result from the theory of ODEs, show that for each n ∈ N there exists a unique
function un(t) of the form (23) satisfying (24).
[Hint: Use the Cauchy–Lipschitz Theorem.]

The next task is to consider the finite dimensional approximations un for n ∈ N and pass to the limit
as n → ∞. In order to apply some compactness results, we need to derive uniform (in n) estimates on
{un}. The next question addresses this aspect.

(15.b) There exists a constant C depending only on Ω, T, aij , bi, c such that

‖un‖L∞([0,T ];L2(Ω)) +‖un‖L2((0,T );H1
0 (Ω)) +‖u′n‖L2((0,T );H−1(Ω)) ≤ C

(
‖f‖L2((0,T );L2(Ω)) +‖g‖L2(Ω)

)
. (25)

(15.c) Using the apriori estimates (25) and compactness results, arrive at the associated limit function
with the approximate solutions (23). Show that the limit function is indeed a weak solution of (20) in
the sense of (22) by passing to the limit in (24).
[You may assume the following: If vn ⇀ v in L2((0, T );H1

0 (Ω)) and v′n ⇀ w in L2((0, T );H−1(Ω)), then
w = v′.]

(15.d) Show that a weak solution of (20) is unique.
[Hint: Assume that f = g = 0 in (20) and show that the solution u = 0.]
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