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Lecture 1

General Relativity and Lorentzian geometry
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Spacetime

pace “R2timfie [ ) ! spacetime: ./ 4

Lorentzian manifold (ﬂ g)

Lorentzian metric § — g//w dxtdx"

g is symmetric (g/w = gyﬂ) with signature( — , +, +, + )

i.e. at each point p, can choose basis €, ..., €3 € Tpﬂ

s.t. gleg, eg) = — 1, g(e;, ej) = 5lj, gleye)=0,1=1,...,3
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The null cone

N

vectors v € Tpﬂ can be classified as
if g(v,v) <0
e nullifv#0 and g(v,v) =0
e spacelikeif v =0orgv,v) >0

(A, g)

T,

sal”
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Causal curves

(A, g) YA

/A

curves ¥ inherit these names from their tangent vector y
so y is timelike, ..., if y is timelike, i.e. if g(y,y) <0, ...
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Time orientation

« (M,g) ~ .

A time orientation is a global continuous timelike vectorfield 7.
Given T, a causal vector v € Tp% is said to be
o future pointingif g(v,7(p)) <O
e past pointingif g, T(p)) > 0
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Kinematics
)4

(A, g)

A basic kinematic principle is that all physical particles traverse
future-directed causal curves ¥ in spacetime (A, g).

Freely falling massive (resp. massless) particles traverse
future-directed timelike (resp. null) geodesics: V}.,;'/ =0
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The Einstein equations

'\t’ Sitzung der physikalisch-mathematischen RKlasse vom 25 November 1815

Die Feldgleichungen der Gravitation.

Von A, Eixsteis.

I vor kurze n Mitteilun !

mn zu Feldgleichungen d itation gel: X lie dem I

| lgemeiner Rel prechen, d. h. d 1]

1 ellebigen Sul 1 der Roum | | !
ind.

1
Ric,, [8] = S8, R[8] = 82T,
o cf. the Newtonian theory governed by A¢ = 4ru
* Ric,, Isthe Riccicurvature ri, =o,r4, -0, + 17,1, - 1,1,

* R is the scalar curvature r=;*Ric,
* T, Isthe stress-energy-momentum tensor of matter
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The vacuum equations
Ricﬂy[g] = ()

* The vacuum Einstein equations constitute a
nonlinear system of hyperbolic equations with a
well posed initial value problem (Choquet-Bruhat 1952)

* This is In stark contrast to the Newtonian theory!

Ap=0on R’ ¢p(r) >0as r—> 00 = ¢p=0
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Minkowskli spacetime

Raunm und Zeit").

Von HErRMANN MINKOWSKI in Géttingen.

M. H.! Die Anschauungen iiber Raum und Zeit, die ich Ihnen
entwickeln mochte, sind auf experimentell-physikalischem Boden er-
wachsen. Darin liegt ihre Stirke. Ihre Tendenz ist eine radikale.
Von Stund’ an sollen Raum fiir sich und Zeit fiir sich v6llig zu Schatten
herabsinken und nur noch eine Art Union der beiden soll Selbstindig-
keit bewahren.

The Lorentzian analogue of Euclidean space
(R3* o = — d? + dx? + dy? + d7?)
flat, thus Ricci-flat Ric[g] = 0

Minkowski space is dynamically stable in the context of
the Cauchy problem (Christodoulou—Klainerman)
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Ric,,[¢] = .
lc,uv[g] 0 g ﬁaaaﬁgm/ — N,uy(ga aga ag)
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Harmonic coordinates

gmﬁﬂw::Oéé[]gﬂ”z()

(O S = 80,0, ~ £7T%,0,)

Ric,,[g] = 0 ©g*0,0,8,, = N,,(g, 08, 0g)

linearising around Minkowski space we obtain that the
components g/w of the linearised metric satisfy

8w =0

Gravitational Waves! (Einstein 1916)
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* A hypersurface X is spacelike if its normal 71 is
timelike, equivalently induced metric g IS Riemannian.

> is a Cauchy hypersurface if all inextendible causal
curves y intersect . precisely once.

o (M, g)is globally hyperbolic if it admits a Cauchy X .
e Example: £ = {t = 0} in Minkowski space R>*!
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Aside: the wave equation
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o Let (A, g) be globally hyperbolic with Cauchy
hypersurface 2

e Given smooth initial data ¢, ¢; on X, there exists a
unique smooth global solution ¢ of ggb = () s.t.

Ply=do  n9Pls = ¢
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Constraints

Let X be a spacelike hypersurf. in (A, g) satisfying Ric(g) = 0.

Then the Gauss and Codazzi equations of classical differential

geometry imply the following Einstein constraint equations
R(g) + (K%)* — K K" =0, V,K% -V, K5 =0

where g, is the induced metric and K , is the second

fundamental form.
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smoothly the constraints.
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The maximal Cauchy

development
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Theorem. (Choquet-Bruhat-Geroch 1969) Let (X, g, K) satisfy
smoothly the constraints. Then there exists spacetime (.#*, g) s.t.

o (M, g)is globally hyperbolic, 2> — ./ embeds iso. as
Cauchy hypersurface with induced metric g and 2nd f.1. K

e Ric(g) =0 —
» The spacetime (., g) is maximal._Any( ./ *, ?)
satisfying the above embeds iso.( # ,3) = (M, g)



Nonlinear stability of
Minkowski space
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Theorem. (Christodoulou—Klainerman 1993) Let (R?, 2, K)
satisfy the constraints and be suitably close to trivial initial
data (R, gz,.;,0).
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Nonlinear stability of

Minkowski space
(A, g)

Theorem. (Christodoulou—Klainerman 1993) Let (R?, 2, K)
satisfy the constraints and be suitably close to trivial initial
data (R, 2r,..-0). Then the max. Cauchy development (/, g)

e |s geodesically complete
* remains globally close to (R>*1, g, . . ), and
* approaches gy, along all causal geodesics



The Global Nonlinear Stability of the Minkowski Space

Demetrios ,ﬂm‘stodou]ou
and Sergiu Klainerman

PRINCETON UNIVERSITY PRESS
PRINCETON, NEW JERSEY
1 1993
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Why so hard?

g“ﬁrﬂaﬁ =0 [ x"=0

Ricﬂy[g] =0 gaﬁaaaﬂgﬂy — N/,w(ga aga ag)

- linearising around Minkowski space [ ]g,, =0

- In 3 + 1dim., solutions decay only like »~! in the wave zone

* To handle general non-linearities N/w, need “null structure”

» See also new proof by Lindblad—Rodnianski 2004
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Schwarzschild spacetime

discovered in 1915 by Karl Schwarzschild
g = — (1 =2M/r)dt> + (1 = 2M/r)~'dr? + r*(d6? + sin’ 0 d¢p?)

spherically symmetric solution of vacuum equations Ric(g) =0
singular? r=2M? r=07? 0=0,r?

Lemaitre 1932 ¢ =t+2M log(r —2M) =
g = — (1 = 2M/r)(dr*)* + (AM/r)drdt* + (1 + 2M/r)dr? + r*(d0? + sin” 8 d¢p?)



The geometry of
Schwarzschild

g = — (1 = 2M/r)(dr*)* + (AMIr)drdr* + (1 + 2M/r)dr* + r*(d6” + sin” 0 d¢*)



The black hole
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Falling into the black hole
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The Penrose diagram

e The singularity 7 = 0 is spacelike.

e The metric is inextendible beyond 7 = 0, not only as a C?
but as a continuous (CO) Lorentzian metric. (J. Sbierski 2016)

 Observers falling into the black hole are eventually torn apart
by tidal deformations.




Doubling Schwarzschild

N
X P N \?\
’ N X
p N
p \
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’
’

Synge 1950, Kruskal 1960



Schwarzschild
as a maximal globally hyperbolic
future Cauchy development

(2, gn, K ) asymptotically flat with two ends



Penrose’s incompleteness
theorem

Theorem. (Penrose 1965) Let (L, g) satisfy the following:

o« (M, g) Is globally hyperbolic with a non-compact
Cauchy hypersurface ..

e Ric(V,V) >0 forall null vectors V.

o M contains a closed trapped surface S .

Then (A, g) is future causally geodesically incomplete.



Corollary of Penrose’s
Incompleteness theorem

Corollary. For initial data near Schwarzschild

(29 ga K) ~ (29 gM? KM)

the maximal future globally hyperbolic Cauchy development
(A, g) is again future causally geodesically incomplete.
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Recall: general global well

posedness

(A, g) (I
n-——

o Let (A, g) be globally hyperbolic with Cauchy

hypersurface 2

e Given smooth initial data ¢, ¢; on X, there exists a

unique smooth global solution ¢ of

¢ ‘2 — ¢O’ naaa¢ ‘2 —

P =0st.
g



The wave equation on
Schwarzschild

e Given smooth initial data ¢y, $; on X, there exists a
unique smooth global solution ¢ of ggb =0 s.t.

Ply=do  n9Pls = ¢




Main problem

naaa¢ |Z — ¢1
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Main problem

H=0 bly=dp  n"0bly= 0,

(o, #1)

e Does ¢ remain uniformly bounded in the lighter shaded
region J~(_¥7T) (the black hole exterior)?

e Does ¢ decay to 0 as one approaches i*?



Reduction

0 Pls=do 170,015 = ¢
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Reduction

=0 dls=dp, 10y =g,

e Suffices to consider initial data on {r* =0} n {r > 2M}
e Boundedness in the region between 2 and r* = 0 is easy.
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e We willdenote X,= {r*=0}n{r>2M}
 The future domain of dependence D" (L) is foliated by

X ={rf=17}n{r>2M}
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Vector field multipliers

|
Tl = 00 = = P00y

gl//=0 =4 V”TW[I/J]=O

JXy) = T, [ylx*

KXyl = T, [y"n* = 0if K is Killing

X vector field —

VA ] = KXy

n 5, >, spacelike, X future timelike

= J Jif[z//]n”del coercive
> >



The 1 vector field

The coordinate vector field o,. extends to a globally defined
Killing field T
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H=0 bly=dp  n"0bly= 0,

T Killing => |

T1=0 = [0,(T¢) =0

[ (dt*dt*qﬁ)z S [ (dt*dt*(ﬁ)z + (1 —2M/ r)(a,,d;kqb)z + | ¥ (0,+¢) |2
5. s

0

[ (1 = 2M17)(0,0,;:)* S J (0,:0p:0)% + (1 — 2M/7)(0,05¢)* + | ¥ (3pp) |
> >
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The NN identity

Proposition. There exists a timelike 7-invariant vectorfield N
such that VANl = KNl > 0 in r <2M + ¢

in fact K"(p] 2 J)[pInk in r <2M +¢;.

The vector field N captures the celebrated red-shift.
Exercise: N-identity + 7T-estimate = J J,iv[cb]ng‘fs[ Jp[pIng
> >,
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Nonetheless the “worst terms” have a good sign and are in fact
coercive near #*

Exercise:
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The N commutation

[, N1#0

Nonetheless the “worst terms” have a good sign and are in fact
coercive near #*

Exercise:

— J (0t*(N¢))2+(6r(N¢))2+IW(N¢)|2S[ (O (N))? + (0,)* + | V(Np) |” + ...
2, 2

This and the previous now controls IV.¢ll} s,



The boundedness theorem

H=0 bly=dp  n"0bly= 0,

Theorem. We have the uniform bound:

¢l <D
in the black hole exterior region J(.¥7), where D is a
suitable norm on initial data (¢, ¢,)-




References for Lecture 3

e D. Christodoulou “The action principle and partial differential equations”,
Ann. Math. Studies No. 146, 1999

e M.D. “The geometry and analysis of black hole spacetimes in general
relativity” https:// www.dpmms.cam.ac.uk/~md384/ETH-Nachdiplom-
temp.pdf (under construction)

e M.D. and |. Rodnianski “Lectures on black holes and linear waves”, arXiv:
0811.0354

 B. Kay and R. Wald “Linear stability of Schwarzschild under perturbations
which are nonvanishing on the bifurcation 2-sphere” Classical Quantum
Gravity 4 (1987), no. 4, 893-898

e S. Klainerman “Brief history of the vector-field method”, https://
web.math.princeton.edu/~seri/homepage/papers/John2010.pdf


https://www.dpmms.cam.ac.uk/~md384/ETH-Nachdiplom-temp.pdf
https://www.dpmms.cam.ac.uk/~md384/ETH-Nachdiplom-temp.pdf
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Kerr spacetime

GRAVITATIONAL FIELD OF A SPINNING MASS AS AN EXAMPLE
OF ALGEBRAICALLY SPECIAL METRICS

Roy P. Kerr*

University of Texas, Austin, Texas and Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio
(Received 26 July 1963)

discovered by Roy Kerr in 1963

A 2 in® @
¢ = — —(di — asin? 0dg)? + %drz +p2do? + 21

—(adt — (r* + a®) d)*
p p

ry = Mi\/M2 —a’, A=(r- r)(r—r.), p? =r?+a’cos*0
explicit solution of the vacuum equations Ric(g) =0

conjectured to be unigue family of stationary black holes

conjectured to be asymptotically stable in the exterior
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The ergoregion
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p* A p*
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There is a region outside the horizon where 0, is spacelike!
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The Cauchy horizon
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Before encountering any singularity, the observer falling in
the black hole reaches a second horizon, the so-called
Cauchy horizon (Hawking 1966).
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* From the point of view of the Cauchy problem, the maximal future
Cauchy development of Kerr initial data posed on 2 is incomplete but
smoothly extendible beyond a bifurcate Cauchy horizon €#." In fact,

all incomplete geodesics can pass into the extension.
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all incomplete geodesics can pass into the extension.

* This is analogous to the phenomenon that arises when one tries to
solve the Cauchy problem for the classical wave equation L]y =0
with data posed only onthe set{t =0} N {r < 1}.




The Penrq_g%e diagram

* From the point of view of the Cauchy problem, the maximal future
Cauchy development of Kerr initial data posed on 2 is incomplete but
smoothly extendible beyond a bifurcate Cauchy horizon €#." In fact,
all incomplete geodesics can pass into the extension.

* This is analogous to the phenomenon that arises when one tries to
solve the Cauchy problem for the classical wave equation L]y =0
with data posed only onthe set{t =0} N {r < 1}.

* Thus, applied to Kerr, Penrose’s incompleteness theorem does not
signify singularity formulation, but rather loss of determinism.



Which behaviour is preferable, Schwarzschild or Kerr?
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Strong cosmic censorship
(CY formulation)

Conjecture. (R. Penrose, 1973) The Kerr Cauchy horizon is
a fluke! For generic asymptotically flat initial data (X, g, K)
for the vacuum equations, the maximal future Cauchy
development (M, g) is inextendible as a manifold with
continuous (C") Lorentzian metric.

This formulation ensures the strong form of determinism
that we saw holds for the Schwarzschild solution.



Spacelike singularity
conjecture

Conjecture. (R. Penrose) For generic asymptotically flat initial
data for the vacuum equations, the “finite future boundary” of
the maximal future Cauchy development is spacelike.

holds for Schwarzschild



Stability of the Kerr exterior

(27.@7 k) N (E7§aO,Mo7kaOaM0)

Conjecture. The Kerr family is stable in the exterior as solutions to
the vacuum Einstein equations: Small perturbations of (two-ended)
Kerr initial data lead to a maximal future Cauchy development with
complete null infinity F+ such that in J~(F7), in particular on '+,
the induced geometry approaches—inverse polynomially—two
nearby Kerr solutions.




Poor man’s

linear stability of Kerr

Theorem. (M.D.—Rodnianski-Shlapentokh-Rothman 2014)
Consider smooth localised initial data (yy, w;) on 2. for the wave

equation

¥ =0 on sub-extremal Kerr. Then y remains uniformly

bounded in the exterior region J~ (7). Moreover one has sufficiently
fast inverse polynomial decay for y towards i, in particular, along the
event horizon .
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of Kerr

Theorem. (M.D.—Rodnianski—-Shlapentokh-Rothman 2014)

Consider smooth localised initial data (yy, w;) on 2. for the wave
equation [,y =0 on sub-extremal Kerr. Then y remains uniformly
bounded in the exterior region J~(.¥1). Moreover, one has sufficiently
fast inverse polynomial decay for y towards 1 * in particular, along the
event horizon .

....Andersson-Blue, Blue-Soffer, Blue-Sterbenz, Kay—-Wald, M.D.-Rodnianski, Tataru-
Tohaneanu, Luk, Moschidis, Shlapentokh-Rothman, Whiting....
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Theorem. (M.D.—Holzegel-Rodnianski 2016) Consider smooth characteristic initial
data for the linearised Einstein equations around Schwarzschild, expressed in
double null gauge.
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Full linear stability of
Schwarzschild

Theorem. (M.D.—Holzegel-Rodnianski 2016) Consider smooth characteristic initial
data for the linearised Einstein equations around Schwarzschild, expressed in
double null gauge. Then the arising solution remains uniformly bounded in the
exterior region J (& +) in terms of its initial data. Moreover, after adding a pure
gauge solution, which itself is quantitatively controlled by the data, the solution
approaches inverse polynomially a standard linearised Kerr metric as iTis
approached, in particular along HT



CY stability of the Kerr
Cauchy horizon

(Ea g, k) N (Z) gaO,MO ) kamMo)

Theorem. (M.D.—J. Luk, 2017) If Kerr is nonlinearly stable in
the black hole exterior (as conjectured), then its Penrose
diagram is globally stable, and the metric again extends, at
least CY across a Cauchy horizon € I ™.



The C"formulation of strong
cosmic censorship Is false

Corollary. If Kerr is nonlinearly stable in the black hole
exterior (as conjectured), then the C" formulation of the
strong cosmic censorship conjecture, as well as the
spacelike singularity conjecture, are both false.
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e M.D., G. Holzegel and I. Rodnianski “The linear stability of the Schwarzschild
solution to gravitational perturbations”, arXiv:1601.06467

e M.D. and |. Rodnianski “Lectures on black holes and linear waves”, arXiv:0811.0354
e M.D., I. Rodnianski and Y. Shlapentokh-Rothman “Decay for solutions of the wave
equation on Kerr exterior spacetimes lll: the full subextremal case 1al < M”, Ann. of

Math., 183 (2016), 7/87-913

e M.D. and J. Luk “The interior of dynamical vacuum black holes I: The C/A0-stability
of the Kerr Cauchy horizon”, arXiv:1710.01772

* B. O’'Neil “The Geometry of Kerr Black Holes”, Dover Books on Physics

 R. Penrose “Gravitational collapse” In C. Dewitt-Morette, editor, Gravitational
Radiation and Gravitational Collapse, volume 64 of IAU Symposium, pages 82-91.
Springer, 1974.
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The main problem

Main problem. Consider smooth localised initial data (Y, W)
on 2. for the wave equation W = 0 on subextremal
rotating Kerr. Understand the global properties of Y in the
darker shaded black hole interior region, in particular, the

behaviour at € "
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on 2. for the wave equation W = 0 on subextremal
rotating Kerr. Understand the global properties of Y in the
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For the Schwarzschild a = 0 case, see Fournodavios-Sbierski.
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The 1 vector field




The blue-shift instability
(Penrose)

Normalising g(y,7) = - 1at X, since y(g(y, T)) = 0, it follows that
as the geodesic y is moved to the right, then y - — coT at its
future endpoint.



Gaussian beam
approximation

Corollary. (Sbierski) Consider generic finite enerqgy initial
data (W, W1)on X for the wave equation [, =0 on
subextremal Kerr or Reissner—Nordstrom. Then the local
energy of y blows up at €#; i.e. y is inextendible in Hﬁ)c
across €I




Generic blow up
for smooth localised data

Theorem. (Luk—-Oh, M.D.-Shlapentokh-Rothman, Luk-
Sbierski) Consider generic smooth localised initial data (Wy, W)

on 2. for the wave equation

W= O on subextremal Kerr

or Reissner—Nordstrém. Then the local energy of v blows
up at € i.e. v is inextendible in Hl})C across €.



C' stability

Theorem. (Franzen) Consider smooth localised initial data (W, W)
on 2. for the wave equation W= 0 on rotating, sub-

extremal Reissner—Nordstrom or Kerr. Then the solution Y/

remains uniformly bounded on the black hole interior and

extends continuously Cto the bifurcate Cauchy horizon €.

See also Luk-Sbierski, Hintz



Review:
vector field multipliers

|
Tl = 00 = = P00y

gl//=0 =4 V”TW[I/J]=O

| iyl = T, [ylX*
X vector field —

KXyl = T, [y"n* = 0if K is Killing
VA ] = KXy

n 5, >, spacelike, X future timelike

= J Jif[z//]n”del coercive
> >



Eddington-Finkelstein
normalised null coordinates

g = (1 = 2M/r + €/r*)dudv + r*(d6> + sin’ 0d¢p?)

re = M? £/ M? - e?

k. = (r)"*(r, — r_) surface gravities

From previous theorem we know initially:

J (0, yw)*dv sin 0dOdg < v;?>~%
H sN{v:<v<vit1}
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The red-shift region

well chosen T-invariant timelike vector field N
bulk coercivity K"[y] > J/])’ [WIN¥ for r > 1.y
—> polynomial decay propagates to r = r,4
only uses positivity of surface gravity «,

on #7 V;T=«x.T
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The no-shift region

_ 2N -
use X=r"(0,+09,) with N> 1 ———

bulk non-negativity K* > 0 no-shift region

polynomial decay propagates to r = ry,.



The blue-shift region
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The blue-shift region

N >
o <
e use X=r*wPo, +vPa,) with p>1 @// V\\é
7 Q
Q??v@ I = Tplue v,
’i+ Z+
%z, &
N\
% Q{/
\\\ P



The blue-shift region

] \ 0
use X = er(upau +vP0,) with p > 1 //OO %7
N A
P ’%
. [] [] \
bulk non-negativity of the worst terms Q?W "7 Thlue . OOJR
’i+
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% £
N\ /
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The blue-shift region

£\ %
2N : 7 7
e use X=r"(uPd,+v"d) with p>1 R \é
7 \
Q??v@ I = Tplue v,
* bulk non-negativity of the worst terms )
i i
* jnitial flux on r = r,,c bounded from previous 2 OO\
SN g
‘e Q\/
\\\ P



The blue-shift region

use X =r*"wPo,+vPd,)) with p > 1
bulk non-negativity of the worst terms

initial flux on r = r,,e bounded from previous

obtain finally bounds for J vP(0,y)*dv sin OdOd¢p

u=const



Deducing C" bounds

2
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The Kerr case

e use double null foliation
e operators tangential to the sphere no longer commute

e additional error terms in the bulk can be absorbed by
Gronwall



The main theorem quoted in Lecture 4 can be thought of as
a fully nonlinear analogue of the previous result.



Strong cosmic censorship
(Christodoulou formulation)

Conjecture. (R. Penrose, 1973) The Kerr Cauchy horizon is
a fluke! For generic asymptotically flat initial data (X, g, K)
for the vacuum equations, the maximal future Cauchy
development (M., g) is inextendible as a C" Lorentzian
manifold with locally square integrable Christoffel symbols.




Strong cosmic censorship
(Christodoulou formulation)

Conjecture. (R. Penrose, 1973) The Kerr Cauchy horizon is
a fluke! For generic asymptotically flat initial data (X, g, K)
for the vacuum equations, the maximal future Cauchy
development (M., g) is inextendible as a C" Lorentzian
manifold with locally square integrable Christoffel symbols.

This formulation is sufficiently strong to assure that
there i1s no extension even as a weak solution.



Addendum I:
the extremal case

Theorem. (Gajic, Angelopoulos—Aretakis—Gajic) Consider
smooth compactly supported initial data (W, 1) on Y. for
the wave equation | |,y = 0 on extremal Reissner-
Nordstrom. Then y is extendible across the black hole inner
horizon in H;

loc "




Addendum lI:
the A > 0 case

Conjecture. (Moss, M.D., Cardoso et al) Consider smooth
initial data (yg,w;) on 'Y for the wave equation =0
on subextremal Reissner-Nordstrom-de Sitter. Then
extends in H' across the Cauchy horizon CHT

loc




Addendum lI:
the A > 0 case

Conjecture. (Moss, M.D., Cardoso et al) Consider smooth
initial data (yg,w;) on 'Y for the wave equation =0
on subextremal Reissner-Nordstrom-de Sitter. Then
extends in H' across the Cauchy horizon CHT

loc

See also discussion in Dias—Reall-Santos.



Addendum lI:
the A > 0 case

Theorem. (M.D.-Shlapentokh-Rothman 2018) Consider
generic H, x L  initial data (yy, ;) on X for the wave
equation |1,y = 0 on subextremal Reissner-Nordstrém (or
Kerr)-de Sitter. Then y is inextendible in H,. . across the

loc
Cauchy horizon € X"




Addendum llI:
the A < 0 case

Theorem. (Holzegel-Smulevici 2014) Consider smooth
initial data (W, w{) on a spacelike slice X for the wave
equation |,y = 0 with reflective boundary conditions
at & on Kerr-anti de Sitter. Then solutions Y/ decay
logarithmically on the event horizon T Moreover, this
decay bound is sharp.




Addendum llI:
the A < 0 case

Theorem. (Holzegel-Smulevici 2014) Consider smooth
initial data (Y, ) on a spacelike slice Y. for the wave

equation

¥ = 0 with reflective boundary conditions

at & on Kerr-anti de Sitter. Then solutions Y/ decay
logarithmically on the event horizon T Moreover, this
decay bound is sharp.

Implications for the interior? See upcoming work of Kehle!
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Lecture 6

The full nonlinear C'stability of the Kerr Cauchy horizon
(joint work with J. Luk)



Strong cosmic censorship
(CY formulation)

Conjecture. (R. Penrose, 1973) The Kerr Cauchy horizon is
a fluke! For generic asymptotically flat initial data (X, g, K)
for the vacuum equations, the maximal future Cauchy
development (M, g) is inextendible as a manifold with
continuous (C") Lorentzian metric.




Review:
Stability of the Kerr exterior

(27.@7 k) N (E7§aO,Mo7kaOaM0)

Conjecture. The Kerr family is stable in the exterior as solutions to
the vacuum Einstein equations: Small perturbations of (two-ended)
Kerr initial data lead to a maximal future Cauchy development with
complete null infinity F+ such that in J~(F7), in particular on '+,
the induced geometry approaches—inverse polynomially—two
nearby Kerr solutions.



CY stability of the Kerr
Cauchy horizon

(Ea g, k) N (Z) gaO,MO ) kamMo)

Theorem. (M.D.—J. Luk, 2017) If Kerr is stable in the black
hole exterior (as conjectured), then its Penrose diagram is
globally stable, and the metric again extends, at least C,O

across a Cauchy horizon € I



The C"formulation of strong
cosmic censorship Is false

Corollary. If Kerr is stable in the black hole exterior (as
conjectured), then the C O formulation of the strong cosmic
censorship conjecture, as well as the spacelike singularity
conjecture, are both false.



Heuristic studies and
symmetric model problems

e Hiscock 1981, Poisson-Israel 1989, Ori 1991, Brady
1996, Ori 1997, etc.

e M.D., Luk—-Oh, van de Moortel 2017



Reduction to characteristic
Initial value problem

(Evgv k) N (Eu@aO,MO?kamMo)



Reduction to characteristic
Initial value problem

Theorem. Consider characteristic initial data for the Einstein
vacuum equations which are both globally close to Kerr and
approache two nearby Kerr solutions. Then the Cauchy
evolution has Penrose diagram as depicted, and the metric
extends, at least CY across a Cauchy horizon € I ™.



Stability of a piece
of the Cauchy horizon

Theorem. Consider characteristic initial data on N U ' for
the Einstein vacuum equations which are both close to Kerr
and approach a Kerr solution along 7+ Then the Cauchy
evolution has Penrose diagram as shown on the right, and
the metric extends, at least C 9 across a Cauchy

horizon €T



Application to
gravitational collapse

Corollary. All dynamic vacuum black holes appropriately
settling down to Kerr along # T have a piece of Cauchy
horizon €I~ in their interior across which the metric
extends at least C°



Recall from Lecture 5:
three regions

e red-shift region
e “no-shift” region

e blue-shift region




Stability of piece of Cauchy
horizon from spacelike data

Theorem. Consider Cauchy initial data on %, for the
Einstein vacuum equations which are both close to Kerr and
approach a Kerr solution. Then the Cauchy evolution has
Penrose diagram as shown on the right, and the metric
extends, at least C* across a Cauchy horizon € T
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Setup: double null foliation

* u andu are Eddington-Finkelstein-like normalised
g = —20%(du ® du+ du ® du) + yap(dd”* — b*du) ® (d9” — b"du),

*R(647 €3, €4, 63)

=~ =

: . 1 .
XAB — g(DA647 6B)7 OdAB — R(eAj 647 eB) 64)7 pP = ZR(647€3764763)7 0 =



The equations |

V.t + 5 (th)? = - - 2wtk

W4>AC + t/bOAC = —2wx - «a,

Yo thx + %(t/rxf = —2wtfx - |%I°,

YaXx +thx X = —2wx - a,
Ptk + 5 thtbx = 2wty + 20 - ¢ X+ 2+ 2l
Pk + 5k = Y81+ 2wk - Stk + 18,
Ytk + 5 ththx = 2wtk + 2p - % & + 24 1+ 2ll”

1, 1,
VX + it/fgx = Y®n + 2wX - it/rxz+ nen.



The equations |

Yin=-x-(n-n) -5,
Yin=-x-(n-n)+p,
Yw=¢-(m-n)-n-n+p,

di/v>%=%77t/rx—é-(x—t/fxv)—ﬁ,

di/vX:%WtﬁXJrC'(X—fﬁXW)Jré,

1
cuﬁrln:—cuﬁlﬂza+ 52/\)%7

1 1

K=-p+-X-X—~— -
Pt oX-X - Xtk



The equations lli

Vyor+ Sthxor = Y86 + dwa - 3(Rp +* X0) + (¢ + 4n)BH,
P8+ 208 = A @~ 2B + (2 +1) o
Y.B+thxB=Yp+2wB+" Yo+2x-8+3(np+" no),

3 g o* 1.
y74a+§tﬁxa:—d1ﬁ/ B+§X/\O¢—C/\B—QQ/\6,

WSO-_}_gt/rXO':—di/V *é—%)%/\g—Fg/\é—QT]/\é;
Vup+ Sthxp=di B X -ar (B2 6,
Voo + Sthxp= il - >x-a+C- 205,

Y,B+thx8=-Yp + Yo + 2w§+2X~6—3(ﬂp—* no),
Va8 +2thxB = —div a—2wB - (-2¢ + 1) - o,

Y, o+ %t/rxg = -Y®B +4wa - 3(xp—" xo) + (¢ - 4n)®L.



Recall from Lecture 2:
generic blow up at Cauchy horizon

Theorem. (Luk—Oh, M.D.-Shlapentokh-Rothman, Luk-
Sbierski) Consider generic smooth localised initial data (W, W)

on Y. for the wave equation

RUES O on subextremal Kerr

or Reissner-Nordstrom. Then the local energy of v blows

up at €} i.e. wis inextendible in H!

_|_
loc aCross CF



Recall from Lecture 2:
generic blow up at Cauchy horizon

Theorem. (Luk—Oh, M.D.-Shlapentokh-Rothman, Luk-
Sbierski) Consider generic smooth localised initial data (W, W)
on X for the wave equation ||,y = O on subextremal Kerr
or Reissner-Nordstrom. Then the local energy of v blows

up at €I, i.e. wis inextendible in H' across €.

loc

Before trying to prove our main Theorem, must address
question: Is this consistent with non-linear evolution?



Luk’s weak null singularities

Theorem. (J. Luk 2013) Consider vacuum characteristic initial data posed
on the above hypersurfaces such that on the outgoing part U = U, the
Christoffel symbols are bounded in a norm consistent with the singular
behaviour of the previous theorem. Then the Cauchy evolution can be
covered by a full rectangular domain [ U O,O) X [Uy, U], i.e. it has Penrose
diagram as shown above, and the metric extends, at least C O across a
Cauchy horizon U = 0.



Luk’s weak null singularities

Theorem. (J. Luk 2013) Consider vacuum characteristic initial data posed
on the above hypersurfaces such that on the outgoing part U = U, the
Christoffel symbols are bounded in a norm consistent with the singular
behaviour of the previous theorem. Then the Cauchy evolution can be
covered by a full rectangular domain [ U O,O) X [Uy, U], i.e. it has Penrose
diagram as shown above, and the metric extends, at least C O across a
Cauchy horizon U = 0.

Moreover, if the Christoffel symbols indeed have the singular profile of the
previous theorem, then this profile propages. Thus U = 0 can be thought
of as a weak null singularity.
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Proof of Luk’s theorem

Best general well posedness results for the vacuum equation need
curvature to be square integrable (Klainerman—-Rodnianski—-Szeftel)

Here even the Christoffel symbols fail to be square integrable
This is compensated by additional angular regularity

Compare with impulsive gravitational waves (Penrose, Luk—Rodnianski)
where Christoffel symbols were square integrable. Could do usual energy
estimates but with renormalised Bianchi equations (see next slide).

In contrast, here need in addition weighted estimates:
l.e. estimate Hf(Q)f(HLim(sU,g) with e.g. f(U) = (=U)?|log(-U)|> T

Null condition ensures non-linear terms can be estimated!



The renormalised
equations

, 1. 1 ) 1.
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The renormalised
equations

, 1. 1 ) 1.
prK=—ptg -x—zf/fxf/% 0~ G =0+ SXAX

Y + thxf = — VK +* Yo + %8 + 28— 30K " 19) + (V% 1) +* V(LA X))

n S(WZ KA IRAR) — iwt/rxt/@ + thx Vikx) — Zﬁ%x%z,

Va6 + Sthxo = —dib "B CAB—20AB — XA (VEn) — X A (),
1

W4K+t/fo=—di/V6—C-ﬁ—2Q-ﬁ+%X-W(§>ﬂ+%>%-(ﬁ®ﬂ)—§%Xdi/VQ—%t/fxlnl2,

3 s 1. . 1 .
Y735+§t@&:—d1/v ﬁ+§/\§—2n/\§+§X/\(Y7®n)+§x/\(n®n),
. 1 1. 1 , 1
V3K +thx K =dif 8= C- B +2n- B+ 5% - YO+ 5% - (n@n) — Stkxdiv 0 — SthxInl®,

VB + thxB =YK +* Vo + 2B + 2k - f + 3(nK +" no) — %(W(fc %) =" V(XAR)

+ E(Vt/fxt/rx + thxViky) — g(ﬂfc K =FXAR) + %ﬂt‘/fxt/fx.



Bifurcate weak null
smgularltles

Theorem. (J. Luk 2013) Consider initial data such that the
Christoffel symbols have the singular profile suggested by
the previous on both ingoing and outgoing parts. Then, with
an appropriate smallness condition, the maximal future
development is bounded by a bifurcate null singularity,
across which the metric is globally continuously extendible.



Back to the theorem

Theorem. Consider Cauchy initial data on %, for the
Einstein vacuum equations which are both close to Kerr and
approach a Kerr solution. Then the Cauchy evolution has
Penrose diagram as shown on the right, and the metric
extends, at least C* across a Cauchy horizon € T
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Difference quantities and the
reduced schematic system

thy = thy — (thx)c, B =8 — B

ve{mat,  dme{thoxt,  vm € {thx)

schematic equation:

W4W3t//& e Z (1 4 Wug + Wmin{il,Q}QZ)(l + le;H)(WZB (&H, fg/) 4+ Q’E2Wi3’5)’
i1+i2+i3<3



e use X=r*wPo, +vPa,) with p>1
* bulk non-negativity of the worst terms

* jnitial flux on r = r,,c bounded from previous

Recall from Lecture 5:
the linear wave equation

e obtain finally bounds for J vP(0,y)*dv sin OdOd¢p

u=const

Note V is now denoted U



Global weights: mimicking
the X vector field
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Global weights: mimicking
the X vector field

. _
|luz ™ Q% Bl Lo L2 L2(5,, )

_ i85 NA2 3T |12 1 37
Nhyp |luz oY RV Yl 12 p2(s) + N2 @™V 0m |7 2 pogs) + -
: _ 146 _NO3 w37 112 5 ~
Nint = |Ju2 @ Q¥ ¢H||L3L2£L2(S)+|||U|2+5WNQKW3¢E||%3L3L2(S)
1 3~ :
+Huz N QY ¢H%3LiL2<S) 2
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the X vector field
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* hyperbolic, transport and elliptic estimates under these
weights
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the X vector field

. _
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1 37 1 37
Nugp = w2 @RV Wrllf o2 p2(s) + el 7@ Y ¥mll7 o 2 p2gs) + -
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* hyperbolic, transport and elliptic estimates under these
weights

 “null condition” and the geometric properties of the solution
near the Cauchy horizon ensures estimates close



Relation of the weights with
weak null singularities

U= —e kU

I @)X 22 L2 (s0,0)
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Recall from Lecture 5:
Deducing C' bounds

2
|1//|2 < <[ |0vz//|) + data < (J vp|avw|2dv> <[ v‘pdv> + data
1 1 1

* now integrate the above over the spheres
e Since p > 1, the second factor is finite
* commute with €,

* and apply Sobolev on the spheres




Showing continuity of the
metric

* Similar in view of first variation relations &£,y =2y , etc...



Open problem |

(Eaga k) N (Zagao,Moakao,Mo)

Finish the proof of the nonlinear exterior stability of Kerr conjecture!



Remark:
the A > 0 analogue

Theorem. (Hintz—Vasy) The region between the event and
cosmological horizons is stable for very slowly rotating
Kerr—de Sitter, with exponential decay along € # A



Remark:
the A > 0 analogue

Theorem. (Hintz—Vasy) The region between the event and
cosmological horizons is stable for very slowly rotating
Kerr—de Sitter, with exponential decay along € # A

Thus our theorem can be applied to yield stability of the above
Penrose diagram and the falsification of the C° formulation of SCC
for A > 0.



Open problem I

(Eaga k) N (Zagao,Moakao,Mo)

In the context of the nonlinear exterior stability of Kerr conjecture,
show in addition that there is a generic lower bound on the rate of
approach to Kerr.



Open problem I

(Eaga k) N (Zagao,Moakao,Mo)

In the context of the nonlinear exterior stability of Kerr conjecture,
show in addition that there is a generic lower bound on the rate of
approach to Kerr.

See Luk-Oh, Angelopoulos—-Aretakis—Gajic



Open problem llI

(E,ﬁ, ’ZC) N (EvgaO,Moa ka’OaMO)

Use the above to show that generically, the Cauchy horizon is indeed
a weak null singularity and Christodoulou’s formulation of strong
cosmic censorship is true



Open problem llI

(E,ﬁ, ’ZC) N (EvgaO,Moa ka’OaMO)

Use the above to show that generically, the Cauchy horizon is indeed
a weak null singularity and Christodoulou’s formulation of strong
cosmic censorship is true

See M.D., Luk—Oh, Luk-Sbierski



Strong cosmic censorship
(Christodoulou formulation)

Conjecture. (R. Penrose, 1973) The Kerr Cauchy horizon is
a fluke! For generic asymptotically flat initial data (X, g, K)
for the vacuum equations, the maximal future Cauchy
development (M., g) is inextendible as a C" Lorentzian
manifold with locally square integrable Christoffel symbols.

This formulation is sufficiently strong to assure that
there i1s no extension even as a weak solution.



Open problem IV

Is there an open set in the moduli space of vacuum initial data
leading to a spacelike singularity?



Open problem IV

Is there an open set in the moduli space of vacuum initial data
leading to a spacelike singularity?

See Rodnianski-Speck for Einstein-scalar field
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