Analysis of Partial Differential Equations
Example sheet IT (Chapter 2)

Prof. M. Dafermos, Prof. C. Mouhot

1. Recall the Liouwille theorem for analytic functions on the whole complex plane. Does the theorem hold
true for analytic functions on the real line?

2. We have proved in lectures that f is real analytic on an open set U of the real line iff for any compact
set K C U there are constants C'(K),r > 0 such that
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Prove a similar statement in several variables: f is real analytic on an open set I of R? iff for any compact
set K C U there are constants C'(K),r > 0 such that

|
VxeK, |0°f(x)| < C(K)%.
[Hint. Prove and use the multinomial identities for x = (z1,...,2¢), @ = (a1,...,0¢) and m € N:
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where we have used the standard multinomial notations: x* = z7" -2}, o! = oq!---oy! and 03 =

o021

3. Using the method of characteristics, solve the following “initial value problem”:
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u(z,z) =0 xR

Explore what happens when u (x,2) = 0 in (1) is replaced by u (x,z) = 1.

Method of characteristics: In this method, we try to solve a first order PDE like (1) by converting the
PDE into an appropriate system of ODEs. For any (z,y) € R2, we would like to find a curve in R? which
passes through (x,y) and the hypersurface upon which we are given the data (the line x =y happens to be
the hypersurface above). In order to find the curve, we introduce a dummy parameter s € R and define
xz:=x(s),y := y(s) and 2(s) := u(x(s),y(s)). Then, we write a system of ODE for (x(s),y(s),2(s)) as
dictated by the PDE and the data. The system is then solved to arrive at a curve in R? and the value of
the solution u along the curve.

4. Show that the line {¢ = 0} is characteristic for the heat equation:

ou 0%u

E(t,x) = @(t,x) for (t,x) € R%. (2)

Give an example of a non-characteristic hypersurface. Show further that there does not exist an analytic
solution u(t, z) of (2) with
1
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u(0,z) =



5. (Cauchy-Kovalevskaya Theorem for systems of ODEs) Suppose b > 0 and F : ug + (—b,b)¢ — R be
real analytic in a neighbourhood of ug. Let u(t) be the unique C! solution to the following initial value
problem:

u'(t) = F(t,u(t)), u(0)=uyeR?,

on (—a,a) for some a > 0 with u((—a,a)) C ug + (—b,b)?. Using the method of majorants, show that
u(t) is analytic in a neighbourhood of 0.
Note: This exercise is analogous to the scalar ODE case treated during the lectures.

6. Consider the reduced setting for the Cauchy-Kovalevskaya theorem for PDEs:
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u=0 on T,

with matrix-valued functions b; : R™ x R*~! s M, ., and vector-valued function by : R™ x R‘~1 s R™
which are locally analytic around (0,0), and where Z = (x1,...,2¢—1). Using similar calculations as for
the system of ODEs (Question 5) on all entries of bj, j = 0,...,£ — 1 (which depend on m + ¢ — 1
variables), find C,r > 0 such that
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is a majorant of all these entries.

7. Let g be the majorant function obtained in Question 6. Define b? := gM,, j = 1,..., -1, and
b := gU1, where M; is the m X m-matrix with 1 in all enteries and U; is the m-vector with 1 in all
entries. Check that the solution v = (v1,...,v0y) to

v=0 on T,
can be expressed in the form v; = --- = v, =: w, and

w=w(ry+xo+- - +xi_1,20) =w(& ), E:=x1+ -+ Tp_1.

8. Lett =xyand £ =1 + 22+ -+ +x4—1. Suppose w(t, &) defines the solution to the majorant problem
as in Question 7. Show that w(t, &) satisfies the following PDE:

Cr
dw = m(%aswv”), w(£,0)=0, tEER, (4)

with 49 = (¢ — 1)m and ; = m, and that for £ > 3 the solution is given by
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w(g ) = o= ((r =& = Vir = €7 = 20mCrt) .
Hint. Use the method of characteristics to solve (4) as in Question 3.

9. (Hadamard’s example: amplified version) Consider the initial value problem

82 62 0
S g0 =0 u(0.2) =), F(0.2) = b(a). (5)



(a) For a given £ > 0 and an integer k > 0, construct initial data ¢ and 1 such that

8lloc + 16N lloo + -+ + 165 oo + [[9llos + 1D oo + -+ + [P [l < & (6)

and

(b) What happens if the condition on initial data is replaced by
VE20, (6" o+ [[0"]loo < ?
(¢) Now replace the Laplace equation (5) with the wave equation, i.e. replace the + with a —. Show that
1020l t)lloo + 10¢ul, )0 S 10 loc + ¢l o- (7)

Compute the constant in the inequality. Now consider the higher dimensional wave equation, i.e. replace
2
g—“ in (5) with the negative of the n-dimensional Laplacian —Aw for n > 1. Show that the analogue of

2
(7) does not hold (with Vu replacing 9, and V¢ replacing ¢’, where V denotes the gradient on R™).

We will show, however, later in the course that an inequality of this type continues to hold for n > 1 if
the right hand side is replaced by the analogue of the left hand side (6) for sufficiently large k.

10. For u = u(z,y) on R? consider the PDE
2 2 2 2 _
Oyt + 2207, u + y0Oy, u + (0,u)” — udyu = 0.

Determine the regions in R? where the above PDE is elliptic, parabolic or hyperbolic and sketch them.



