
Analysis of Partial Differential Equations

Example sheet I (Chapter 1)

Prof. M. Dafermos, Prof. C. Mouhot

1. (The Picard–Lindelöf / Cauchy–Lipschitz theorem) Let F : R × Rd → Rd be continuous and locally
Lipschitz in the second variable i.e., assume that for each ū ∈ Rd, there exist constants δ > 0 and L > 0
such that

|u− ū| < δ =⇒ |F(·,u)− F(·, ū)| ≤ L|u− ū|.

Consider the following initial value problem:

u′(t) = F(t,u(t)), u(0) = u0 ∈ Rd. (1)

(a) Prove the existence and uniqueness of a maximum C1 solution u : (−T−c , T+
c ) → Rd of (1) on

(−T−c , T+
c ) with∞ ≥ T−c , T+

c > 0 i.e., a solution with the property that if ũ(−τ−, τ+) : (−T−c , T+
c )→ Rd

is any other C1 solution of (1) with 0 < τ±, then τ± ≤ T±c and u|(−τ−,τ+) = ũ.
(b) Prove moreover that if T+

c < +∞, then for every R > 0 there exists a tR < T+
c such that |u(t)| > R

for all t ≥ tR.

2. Show that the following initial value problems have infinitely many C1 solutions u : [0,∞)→ R:{
u′(t) =

√
|u(t)|

u(0) = 0,
(2)

 u′(t) =
4 t u(t)

u(t)2 + t2
,

u(0) = 0.

(3)

Describe how the set of such solutions u : [0,∞)→ R to (2) can be naturally classified into TWO different
types while the set of such solutions u : [0,∞)→ R to (3) can be naturally classified into FIVE different
types.

3. Let u : (T−c , T
+
c ) :→ R be the unique maximal C1 solution to the following initial value problem:{

u′(t) = u(t)2,

u(0) = u0 > 0.
(4)

(a) Show that T+
c <∞ and compute it. What about T−c ?

(b) What happens when u(t)2 is replaced by −u(t)2 in (4)?

4. Consider the following initial value problem for a second order ODE:{
u′′(t) + sin(u(t)2) = 0

(u(0), u′(0)) = (u0, u1) ∈ R2.
(5)

Argue, using problem 1, that there exists a unique maximal C2 solution u : (T−c , T
+
c )→ R of (5). Show

that the solution is global, i.e. T±c =∞.
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5. (The Gronwall lemma) For some T > 0, C ≥ 0, let u, v ∈ C1([0, T ); [0,∞)) be such that:

∀ t ∈ [0, T ), u(t) ≤ C +

∫ t

0

v(s)u(s) ds.

Show that u satisfies

∀ t ∈ [0, T ), u(t) ≤ C exp

(∫ T

0

v(s) ds

)
.

[Hint : Set w(t) := C +
∫ t
0
v(s)u(s) ds and check w′(t)− v(t)w(t) ≤ 0 for all t ∈ [0, T ).]

6. (Approximation of solutions to ODE) Let F ∈ C1(R;R). Let T > 0 and let u, v ∈ C1([0, T ];R) be
solutions of the same ODE:

u′(t) = F (u(t)), v′(t) = F (v(t)).

Setting u0 = u(0), v0 = v(0), show that

|u(t)− v(t)| ≤ |u0 − v0|eCT t. (6)

Fix constants ε1, ε2 > 0, and assume now that u, v ∈ C1([0, T ];R) only satisfy the inequalities

|u′(t)− F (u(t))| ≤ ε1, |v′(t)− F (v(t))| ≤ ε2.

Show that

|u(t)− v(t)| ≤ |u0 − v0|eCT t + (ε1 + ε2)
eCT t − 1

CT
.

7. (Osgood uniqueness Theorem) Let I be an interval of R, and F : I × Rd → Rd a continuous function.
Let Ω be an open subset of Rd, t0 ∈ I, u0 ∈ Ω. We suppose that

∀ (t,y1,y2) ∈ I × Ω× Ω, |F(t,y1)− F(t,y2)| ≤ ω(|y1 − y2|) (7)

where ω ∈ C([0,∞),R) is a non-decreasing function which satisfies

ω(0) = 0; ∀σ > 0, ω(σ) > 0; and ∀α > 0,

∫ α

0

1

ω(σ)
dσ = +∞. (8)

Let u1,u2 : I → Ω be two differentiable functions which are solutions to the following initial value
problem: {

u′(t) = F(t,u(t)),

u(t0) = u0.

(a) Show that u1 = u2.
(b) Give an example of a non-decreasing function ω ∈ C(R+,R+) which satisfies (8) but for which the
condition (7) is weaker than being locally Lipschitz.

8. (Cauchy–Peano theorem) Let F : R × Rd → Rd be merely continuous, and consider the initial value
problem:

u′(t) = F(t,u(t)), u(0) = u0 ∈ Rd.
Prove the existence of a maximal C1 solution u : (−T−c , T+

c )→ Rd with T−c , T
+
c > 0, i.e. C1 solution with

the property that if ũ : (−T̃−c , T̃+
c ) :→ Rd is another C1 solutions with ũ|(−T−

c ,T+) = u, with T̃±c ≥ T±c ,

then T̃±c = T±c . Illustrate the non-uniqueness of u by the examples of problem 2. (Compare with the
characterization of the maximum solution of problem 1.)

[Hint. From the fundamental theorem of calculus the ODE can be reframed as u(t) = u0+
∫ t
0

F(s,u(s)) ds.
Set u0(t) = u0 to be constant and define the Picard iterates:

un+1(t) = u0 +

∫ t

0

F(s,un(s)) ds. ∈ Rd, n ≥ 0,

Note that un(0) = u0 for all n ≥ 0. Prove that restricted to appropriate (−ε, ε) the sequence un is
uniformly bounded and uniformly equicontinuous. Recall and use the Arzéla-Ascoli theorem to obtain a
solution to the integral equation on that interval. Now maximalise.]
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