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Lecture 1

General Relativity and Lorentzian geometry
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A time orientation is a global continuous timelike vectorfield 

Given    , a causal vector                      is said to be

• future pointing if

• past pointing if

Time orientation
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T v ∈ Tpℳ

g(v, T(p)) > 0

T
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A basic kinematic principle is that all physical particles traverse 

future-directed causal curves     in spacetime               .

Freely falling massive (resp. massless) particles traverse 
future-directed timelike (resp. null) geodesics:  

Kinematics

(ℳ, g)

γ

γ (ℳ, g)

∇ ·γ
·γ = 0
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• cf. the Newtonian theory governed by         

•           is the Ricci curvature
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•       is the stress-energy-momentum tensor of matter

The Einstein equations
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1
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gμνR[g] = 8πTμν
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R = gαβRicαβ

Ricμν
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Δϕ = 4πμ
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• The vacuum Einstein equations constitute a    
nonlinear system of hyperbolic equations with a      
well posed initial value problem (Choquet-Bruhat 1952) 


• This is in stark constrast to the Newtonian theory!

The vacuum equations

Ricμν[g] −
1
2

gμνR[g] = 8πTμν

Δϕ = 0, ϕ(r) → 0 as r → ∞ ⟹ ϕ = 0
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Minkowski spacetime

• The Lorentzian analogue of Euclidean space


•  


• flat, thus Ricci-flat 


• Minkowski space is dynamically stable in the context of 
the Cauchy problem (Christodoulou–Klainerman)

(ℝ3+1, g = − dt2 + dx2 + dy2 + dz2)

Ric[g] = 0

Stability and instability problems for black hole spacetimes

Minkowski space

(R3+1, gMink) , gMink = −dt2 + dx2
+ dy2

+ dz2

Minkowski 1908

Simons Foundation discussion group on nonlinear PDE 4



Minkowski spacetime

• The Lorentzian analogue of Euclidean space


•  


• flat, thus Ricci-flat 


• Minkowski space is dynamically stable in the context of 
the Cauchy problem (Christodoulou–Klainerman)

(ℝ3+1, g = − dt2 + dx2 + dy2 + dz2)

Ric[g] = 0

Stability and instability problems for black hole spacetimes

Minkowski space

(R3+1, gMink) , gMink = −dt2 + dx2
+ dy2

+ dz2

Minkowski 1908

Simons Foundation discussion group on nonlinear PDE 4



Minkowski spacetime

• The Lorentzian analogue of Euclidean space


•  


• flat, thus Ricci-flat 


• Minkowski space is dynamically stable in the context of 
the Cauchy problem (Christodoulou–Klainerman)

(ℝ3+1, g = − dt2 + dx2 + dy2 + dz2)

Ric[g] = 0

Stability and instability problems for black hole spacetimes

Minkowski space

(R3+1, gMink) , gMink = −dt2 + dx2
+ dy2

+ dz2

Minkowski 1908

Simons Foundation discussion group on nonlinear PDE 4



Minkowski spacetime

• The Lorentzian analogue of Euclidean space


•  


• flat, thus Ricci-flat 


• Minkowski space is dynamically stable in the context of 
the Cauchy problem (Christodoulou–Klainerman)

(ℝ3+1, g = − dt2 + dx2 + dy2 + dz2)

Ric[g] = 0

Stability and instability problems for black hole spacetimes

Minkowski space

(R3+1, gMink) , gMink = −dt2 + dx2
+ dy2

+ dz2

Minkowski 1908

Simons Foundation discussion group on nonlinear PDE 4



Minkowski spacetime

• The Lorentzian analogue of Euclidean space


•  


• flat, thus Ricci-flat 


• Minkowski space is dynamically stable in the context of 
the Cauchy problem (Christodoulou–Klainerman)

(ℝ3+1, g = − dt2 + dx2 + dy2 + dz2)

Ric[g] = 0

Stability and instability problems for black hole spacetimes

Minkowski space

(R3+1, gMink) , gMink = −dt2 + dx2
+ dy2

+ dz2

Minkowski 1908

Simons Foundation discussion group on nonlinear PDE 4



linearising around Minkowski space we obtain that the 
components        of the linearised metric satisfy


Gravitational Waves! (Einstein 1916)

Harmonic coordinates
gαβΓμ

αβ = 0 ⇔ □g xμ = 0

Ricμν[g] = 0 ⇔ gαβ∂α∂βgμν = Nμν(g, ∂g, ∂g)

( □g f = gαβ∂α∂β f − gαβΓμ
αβ∂μ f )

□ ·gμν = 0

·gμν
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• A hypersurface      is spacelike if its normal     is 
timelike, equivalently induced metric     is Riemannian.


•     is a Cauchy hypersurface if all inextendible causal 
curves      intersect      precisely once.


•             is globally hyperbolic if it admits a Cauchy     .

• Example:                       in Minkowski space

Cauchy hypersurfaces
(ℳ, g)

Σ

Σ n
ḡ

Σ = {t = 0} ℝ3+1

Σ
Σγ

(ℳ, g) Σ
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• Let              be globally hyperbolic with Cauchy 
hypersurface 


• Given smooth initial data             on    , there exists a 
unique smooth global solution     of                   s.t.


                                       

Aside: the wave equation   
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Let     be a spacelike hypersurf. in             satisfying            
Then the Gauss and Codazzi equations of classical differential 
geometry imply the following Einstein constraint equations


where        is the induced metric and        is the second 
fundamental form.

Constraints
(ℳ, g)

(Σ, ḡ, K)

(ℳ, g)Σ

n

R(ḡ) + (Ka
a)2 − Ka

bKb
a = 0, ∇̄bKb

a − ∇̄aKb
b = 0

Ric(g) = 0.

ḡab Kab
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Theorem. (Choquet-Bruhat–Geroch 1969) Let                  satisfy 
smoothly the constraints. Then there exists spacetime                s.t.


•             is globally hyperbolic,                  embeds iso. as 
Cauchy hypersurface with induced metric    and 2nd f.f.    


•       

• The spacetime               is maximal.  Any                

satisfying the above embeds iso. 

The maximal Cauchy 
development

(ℳ, g)

(Σ, ḡ, K)

(ℳ, g) Σ → ℳ

Ric(g) = 0

(Σ, ḡ, K)
(ℳ4, g)

ḡ K

(ℳ, g) ( ℳ̃ 4, g̃)
( ℳ̃ , g̃) → (ℳ, g)
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(Σ, ḡ, K)
(ℳ4, g)
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Plan of the lectures
Lecture 1. General Relativity and Lorentzian geometry


Lecture 2. The geometry of Schwarzschild black holes 

Lecture 3. The analysis of waves on Schwarzschild exteriors


Lecture 4. The geometry of Kerr black holes and the strong 
cosmic censorship conjecture  

Lecture 5. The analysis of waves on Kerr black hole interiors 

Lecture 6. Nonlinear      stability of the Kerr Cauchy horizonC0



Lecture 2

The geometry of Schwarzschild black holes



Schwarzschild spacetime

• discovered in 1915 by Karl Schwarzschild


•   


• spherically symmetric solution of vacuum equations 


• singular?


• Lemaitre 1932

g = − (1 − 2M/r)dt2 + (1 − 2M/r)−1dr2 + r2(dθ2 + sin2 θ dϕ2)

Ric(g) = 0

r = 2M? r = 0? θ = 0, π?

t* = t + 2M log(r − 2M) ⟹

Stability and instability problems for black hole spacetimes

The Schwarzschild metric

g = −�1 −
2M

r
�dt2 + �1 −

2M

r
�

−1
dr2 + r2d✓2 + r2 sin

2 ✓d�2

M = 0 �⇒ Minkowski space

vacuum, stationary, spherically symmetric, black hole if M > 0

Schwarzschild: Über das Gravitationsfeld eines Massenpunktes 189

Über das Gravitationsfeld eines Massenpunktes

nach der EiNSTEiNsehen Theorie.

Von K. Schwarzschild.

(Vorgelegt am 13. Januar 1916 [s. oben S. 42].)

§ i . Hr. Einstein hat in seiner Arbeit über die Perihelbewegung
des Merkur (s. Sitzungsberichte vom 1 8. November 191 5) folgendes

Problem gestellt:

Ein Punkt bewege sich gemäß der Forderung

& (ds = o ,

wobei

ds = V^>, 9u^xu.dx„ u,v= 1,2,3,4

(0

ist, g^, Funktionen der Variabein x bedeuten und bei der Variation

am Anfang und Ende des Integrationswegs die Variablen x festzuhalten

sind. Der Punkt bewege sich also, kurz gesagt, auf einer geodätischen

Linie in der durch das Linienelement ds charakterisierten Mannig-
faltigkeit.

Die Ausführung der Variation ergibt die Bewegungsgleichungen
des Punktes

d*xa „ a
dxu dx„

ds* ^j *" ds ds

wobei

2 if V ° x
» ° x* " xa /

(3)

ist und g
a& die zu gaS koordinierte und normierte Subdeterminante in

der Determinante
| gur |

bedeutet.

Dies ist nun nach der EiNSTEiNsehen Theorie dann die Bewegung
eines masselosen Punktes in dem Gravitationsfeld einer im Punkt
x

1
= x2 = x

3
= o befindlichen Masse, wenn die »Komponenten des

Gravitationsfeldes « T überall, mit Ausnahme des Punktes xx
= x2 = x

3
= o,

den »Feldgleichungen«

Schwarzschild 1915
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g = − (1 − 2M/r)(dt*)2 + (4M/r)drdt* + (1 + 2M/r)dr2 + r2(dθ2 + sin2 θ dϕ2)
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The geometry of 
Schwarzschild

Black holes and spacetime singularities in general relativity
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The black hole
Stability and instability problems for black hole spacetimes
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Falling into the black holeStability and instability problems for black hole spacetimes

Falling onto SchwarzschildFalling into Schwarzschild

Theorem. The spacetime is inextendible beyond r=0 
as a continuous Lorentzian manifold.
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The Penrose diagram

• The singularity             is spacelike.


• The metric is inextendible beyond            , not only as a    , 
but as a continuous          Lorentzian metric. (J. Sbierski 2016)


• Observers falling into the black hole are eventually torn apart 
by tidal deformations.

Black holes and spacetime singularities in general relativity

Penrose diagrams I

A better picture of Schwarzschild:
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)

The singularity r = 0 is spacelike!
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Doubling Schwarzschild

Synge 1950, Kruskal 1960

Black holes and spacetime singularities in general relativity

Penrose diagrams II

Schwarzschild can be doubled!
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Schwarzschild  
as a maximal globally hyperbolic  

future Cauchy development

Black holes and spacetime singularities in general relativity

Schwarzschild as a

maximal globally hyperbolic future Cauchy development
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r = 0
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+H +

(⌃, ḡM ,KM) asymptotically flat with two ends
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Penrose’s incompleteness 
theorem

Theorem. (Penrose 1965) Let               satisfy the following: 

•              is globally hyperbolic with a non-compact 
Cauchy hypersurface     . 

•                         for all null vectors    . 

•        contains a closed trapped surface     . 

Then               is future causally geodesically incomplete.

(ℳ, g)

(ℳ, g)
Σ

Ric(V, V ) ≥ 0 V

ℳ S

(ℳ, g)



Corollary of Penrose’s 
incompleteness theorem

Corollary. For initial data near Schwarzschild 

the maximal future globally hyperbolic Cauchy development                                       
.             is again future causally geodesically incomplete.

(Σ, ḡ, K) ≈ (Σ, ḡM, KM)

(ℳ, g)



References for Lecture 2
• M.D. “The geometry and analysis of black hole spacetimes in general relativity” 

https://www.dpmms.cam.ac.uk/~md384/ETH-Nachdiplom-temp.pdf (under 
construction)


• M.D. and I. Rodnianski “Lectures on black holes and linear waves”, arXiv:0811.0354


• S. Hawking and G. Ellis “The large scale structure of space-time”, (Cambridge 
Monographs on Mathematical Physics), CUP


• R. Penrose “Gravitational collapse and space-time singularities”, Phys. Rev. Lett., 
14:57–59, Jan 1965. 


• J. Sbierski “The C^0-inextendibility of the Schwarzschild spacetime and the 
spacelike diameter in Lorentzian geometry”, J. Differential Geom., Volume 108, 
Number 2 (2018), 319–378


• R. M. Wald “General Relativity”, University of Chicago Press

https://www.dpmms.cam.ac.uk/~md384/ETH-Nachdiplom-temp.pdf


Plan of the lectures
Lecture 1. General Relativity and Lorentzian geometry


Lecture 2. The geometry of Schwarzschild black holes 

Lecture 3. The analysis of waves on Schwarzschild exteriors


Lecture 4. The geometry of Kerr black holes and the strong 
cosmic censorship conjecture  

Lecture 5. The analysis of waves on Kerr black hole interiors 

Lecture 6. Nonlinear      stability of the Kerr Cauchy horizonC0



Lecture 3

The analysis of waves on Schwarzschild exteriors



• Let              be globally hyperbolic with Cauchy 
hypersurface 


• Given smooth initial data             on    , there exists a 
unique smooth global solution     of                   s.t.


                                       

Recall: general global well 
posedness

(ℳ, g)

Σ

ϕ |Σ = ϕ0, nα∂αϕ |Σ = ϕ1

Σ

(ℳ, g)
Σ

γ
n

ϕ0, ϕ1
ϕ □g ϕ = 0



• Given smooth initial data             on    , there exists a 
unique smooth global solution     of                   s.t.


                                       

The wave equation on 
Schwarzschild

ϕ |Σ = ϕ0, nα∂αϕ |Σ = ϕ1

ϕ □g ϕ = 0
ϕ0, ϕ1 Σ

Black holes and spacetime singularities in general relativity

Schwarzschild as a
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region                (the black hole exterior)?
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Main problem

• Does     remain uniformly bounded in the lighter shaded 
region                (the black hole exterior)?


• Does     decay to 0 as one approaches     ?
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Reduction

• Suffices to consider initial data on 

• Boundedness in the region between     and            is easy. 
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Reduction

• We will denote  

• The future domain of dependence              is foliated by

(ϕ0, ϕ1)

□g ϕ = 0 ϕ |Σ = ϕ0, nα∂αϕ |Σ = ϕ1

t* = 0

Σ0 = {t* = 0} ∩ {r ≥ 2M}

Proof. Clearly suffices to prove on Σ0.
We partition Σ = K ∪Σ \K where K is a compact manifold with boundary

X ∪ S and Σ \K a manifold with boundary such that .
It suffices to

From this we have again the Sobolev inequality on Στ ,

Proposition 5.3.2. For f smooth of compact support on Στ ,

|f | ≤ C(∥f∥H̊2(ψ) + ∥f∥H̊1(ψ))

where C is independent of f and τ .

5.3.4 The wave equation on R

By our assumptions, Σ0 is a past Cauchy hypersurface for R. We may impose
initial data ψ, ψ′ on Σ0 for the wave equation on the hypersurface Σ0 and solve
the wave equation, i.e. we have the following Corollary of Theorem 4.5:

Corollary 5.1. Given k > 1 and initial data ψ ∈ Hk
loc(Σ0), ψ′ ∈ Hk−1

loc (Σ0),
there exists a unique solution of (27) in R satisfying the regularity property of
Theorem 4.5. In particular, if ψ,ψ′ are C∞ then ψ is C∞. Moreover, if ψ,ψ′

are of compact support then ψ|Στ , nψ|Στ will be of compact support for all τ .

In what follows, for convenience, we will denote by ψ the solution of (27)
arising from given data ψ, ψ′ which are indeed assumed smooth and compactly
supported.

The estimates will then hold more generally for the closure of this set in the
space defined by the norms that appear on the right hand side of our inequalities.

5.4 The conserved energy identity

Let us consider the region Rτ = ∪τt=0Σt.

Σ0

H
+ Στ

Rτ

This region is bounded to the future by Στ ∪Hτ , where Hτ = H ∩Rτ and to
the past by Σ0.

In the Schwarzschild case, we may alternatively depict this region by the
formal two-dimensional Penrose diagramme:

I +H
+

Στ

Σ0

Rτ

48

Στ = {t* = τ} ∩ {r ≥ 2M}

D+(Σ0)
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Vector field multipliers

□g ψ = 0 ⟹

Tμν[ψ] = ∂μψ∂νψ −
1
2

gαβ∂αψ∂βψ

∇μTμν[ψ] = 0

X
JX

μ [ψ] ≐ Tμν[ψ]Xν

KX[ψ] ≐ Tμν[ψ](X)πμν
vector field

future timelikespacelike,Σt X

⟹ ∫Σ1

JX
μ [ψ]nμdVΣ1 coercive

∇μJX
μ [ψ] = KX[ψ]

= 0 if K is Killing
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The     vector field

The coordinate vector field      extends to a globally defined 
Killing field 

Black holes and spacetime singularities in general relativity

Penrose diagrams II

Schwarzschild can be doubled!
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The     identity

(ϕ0, ϕ1)

□g ϕ = 0 ϕ |Σ = ϕ0, nα∂αϕ |Σ = ϕ1

t* = 0

Proof. Clearly suffices to prove on Σ0.
We partition Σ = K ∪Σ \K where K is a compact manifold with boundary

X ∪ S and Σ \K a manifold with boundary such that .
It suffices to

From this we have again the Sobolev inequality on Στ ,

Proposition 5.3.2. For f smooth of compact support on Στ ,

|f | ≤ C(∥f∥H̊2(ψ) + ∥f∥H̊1(ψ))

where C is independent of f and τ .

5.3.4 The wave equation on R

By our assumptions, Σ0 is a past Cauchy hypersurface for R. We may impose
initial data ψ, ψ′ on Σ0 for the wave equation on the hypersurface Σ0 and solve
the wave equation, i.e. we have the following Corollary of Theorem 4.5:

Corollary 5.1. Given k > 1 and initial data ψ ∈ Hk
loc(Σ0), ψ′ ∈ Hk−1

loc (Σ0),
there exists a unique solution of (27) in R satisfying the regularity property of
Theorem 4.5. In particular, if ψ,ψ′ are C∞ then ψ is C∞. Moreover, if ψ,ψ′

are of compact support then ψ|Στ , nψ|Στ will be of compact support for all τ .

In what follows, for convenience, we will denote by ψ the solution of (27)
arising from given data ψ, ψ′ which are indeed assumed smooth and compactly
supported.

The estimates will then hold more generally for the closure of this set in the
space defined by the norms that appear on the right hand side of our inequalities.

5.4 The conserved energy identity

Let us consider the region Rτ = ∪τt=0Σt.

Σ0

H
+ Στ

Rτ

This region is bounded to the future by Στ ∪Hτ , where Hτ = H ∩Rτ and to
the past by Σ0.

In the Schwarzschild case, we may alternatively depict this region by the
formal two-dimensional Penrose diagramme:
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JT
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∇μJT
μ [ϕ] = KT[ϕ] = 0 ⟹

r =
2M
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Recalling our estimates:


we obtain
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The boundedness theorem

Theorem. We have the uniform bound:                 


in the black hole exterior region                , where      is a 
suitable norm on initial data              .           

Black holes and spacetime singularities in general relativity

Schwarzschild as a

maximal globally hyperbolic future Cauchy development
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+ I +
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(⌃, ḡM ,KM) asymptotically flat with two ends
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rate for different masses of the intermediate
boson. The end point of the neutrino spectrum
from the 184-in. cyclotron is -250 MeV, and
neutrinos with this energy in collision with a
stationary proton would produce a boson of mass
equal to 2270m~. However, with the momentum
distribution in the nucleus, higher boson masses
may be attained, but only a small fraction of the
protons can participate, so the rate of events
falls off rapidly.
Because of the low energy of the neutrinos pro-

duced at the 1S4-in. cyclotron, only a rather con-
servative limit of 2130m can be placed on the
mass of the intermediate boson.
We would like to thank Professor Luis Alvarez

for suggesting this measurement and showing a
keen interest in its progress, and also Profes-
sor Clyde Cowan for communicating his results
before their publication. Our thanks are due

Mr. Howard Goldberg, Professor Robert Kenney,
and Mr. James Vale and the crew of the cyclotron,
without whose full cooperation the run would not
have been possible. We are also grateful to
Mr. Philip Beilin, Mr. Ned Dairiki, and Mr. Rob-
ert Shafer for their help in running the experiment.

*This work was done under the auspices of the U. S.
Atomic Energy Commission
'Clyde L. Cowan, Bull. Am. Phys. Soc. 8, 383 (1963);

and (private communication).
2Toichino Kinoshita, Phys. Bev. Letters 4, 378 (1960).
ST. Tanikawa and S. Watanabe, Phys. Bev. 113, 1344

(19593.
4Hugo B. Rugge, Lawrence Radiation Laboratory

Report UCBL-10252, 20 May 1962 (unpublished).
~Richard J. Kurz, Lawrence Radiation Laboratory

Report UCBL-10564, 15 November 1962 (unpublished).
6Howard Goldberg (private communication).

GRAVITATIONAL FIELD OF A SPINNING MASS AS AN EXAMPLE
GF ALGEBRAICALLY SPECIAL METRICS
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University of Texas, Austin, Texas and Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio

(Received 26 July 1963)

Goldberg and Sachs' have proved that the alge-
braically special solutions of Einstein's empty-
space field equations are characterized by the
existence of a geodesic and shear-free ray con-
gruence, A&. Among these spaces are the plane-
fronted waves and the Robinson- Trautman metrics'
for which the congruence has nonvanishing diver-
gence, but is hypersurface orthogonal.
In this note we shall present the class of solu-

tions for which the congruence is diverging, and
is not necessarily hypersurface orthogonal. The
only previously known example of the general
case is the Newman, Unti, and Tamburino met-
rics, 'which is of Petrov Type D, and possesses
a four-dimensional group of isometrics.
If we introduce a complex null tetrad (t~ is the

complex conjugate of t), with
ds = 2tt*+ 2m'',

then the coordinate system may be chosen so that
t =P(r+f~)dg,
)t =du+2Re(Qdg),
I dr —2 Re[[(r —ie))) ~ ())ii]d([=+(rPi')'

+Re[P 'D(o*lnP h*)+] '+, +6

(m -D*D*DQ) = Is DQI',
Q

Im(m -D*D*DQ) =0,
D*m = 3mb. (4)

The second coordinate system is probably better,
but it gives more complicated field equations.
It will be observed that if m is zero then the

field equations are integrable. These spaces
correspond to the Type-III and null spaces with

where g is a complex coordinate, a dot denotes
differentiation with respect to g, and the operator
D is defined by

D = 8/st; - Qs/su.
P is real, whereas Q and m (which is defined to
be m, +im, ) are complex. They are all independ-
ent of the coordinate ~. L is defined by

6 =Im(P 'D~Q).

There are two natural choices that can be made
for the coordinate system. Either (A) P can be
chosen to be unity, in which case 0 is complex,
or (B) Q can be taken pure imaginary, with P dif-
ferent from unity. In case (A), the field e(luations
are

Kerr 1963
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rate for different masses of the intermediate
boson. The end point of the neutrino spectrum
from the 184-in. cyclotron is -250 MeV, and
neutrinos with this energy in collision with a
stationary proton would produce a boson of mass
equal to 2270m~. However, with the momentum
distribution in the nucleus, higher boson masses
may be attained, but only a small fraction of the
protons can participate, so the rate of events
falls off rapidly.
Because of the low energy of the neutrinos pro-

duced at the 1S4-in. cyclotron, only a rather con-
servative limit of 2130m can be placed on the
mass of the intermediate boson.
We would like to thank Professor Luis Alvarez

for suggesting this measurement and showing a
keen interest in its progress, and also Profes-
sor Clyde Cowan for communicating his results
before their publication. Our thanks are due
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ert Shafer for their help in running the experiment.
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Goldberg and Sachs' have proved that the alge-
braically special solutions of Einstein's empty-
space field equations are characterized by the
existence of a geodesic and shear-free ray con-
gruence, A&. Among these spaces are the plane-
fronted waves and the Robinson- Trautman metrics'
for which the congruence has nonvanishing diver-
gence, but is hypersurface orthogonal.
In this note we shall present the class of solu-

tions for which the congruence is diverging, and
is not necessarily hypersurface orthogonal. The
only previously known example of the general
case is the Newman, Unti, and Tamburino met-
rics, 'which is of Petrov Type D, and possesses
a four-dimensional group of isometrics.
If we introduce a complex null tetrad (t~ is the

complex conjugate of t), with
ds = 2tt*+ 2m'',

then the coordinate system may be chosen so that
t =P(r+f~)dg,
)t =du+2Re(Qdg),
I dr —2 Re[[(r —ie))) ~ ())ii]d([=+(rPi')'

+Re[P 'D(o*lnP h*)+] '+, +6

(m -D*D*DQ) = Is DQI',
Q

Im(m -D*D*DQ) =0,
D*m = 3mb. (4)

The second coordinate system is probably better,
but it gives more complicated field equations.
It will be observed that if m is zero then the

field equations are integrable. These spaces
correspond to the Type-III and null spaces with

where g is a complex coordinate, a dot denotes
differentiation with respect to g, and the operator
D is defined by

D = 8/st; - Qs/su.
P is real, whereas Q and m (which is defined to
be m, +im, ) are complex. They are all independ-
ent of the coordinate ~. L is defined by

6 =Im(P 'D~Q).

There are two natural choices that can be made
for the coordinate system. Either (A) P can be
chosen to be unity, in which case 0 is complex,
or (B) Q can be taken pure imaginary, with P dif-
ferent from unity. In case (A), the field e(luations
are

Kerr 1963
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The ergoregion

There is a region outside the horizon where     is spacelike!
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Black holes and spacetime singularities in general relativity

Recall the geometry of Schwarzschild

g = (1−2M�r)dt∗+(1+2M�r)dr2+(4M�r)drdt+r2(d✓2+ sin
2 ✓d�2

)The geometry of Schwarzschild

r
=

2
M

r
=

0

Lemaitre 1932, Synge 1950

t� = t + 2M log |r � 2M |

Lemaitre 1932
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The Cauchy horizon

Before encountering any singularity, the observer falling in 
the black hole reaches a second horizon, the so-called 
Cauchy horizon (Hawking 1966).

Black holes and spacetime singularities in general relativity

Falling into Kerr

Kerr solution remains smooth, but 
not uniquely determined beyond Cauchy horizon.

Hawking 1967 
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Freely falling observer

meets observers not coming from initial data ⌃!
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The Penrose diagram

• From the point of view of the Cauchy problem, the maximal future 
Cauchy development of Kerr initial data posed on     is incomplete but 
smoothly extendible beyond a bifurcate Cauchy horizon        .   In fact, 
all incomplete geodesics can pass into the extension.


• This is analogous to the phenomenon that arises when one tries to 
solve the Cauchy problem for the classical wave equation                
with data posed only on the set                              .


• Thus, applied to Kerr, Penrose’s incompleteness theorem does not 
signify singularity formulation, but rather loss of determinism.

Black holes and spacetime singularities in general relativity

Penrose diagram of Kerr

⌃

I
+ I +

C
H

+ C
H +

H +
H

+

maximal g.h. Cauchy development of ⌃ is incomplete

yet globally extendible smoothly beyond a Cauchy horizon CH
+
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Which behaviour is preferable, Schwarzschild or Kerr?

Stability and instability problems for black hole spacetimes

Which behaviour is better

Schwarzschild or Kerr ?

Simons Foundation discussion group on nonlinear PDE 42



Strong cosmic censorship 
(     formulation)

Conjecture. (R. Penrose, 1973) The Kerr Cauchy horizon is 
a fluke! For generic asymptotically flat initial data                
for the vacuum equations, the maximal future Cauchy 
development              is inextendible… as a manifold with 
continuous         Lorentzian metric.   

This formulation ensures the strong form of determinism 
that we saw holds for the Schwarzschild solution.

(Σ, ḡ, K)

(ℳ, g)

C0

(C0)
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Spacelike singularity 
conjecture

Conjecture. (R. Penrose) For generic asymptotically flat initial 
data for the vacuum equations, the “finite future boundary” of 
the maximal future Cauchy development is spacelike. 

holds for Schwarzschild

Black holes and spacetime singularities in general relativity

“Spacelike singularity conjecture”

Conjecture (Penrose).

For generic asymptotically flat vacuum initial data (⌃, ḡ,K),

all black hole regions terminate in a spacelike singularity.

H

+

singularity

holds for Schwarzschild
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Stability of the Kerr exterior

Conjecture. The Kerr family is stable in the exterior as solutions to 
the vacuum Einstein equations: Small perturbations of (two-ended) 
Kerr initial data lead to a maximal future Cauchy development with 
complete null infinity       such that in              , in particular on        , 
the induced geometry approaches—inverse polynomially—two 
nearby Kerr solutions.        

Black holes and spacetime singularities in general relativity

The exterior stability conjecture of Kerr: Penrose diagram

(⌃, ĝ, k̂) ≈ (⌃, ĝa0,M0
, k̂a0,M0)

I
+ I +H +

H

+?

g
→ g

a 1
,M

1
g
a
2 ,M

2 ←
g
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Poor man’s  
linear stability of Kerr

Theorem. (M.D.–Rodnianski–Shlapentokh-Rothman 2014)           
Consider smooth localised initial data              on      for the wave 
equation                   on sub-extremal Kerr. Then      remains uniformly 
bounded in the exterior region              . Moreover, one has sufficiently 
fast inverse polynomial decay for      towards     , in particular, along the 
event horizon        .    

….Andersson–Blue, Blue–Soffer, Blue–Sterbenz, Kay–Wald, M.D.–Rodnianski, Tataru–
Tohaneanu, Luk, Moschidis, Shlapentokh-Rothman, Whiting….

Black holes and spacetime singularities in general relativity

Generic interior blue-shift instability

Theorem (Luk–Oh, Luk–Sbierski, M.D–Shlapentokh-Rothman).

For generic solutions as in the previous theorem, the local energy

blows up identically along the Cauchy horizon CH+.

⌃

I
+ I +

H +
H

+
C
H

+
C
H +

cf. McNamara 1978
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Full linear stability of 
Schwarzschild

Theorem. (M.D.–Holzegel–Rodnianski 2016) Consider smooth characteristic initial 
data for the linearised Einstein equations around Schwarzschild, expressed in 
double null gauge.  Then the arising solution remains uniformly bounded in the 
exterior region                 in terms of its initial data. Moreover, after adding a pure 
gauge solution, which itself is quantitatively controlled by the data, the solution 
approaches inverse polynomially a standard linearised Kerr metric as      is 
approached, in particular along      .  

 

J−(ℐ+)

ℋ+
i+

Black holes and spacetime singularities in general relativity

Schwarzschild as a

maximal globally hyperbolic future Cauchy development

⌃

I
+ I +

r = 0

H

+H +

(⌃, ḡM ,KM) asymptotically flat with two ends
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   stability of the Kerr 
Cauchy horizon

Theorem. (M.D.—J. Luk, 2017) If Kerr is nonlinearly stable in 
the black hole exterior (as conjectured), then its Penrose 
diagram is globally stable, and the metric again extends, at 
least     , across a Cauchy horizon           .      

C0

C0

Black holes and spacetime singularities in general relativity

Corollary. If the exterior stability of Kerr conjecture is true,

then both the C0 formulation of strong cosmic censorship

and the spacelike singularity conjecture are false.

(⌃, ĝ, k̂) ≈ (⌃, ĝa0,M0
, k̂a0,M0)

I
+ I +

H +
2 H

+
1

C
H

+
C
H +

g
a
2 ,M

2 ←�
g

g
�→

g a
1
,M

1
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The      formulation of strong 
cosmic censorship is false  

Corollary. If Kerr is nonlinearly stable in the black hole 
exterior (as conjectured), then the       formulation of the 
strong cosmic censorship conjecture, as well as the 
spacelike singularity conjecture, are both false.

C0

C0



References for Lecture 4
• M.D., G. Holzegel and I. Rodnianski “The linear stability of the Schwarzschild 

solution to gravitational perturbations”, arXiv:1601.06467 


• M.D. and I. Rodnianski “Lectures on black holes and linear waves”, arXiv:0811.0354


• M.D., I. Rodnianski and Y. Shlapentokh-Rothman “Decay for solutions of the wave 
equation on Kerr exterior spacetimes III: the full subextremal case ∣a∣ < M”, Ann. of 
Math., 183 (2016), 787–913


• M.D. and J. Luk “The interior of dynamical vacuum black holes I: The C^0-stability 
of the Kerr Cauchy horizon”, arXiv:1710.01772


• B. O’Neil “The Geometry of Kerr Black Holes”, Dover Books on Physics


• R. Penrose “Gravitational collapse” In C. Dewitt-Morette, editor, Gravitational 
Radiation and Gravitational Collapse, volume 64 of IAU Symposium, pages 82–91. 
Springer, 1974. 



Plan of the lectures
Lecture 1. General Relativity and Lorentzian geometry


Lecture 2. The geometry of Schwarzschild black holes 

Lecture 3. The analysis of waves on Schwarzschild exteriors


Lecture 4. The geometry of Kerr black holes and the strong 
cosmic censorship conjecture  

Lecture 5. The analysis of waves on Kerr black hole interiors 

Lecture 6. Nonlinear      stability of the Kerr Cauchy horizonC0



Lecture 5

The analysis of waves on Kerr black hole interiors
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rate for different masses of the intermediate
boson. The end point of the neutrino spectrum
from the 184-in. cyclotron is -250 MeV, and
neutrinos with this energy in collision with a
stationary proton would produce a boson of mass
equal to 2270m~. However, with the momentum
distribution in the nucleus, higher boson masses
may be attained, but only a small fraction of the
protons can participate, so the rate of events
falls off rapidly.
Because of the low energy of the neutrinos pro-

duced at the 1S4-in. cyclotron, only a rather con-
servative limit of 2130m can be placed on the
mass of the intermediate boson.
We would like to thank Professor Luis Alvarez

for suggesting this measurement and showing a
keen interest in its progress, and also Profes-
sor Clyde Cowan for communicating his results
before their publication. Our thanks are due

Mr. Howard Goldberg, Professor Robert Kenney,
and Mr. James Vale and the crew of the cyclotron,
without whose full cooperation the run would not
have been possible. We are also grateful to
Mr. Philip Beilin, Mr. Ned Dairiki, and Mr. Rob-
ert Shafer for their help in running the experiment.

*This work was done under the auspices of the U. S.
Atomic Energy Commission
'Clyde L. Cowan, Bull. Am. Phys. Soc. 8, 383 (1963);

and (private communication).
2Toichino Kinoshita, Phys. Bev. Letters 4, 378 (1960).
ST. Tanikawa and S. Watanabe, Phys. Bev. 113, 1344

(19593.
4Hugo B. Rugge, Lawrence Radiation Laboratory

Report UCBL-10252, 20 May 1962 (unpublished).
~Richard J. Kurz, Lawrence Radiation Laboratory

Report UCBL-10564, 15 November 1962 (unpublished).
6Howard Goldberg (private communication).
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Goldberg and Sachs' have proved that the alge-
braically special solutions of Einstein's empty-
space field equations are characterized by the
existence of a geodesic and shear-free ray con-
gruence, A&. Among these spaces are the plane-
fronted waves and the Robinson- Trautman metrics'
for which the congruence has nonvanishing diver-
gence, but is hypersurface orthogonal.
In this note we shall present the class of solu-

tions for which the congruence is diverging, and
is not necessarily hypersurface orthogonal. The
only previously known example of the general
case is the Newman, Unti, and Tamburino met-
rics, 'which is of Petrov Type D, and possesses
a four-dimensional group of isometrics.
If we introduce a complex null tetrad (t~ is the

complex conjugate of t), with
ds = 2tt*+ 2m'',

then the coordinate system may be chosen so that
t =P(r+f~)dg,
)t =du+2Re(Qdg),
I dr —2 Re[[(r —ie))) ~ ())ii]d([=+(rPi')'

+Re[P 'D(o*lnP h*)+] '+, +6

(m -D*D*DQ) = Is DQI',
Q

Im(m -D*D*DQ) =0,
D*m = 3mb. (4)

The second coordinate system is probably better,
but it gives more complicated field equations.
It will be observed that if m is zero then the

field equations are integrable. These spaces
correspond to the Type-III and null spaces with

where g is a complex coordinate, a dot denotes
differentiation with respect to g, and the operator
D is defined by

D = 8/st; - Qs/su.
P is real, whereas Q and m (which is defined to
be m, +im, ) are complex. They are all independ-
ent of the coordinate ~. L is defined by

6 =Im(P 'D~Q).

There are two natural choices that can be made
for the coordinate system. Either (A) P can be
chosen to be unity, in which case 0 is complex,
or (B) Q can be taken pure imaginary, with P dif-
ferent from unity. In case (A), the field e(luations
are

Kerr 1963
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Black holes and spacetime singularities in general relativity

Penrose diagram of Kerr
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0 < |a | < M



The main problem

Main problem. Consider smooth localised initial data             
on      for the wave equation                   on subextremal 
rotating Kerr. Understand the global properties of       in the 
darker shaded black hole interior region, in particular, the 
behaviour at         .     

For the Schwarzschild             case, see Fournodavlos–Sbierski.  

Black holes and spacetime singularities in general relativity

Generic interior blue-shift instability

Theorem (Luk–Oh, Luk–Sbierski, M.D–Shlapentokh-Rothman).

For generic solutions as in the previous theorem, the local energy

blows up identically along the Cauchy horizon CH+.
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The exterior behaviour

Theorem. (M.D.–Rodnianski–Shlapentokh-Rothman 2014)           
Consider smooth localised initial data              on      for the wave 
equation                   on sub-extremal Kerr. Then one has sufficiently 
fast inverse polynomial decay for the solution      in the exterior 
region              , in particular, along the event horizon      .    

….Andersson–Blue, Blue–Soffer, Blue–Sterbenz, Kay–Wald, M.D.–Rodnianski, 
Tataru–Tohaneanu, Luk, Moschidis, Shlapentokh-Rothman, Whiting….
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Reissner–Nordström

• discovered independently by Reissner, Nordström 1916/8


•  


• explicit solution of the Einstein–Maxwell equations


• spherically symmetric, static: Killing fields  


•    charge, subextremal     

g = − (1 − 2M/r + e2/r2)dt2 + (1 − 2M/r + e2/r2)−1dr2 + r2(dθ2 + sin2 θ dϕ2)

Ω1, Ω2, Ω3, T = ∂t

e 0 ≤ |e | < M
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Theorem (Luk–Oh, Luk–Sbierski, M.D–Shlapentokh-Rothman).

For generic solutions as in the previous theorem, the local energy
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The blue-shift instability 
(Penrose)

Normalising                  at    , since                   , it follows that    
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future endpoint.

Black holes and spacetime singularities in general relativity

Generic interior blue-shift instability

Theorem (Luk–Oh, Luk–Sbierski, M.D–Shlapentokh-Rothman).

For generic solutions as in the previous theorem, the local energy

blows up identically along the Cauchy horizon CH+.

⌃

I
+ I +

H +
H

+
C
H

+
C
H +

cf. McNamara 1978

Yamabe Lectures, Northwestern University, 25–26 October 2017 23

γ

g( ·γ, T ) = − 1 Σ
·γ → − ∞T

·γ(g( ·γ, T )) = 0
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Gaussian beam 
approximation

Corollary. (Sbierski) Consider generic finite energy initial 
data             on      for the wave equation                   on 
subextremal Kerr or Reissner–Nordström. Then the local 
energy of      blows up at         ,  i.e.     is inextendible in      
across        .    

(ψ0, ψ1) □g ψ = 0Σ

ψ 𝒞ℋ+ ψ
𝒞ℋ+

H1
loc



Generic blow up  
for smooth localised data

Theorem. (Luk–Oh, M.D.–Shlapentokh-Rothman, Luk–
Sbierski) Consider generic smooth localised initial data             
on      for the wave equation                   on subextremal Kerr 
or Reissner–Nordström. Then the local energy of      blows 
up at         ,  i.e.     is inextendible in          across        .    

(ψ0, ψ1)
□g ψ = 0Σ

ψ
𝒞ℋ+ψ𝒞ℋ+ H1

loc
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See also Luk–Sbierski, Hintz
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(ψ0, ψ1)
□g ψ = 0

ψ
Σ

𝒞ℋ+
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Review: 
vector field multipliers

□g ψ = 0 ⟹

Tμν[ψ] = ∂μψ∂νψ −
1
2

gαβ∂αψ∂βψ

∇μTμν[ψ] = 0

X
JX

μ [ψ] ≐ Tμν[ψ]Xν

KX[ψ] ≐ Tμν[ψ](X)πμν

∇μJX
μ [ψ] = KX[ψ]

vector field

future timelikespacelike,

Σ0

Σ1
Σt X

⟹ ∫Σ1

JX
μ [ψ]nμdVΣ1 coercive

n

= 0 if K is Killing



Eddington–Finkelstein 
normalised null coordinates

                                surface gravities
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Note also that the vector field T , initially defined on M in (2.3), extends to a smooth vector field on M̃

with

T �HA=
@

@v
�HA , (2.23)

where @
@v is the coordinate derivative with respect to local chart defined in (2.15). Similarly, we have

T �HB= �
@

@u
�HB w.r.t. to the local chart (2.16), (2.24)

T �CHA= �
@

@u
�CHA w.r.t. to the local chart (2.17), (2.25)

T �CHB=
@

@v
�CHB w.r.t. to the local chart (2.18). (2.26)

Note that T is a Killing null generator of the Killing horizons HA,HB , CHA, and CHB . Recall also that
rTT �CH= �T �CH and rTT �H= +T �H, where ± is defined by (2.8).

At this point, we note that we can attach corners to H0 and CH0 to extend M̃ smoothly to a Lorentzian
manifold with corners. To be more precise, we attach the past bifurcation sphere B� to H0 as the point
(UH, VH) = (0, 0). Then, define H := H0 [B�. Similarly, we can attach the future bifurcation sphere B+ to
the Cauchy horizon which will be denoted by CH. We call the resulting manifold MRN. Further details are
not given since the precise construction is straight-forward and the metric extends smoothly. Moreover, the
T vector field extends smoothly to B+ and B� and vanishes there. Its Penrose diagram is depicted in Fig. 5.
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g = (1 − 2M/r + e2/r2)dudv + r2(dθ2 + sin2 θdϕ2)

r± = M2 ± M2 − e2

r− < r < r+

∫ℋA∩{v*≤v≤v*+1}
(∂vψ)2dv sin θdθdϕ ≤ v−2−2δ

*

κ± = (r±)−2(r+ − r−)
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The main theorem quoted in Lecture 4 can be thought of as 
a fully nonlinear analogue of the previous result.



Strong cosmic censorship 
(Christodoulou formulation)

Conjecture. (R. Penrose, 1973) The Kerr Cauchy horizon is 
a fluke! For generic asymptotically flat initial data                
for the vacuum equations, the maximal future Cauchy 
development              is inextendible as a       Lorentzian 
manifold with locally square integrable Christoffel symbols.        

This formulation is sufficiently strong to assure that 
there is no extension even as a weak solution.

(Σ, ḡ, K)

(ℳ, g) C0
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Addendum I:  
the extremal case

Theorem. (Gajic, Angelopoulos–Aretakis–Gajic) Consider 
smooth compactly supported initial data              on      for 
the wave equation                   on extremal Reissner–
Nordstrom. Then     is extendible across the black hole inner 
horizon in       .  

Note that the presence of ✏(k,m) introduces a skip in the decay rates for the derivatives of  . This skip
was also previously observed in [40] and [132].

To show that |rk |2 always decays, it su�ces to consider the “slowest” case, namely the case of
perturbations of Type C. In this case,

|rk |2 ⇠
X

k1+k2=k

@k1
r
T k2 · @k2

r
T k1 ⇠

X

k1+k2=k

⌧k1�k2�1�✏(k1,k2) · ⌧k2�k1�1�✏(k2,k1)

⇠
X

k1+k2=k

⌧�2�✏(k1,k2)�✏(k2,k1) ⇠ ⌧�2

for all k � 1, since ✏(k1, k2), ✏(k2, k1) � 0 and ✏(k, 0) = ✏(0, k) = 0. Note that the decay rate for |rk |2 is
independent of k. The above yields a rigorous proof of the numerics of [144] and the heuristical analysis
of [142] for ERN.

4.3 The interior of black holes and strong cosmic censorship

In this paper we have restricted the analysis of the wave equation to the extremal Reissner–Nordström black
hole exterior (the domain of outer communications). One can also extend the initial data hypersurface ⌃0

into the black hole interior (see Section 2.2 for a precise definition of ⌃0) and investigate the behavior of
solutions to (1.1) in the restriction of the domain of dependence of the extended hypersurface to the black
hole interior.

Figure 8: The extended initial value problem that includes the interior region, where ⌃ is the extension of
⌃0 into the interior.

An analysis of the behavior of solutions to (1.1) in the black hole interior of extremal Reissner–Nordström
was carried out by the third author in [147] in the setting of a characteristic initial value problem with initial
data imposed on a future geodesically complete segment of the future black hole event horizon and initial
data imposed on an ingoing null hypersurface intersecting the event horizon to the past. The late-time
behaviour of the solution to (1.1) on extremal Reissner–Nordström along the event horizon was assumed
to be consistent with the numerical predictions of [30]. The results of [147] illustrate a remarkably delicate
dependence of the qualitative behaviour at the inner horizon in the black hole interior on the precise late-
time behaviour of the solution to (1.1) along the event horizon of extremal Reissner–Nordström as predicted
by numerics and heuristics.

By combining the results stated schematically in Section 3 and more precisely in Section 5.1, that
confirm in particular the numerical predictions of [30], and Theorem 2, 5 and 6 of [147], we conclude that
the following theorem holds:

Theorem 4.1. Solutions  to (1.1) on extremal Reissner–Nordström arising from smooth compactly sup-
ported data on an extension of ⌃0 into the black hole interior are extendible across the black hole inner
horizon as functions in C0,↵ \W 1,2

loc , with ↵ < 1. Furthermore, the spherical mean 1
4⇡

R
S2  d! can in fact

be extended as a C2 function.

Remark 4.1. It follows from Theorem 4.1 that for spherically symmetric data one can construct C2

extensions of  across the inner horizons that are moreover classical solutions to (1.1) with respect to a
smooth extension of the extremal Reissner–Nordström metric across the inner horizon. These extensions
of  , much like the smooth extensions of the metric, are highly non-unique!

25

(ψ0, ψ1)

ψ

Σ
□g ψ = 0

H1
loc



Addendum II: 
the             case

Conjecture. (Moss, M.D., Cardoso et al) Consider smooth 
initial data               on      for the wave equation                   
on subextremal Reissner-Nordström–de Sitter.  Then      
extends in        across the Cauchy horizon         . 

See also discussion in Dias–Reall–Santos.
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Figure 1: Portion of maximally extended Reissner–Nordström–de Sitter and a hypersurface Σ̃

The above apparent failure of even Christodoulou’s revised formulation of strong cosmic censorship
(already a weakening of the original C0-formulation!) would leave a rather discomforting situation for general
relativity in the presence of a positive cosmological constant Λ > 0: For if Cauchy horizons generically occur
at which spacetime can moreover still be interpreted as a weak solution of the Einstein equations, then it is
difficult to argue decisively that the classical description has “broken down”, and thus, it would appear that
the paradox persists of classical predictability failing without manifestly exiting the classical regime.

The purpose of this short note is to suggest a way out. We will prove that, at the level of the
proxy problem (4), there is indeed a way to retain the desirable generic H1

loc blowup at the Cauchy horizon:
It suffices to consider a slightly less regular, but still well-motivated, class of initial data.

To formulate our result, let M̃ denote maximally extended subextremal Reissner–Nordström–de Sitter
spacetime (or more generally, Kerr–Newman–de Sitter spacetime). Let Σ̃ denote a complete spacelike hy-
persurface intersecting two cosmological horizons C+ as in Figure 1. Initial data (Ψ,Ψ′) on Σ̃ give rise to
a solution ψ on the future domain of dependence D+(Σ̃), with ψ|Σ̃ = Ψ, nΣ̃ψ|Σ̃ = Ψ′, where nΣ̃ denotes

the future normal to Σ̃. The local energy flux of ψ along Σ̃ is of course computable in terms of initial data
(Ψ,Ψ′), in particular ψ has finite local energy flux along Σ̃ if (Ψ,Ψ′) ∈ H1

loc(Σ̃) × L2
loc(Σ̃). For brevity, we

will say in this case that the data (Ψ,Ψ′) have finite local energy along Σ̃.
Our main result is the following

Theorem 1.1. Consider a subextremal Reissner–Nordström–de Sitter spacetime, or more generally, Kerr–
Newman–de Sitter spacetime M̃. For generic initial data (Ψ,Ψ′) with finite local energy along Σ̃, the resulting
solution ψ of (4) in D+(Σ̃) has infinite local energy along hypersurfaces intersecting transversally the Cauchy
horizon CH+, i.e. ψ in particular fails to extend H1

loc around any point of CH+.

The genericity statement can be understood as the following “co-dimension 1 property”: For all Cauchy
data (Ψ0,Ψ′

0) which lead to a solution ψ0 of finite energy along hypersurfaces transversally intersecting the
Cauchy horizon CH+, the solution ψ corresponding to the Cauchy data (Ψ0 + cΨ1,Ψ′

0 + cΨ′
1) has infinite

energy along hypersurfaces transversally intersecting CH+ for some (Ψ1,Ψ′
1) and every c ∈ R \ {0}. By

linearity, it suffices to construct a single (Ψ1,Ψ′
1) in the case (Ψ0,Ψ′

0) = (0, 0). Note that this is analogous
to the notion of genericity used by Christodoulou in his proof of weak cosmic censorship for the spherically
symmetric Einstein-scalar-field system [Chr99b, Chr99a]. (We also observe that one can show that the initial
data leading to the desired Cauchy horizon blow-up form a set of Baire second category within the class

4

Λ > 0

(ψ0, ψ1) Σ̃ □g ψ = 0
ψ

H1
loc 𝒞ℋ+
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relativity in the presence of a positive cosmological constant Λ > 0: For if Cauchy horizons generically occur
at which spacetime can moreover still be interpreted as a weak solution of the Einstein equations, then it is
difficult to argue decisively that the classical description has “broken down”, and thus, it would appear that
the paradox persists of classical predictability failing without manifestly exiting the classical regime.

The purpose of this short note is to suggest a way out. We will prove that, at the level of the
proxy problem (4), there is indeed a way to retain the desirable generic H1

loc blowup at the Cauchy horizon:
It suffices to consider a slightly less regular, but still well-motivated, class of initial data.

To formulate our result, let M̃ denote maximally extended subextremal Reissner–Nordström–de Sitter
spacetime (or more generally, Kerr–Newman–de Sitter spacetime). Let Σ̃ denote a complete spacelike hy-
persurface intersecting two cosmological horizons C+ as in Figure 1. Initial data (Ψ,Ψ′) on Σ̃ give rise to
a solution ψ on the future domain of dependence D+(Σ̃), with ψ|Σ̃ = Ψ, nΣ̃ψ|Σ̃ = Ψ′, where nΣ̃ denotes

the future normal to Σ̃. The local energy flux of ψ along Σ̃ is of course computable in terms of initial data
(Ψ,Ψ′), in particular ψ has finite local energy flux along Σ̃ if (Ψ,Ψ′) ∈ H1

loc(Σ̃) × L2
loc(Σ̃). For brevity, we

will say in this case that the data (Ψ,Ψ′) have finite local energy along Σ̃.
Our main result is the following

Theorem 1.1. Consider a subextremal Reissner–Nordström–de Sitter spacetime, or more generally, Kerr–
Newman–de Sitter spacetime M̃. For generic initial data (Ψ,Ψ′) with finite local energy along Σ̃, the resulting
solution ψ of (4) in D+(Σ̃) has infinite local energy along hypersurfaces intersecting transversally the Cauchy
horizon CH+, i.e. ψ in particular fails to extend H1

loc around any point of CH+.

The genericity statement can be understood as the following “co-dimension 1 property”: For all Cauchy
data (Ψ0,Ψ′

0) which lead to a solution ψ0 of finite energy along hypersurfaces transversally intersecting the
Cauchy horizon CH+, the solution ψ corresponding to the Cauchy data (Ψ0 + cΨ1,Ψ′

0 + cΨ′
1) has infinite

energy along hypersurfaces transversally intersecting CH+ for some (Ψ1,Ψ′
1) and every c ∈ R \ {0}. By

linearity, it suffices to construct a single (Ψ1,Ψ′
1) in the case (Ψ0,Ψ′

0) = (0, 0). Note that this is analogous
to the notion of genericity used by Christodoulou in his proof of weak cosmic censorship for the spherically
symmetric Einstein-scalar-field system [Chr99b, Chr99a]. (We also observe that one can show that the initial
data leading to the desired Cauchy horizon blow-up form a set of Baire second category within the class

4

Λ > 0

(ψ0, ψ1) Σ̃
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ψ H1
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Addendum III: 
the             case

Theorem. (Holzegel–Smulevici 2014) Consider smooth                   
initial data               on a spacelike slice      for the wave 
equation                   with reflective boundary conditions         
at      on Kerr–anti de Sitter. Then solutions      decay 
logarithmically on the event horizon     .  Moreover, this 
decay bound is sharp. 

Implications for the interior? See upcoming work of Kehle!
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Plan of the lectures
Lecture 1. General Relativity and Lorentzian geometry


Lecture 2. The geometry of Schwarzschild black holes 

Lecture 3. The analysis of waves on Schwarzschild exteriors


Lecture 4. The geometry of Kerr black holes and the strong 
cosmic censorship conjecture  

Lecture 5. The analysis of waves on Kerr black hole interiors 

Lecture 6. Nonlinear      stability of the Kerr Cauchy horizonC0



Lecture 6

The full nonlinear      stability of the Kerr Cauchy horizon 
(joint work with J. Luk)
C0



Strong cosmic censorship 
(     formulation)

Conjecture. (R. Penrose, 1973) The Kerr Cauchy horizon is 
a fluke! For generic asymptotically flat initial data                
for the vacuum equations, the maximal future Cauchy 
development              is inextendible as a manifold with 
continuous         Lorentzian metric.   

This formulation ensures the strong form of determinism 
that we saw holds for the Schwarzschild solution.

(Σ, ḡ, K)

(ℳ, g)

C0

(C0)



Review: 
Stability of the Kerr exterior

Conjecture. The Kerr family is stable in the exterior as solutions to 
the vacuum Einstein equations: Small perturbations of (two-ended) 
Kerr initial data lead to a maximal future Cauchy development with 
complete null infinity       such that in              , in particular on        , 
the induced geometry approaches—inverse polynomially—two 
nearby Kerr solutions.        

Black holes and spacetime singularities in general relativity

The exterior stability conjecture of Kerr: Penrose diagram
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   stability of the Kerr 
Cauchy horizon

Theorem. (M.D.—J. Luk, 2017) If Kerr is stable in the black 
hole exterior (as conjectured), then its Penrose diagram is 
globally stable, and the metric again extends, at least    , 
across a Cauchy horizon           .      

C0

C0

Black holes and spacetime singularities in general relativity

Corollary. If the exterior stability of Kerr conjecture is true,

then both the C0 formulation of strong cosmic censorship

and the spacelike singularity conjecture are false.
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The      formulation of strong 
cosmic censorship is false  

Corollary. If Kerr is stable in the black hole exterior (as 
conjectured), then the       formulation of the strong cosmic 
censorship conjecture, as well as the spacelike singularity 
conjecture, are both false.

C0

C0



Heuristic studies and 
symmetric model problems

• Hiscock 1981, Poisson–Israel 1989, Ori 1991, Brady 
1996, Ori 1997, etc.


• M.D., Luk–Oh, van de Moortel 2017 



Reduction to characteristic 
initial value problem

Theorem. Consider characteristic initial data for the Einstein 
vacuum equations which are both globally close to Kerr and 
approach two nearby Kerr solutions. Then the Cauchy 
evolution has Penrose diagram as depicted, and the metric 
extends, at least     , across a Cauchy horizon           .      C0 𝒞ℋ+

Black holes and spacetime singularities in general relativity

Corollary. If the exterior stability of Kerr conjecture is true,

then both the C0 formulation of strong cosmic censorship

and the spacelike singularity conjecture are false.
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Reduction to characteristic 
initial value problem

Theorem. Consider characteristic initial data for the Einstein 
vacuum equations which are both globally close to Kerr and 
approache two nearby Kerr solutions. Then the Cauchy 
evolution has Penrose diagram as depicted, and the metric 
extends, at least     , across a Cauchy horizon           .      C0 𝒞ℋ+

Black holes and spacetime singularities in general relativity

Statement of the theorem

Theorem (M.D.–Luk). Consider initial data on the event

horizon as arising from the previous conjecture, i.e. settling down at

a polynomial rate to Kerr. Then the maximal Cauchy development

is globally C0-extendible beyond a bifurcate Cauchy horizon CH+.
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Stability of a piece  
of the Cauchy horizon

Theorem. Consider characteristic initial data on                for 
the Einstein vacuum equations which are both close to Kerr 
and approach a Kerr solution along      . Then the Cauchy 
evolution has Penrose diagram as shown on the right, and 
the metric extends, at least     , across a Cauchy           
horizon          .      
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Figure 13: The global stability of the Kerr Penrose diagram

one can still hold out hope that in the standard picture of gravitational collapse of asymptotically flat,
one-ended data, although the Corollary of Section 1.3.3 would apply to yield part of the boundary being
null, there would necessarily also exist a non-empty spacelike part of the boundary, at least generically.
This remains an open problem! In fact, it would be interesting simply to exhibit a single open set in the
moduli space of initial data for the vacuum equations (1.1) whose maximal Cauchy development is bounded
at least in part by a piece of “singularity” which can indeed naturally be thought of as spacelike. (Let us
note in contrast that, for the Einstein–scalar field system, such an open set has indeed been constructed
by Rodnianski–Speck [108, 107]. The presence of a non-trivial scalar field is, however, fundamental for the
proof, as it is the scalar field that drives the singular behaviour.)

1.4 Previous work and a reformulation of strong cosmic censorship

Though Theorem 1 disproves the original expectations concerning the interior structure of generic black
holes and the C0 formulation of strong cosmic censorship, it turns out that it is still compatible with a
well-motivated, reformulated version of strong cosmic censorship originally due to Christodoulou [20]. To
understand this, we must turn back to some previous work which inspired our study and is in fact the source
for many of the ideas here. Indeed, the present work can be thought of as a natural culmination of three
distinct but related threads.

1. The scalar wave equation (1.4) on Kerr. The first thread concerns the study of the scalar wave
equation (1.4) on a fixed Kerr black hole interior (as well as on the simpler, spherically-symmetric Reissner–

Nordström background [58] which again has a Cauchy horizon). Recall that it was precisely in this context
that Penrose first discussed the blue-shift instability suggesting strong cosmic censorship (cf. Section 1.2.3).
The mathematical study of (1.4) in these black hole interiors was initiated by McNamara [87]. Though it
can indeed be rigorously shown that the blue-shift instability induces energy blow up for generic solutions of
(1.4), at the same time, one can prove C0 stability statements all the way up to the Cauchy horizon. These
stability and instability statements in turn depend on quantitative upper and lower bounds, respectively, for
the decay of solutions of (1.4) in the black hole exterior. We will review all these statements in Section 1.4.1
below. Extrapolation of these results already suggests a re-formulation of strong cosmic censorship,
due to Christodoulou [20], compatible with the above behaviour. This will be given as Conjecture 3.

2. A non-linear spherically symmetric toy model. The second thread, to be described in Sec-
tion 1.4.2, concerns a toy-model [26, 27, 29], where (1.4) is coupled to the Einstein–Maxwell system in
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1.3 The main theorems

In this paper, we will inaugurate a series of works giving a definitive resolution of the C0-metric stability
properties of the Kerr Cauchy horizon. Our results will in particular imply (see Section 1.3.3 below) that, if
the exterior stability of Kerr (Conjecture 1) is indeed true, then the formulation of strong cosmic censorship
given in Section 1.2.4 (Conjecture 2) is in fact false, and moreover, the entire finite boundary of spacetime
is null for all spacetimes arising from data su�ciently near two-ended Kerr data.

1.3.1 The evolution of spacelike data and the non-linear C0
-stability of the Cauchy horizon

In the present paper, we take up the problem from initial data for (1.1) posed on a hypersurface ⌃0 which is
modelled on a Pretorius–Israel u+ u = C hypersurface sandwiched between two constant-r hypersurfaces of
the Kerr interior with r close to its event horizon value. The assumption on our data is that they asymptote
to induced Kerr data on ⌃0, with parameters 0 < |a| < M , at an inverse polynomial rate in u. We think
of these (see Section 1.3.2 immediately below!) as the “expected induced data” from a general dynamical
vacuum black hole settling down to Kerr, when viewed on a suitably chosen spacelike hypersurface “just
inside” the event horizon. The hypersurface is in fact foliated by trapped spheres. The main result of the
present paper is then the following

Theorem 1. Consider general vacuum initial data corresponding to the expected induced geometry of a
dynamical black hole settling down to Kerr (with parameters 0 < |a| < M) on a suitable spacelike hypersurface
⌃0 in the black hole interior. Then the maximal future development spacetime (M, g) corresponding to ⌃0

is globally covered by a double null foliation and has a non-trivial Cauchy horizon CH
+ across which the

metric is continuously extendible.

The domain of the spacetime is depicted in Figure 9. It turns out that we can in fact retrieve our
assumptions on the geometry of ⌃0 from an assumption on the event horizon H

+ and thus directly relate
them to the stability of Kerr conjecture as formulated in Conjecture 1, as well as to the expectation that
generic vacuum spacetimes (not necessarily initially close to Kerr) must either disperse or eventually settle
down to a number of Kerr black holes. This event horizon formulation will be the subject of the forthcoming
paper discussed below.

1.3.2 Forthcoming work: event horizon data and the stability of the red-shift region

In an upcoming follow-up paper of this series [32], we will obtain the above induced data of Theorem 1 on a
hypersurface ⌃0 in the interior of a spacetime arising from a characteristic initial value problem with data
posed on a bifurcate null hypersurface N [H

+. See Figure 10. Here, the initial hypersurface H
+ is meant

to represent the event horizon of a dynamic vacuum black hole settling down to a rotating Kerr solution.

Theorem 2 (to appear [32]). Consider vacuum initial data on a bifurcate null hypersurface N [H
+ such

that H+ is future a�ne complete and the data suitably approach the event horizon geometry of Kerr (with
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Application to  
gravitational collapse

Corollary. All dynamic vacuum black holes appropriately 
settling down to Kerr along         have a piece of Cauchy 
horizon            in their interior across which the metric 
extends at least     .C0
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Figure 11: The C0 formulation of SCC is false!

parameters 0 < |a| < M). Then the maximal future development (M, g) contains a hypersurface ⌃0 as in
Theorem 1 and thus again has a non-trivial Cauchy horizon CH

+ across which the metric is continuously
extendible.

It follows from the above that any black hole spacetime suitably settling down to a rotating Kerr in its
exterior will have a non-trivial piece of Cauchy horizon. Given the conjectured stability of the Kerr exterior
(Conjecture 1), we can already infer a negative result for the C0 formulation of strong cosmic censorship
(Conjecture 2). We make this explicit in what follows.

1.3.3 Corollary: The C0
-formulation of strong cosmic censorship is false

If the exterior region of Kerr is indeed proven stable up to and including the event horizon H
+, it will follow

that all spacetimes arising from asymptotically flat initial data su�ciently close to Kerr data on ⌃ will satisfy
the assumptions of Theorem 2, where N is simply taken to be an arbitrary su�ciently short incoming null
hypersurface intersecting H

+. A corollary of our results is thus

Corollary. If stability of the Kerr exterior (Conjecture 1) is true, then the Penrose diagram of Kerr is stable
near i+ and the C0-formulation of strong cosmic censorship (Conjecture 2) is false.

The Corollary is depicted in Figure 11. The above statement thus also falsifies the expectation that
generically the finite boundary of spacetime is spacelike (cf. Section 1.2.5).

If the more speculative final state picture of [99], described at the end of Section 1.2.1, indeed holds, then
it will follow from Theorem 2 that generic, non-dispersing solutions of the vacuum equations (1.1) arising
from asymptotically flat initial data have a metric which is C0-extendible across a piece of a non-empty null
Cauchy horizon. In this sense, null finite boundaries of spacetime are ubiquitous in gravitational collapse.

1.3.4 Forthcoming work: The C0
-stability of the bifurcation sphere of the Cauchy horizon

For our final forthcoming result, we return to the conclusion of Conjecture 1 as applied specifically in the two-
ended case. In that setting, not only does one have a single future-a�ne complete hypersurface asymptoting
to Kerr, but one has in fact a bifurcate future event horizon H

+
1 [H

+
2 , both parts of which remain globally

close to a reference Kerr, each moreover asymptoting to two nearby subextremal Kerr’s with parameters ai,
Mi, i = 1, 2. Taking such a bifurcate hypersurface as our starting point, we have then the following theorem:

Theorem 3 (to appear [33]). Consider vacuum initial data on a bifurcate null hypersurface H
+
1 [H

+
2 , such

that both hypersurfaces are future complete, and globally close to, and asymptote to Kerr metrics with nearby
parameters 0 < |a1| < M1, and 0 < |a2| < M2, respectively. Then the maximal future development (M, g)
can be covered by a double null foliation and moreover can be extended as a C0 metric across a bifurcate
Cauchy horizon CH

+ as depicted in Figure 12. All future-inextendible causal geodesics in M can be extended
to cross CH

+.

Thus, if Conjecture 1 is true, then not only is Conjecture 2 false, but the entire Penrose diagram of Kerr
is stable, up to and including the bifurcation sphere of the Cauchy horizon. See Figure 13. It follows in this
case that no part of the boundary of spacetime is spacelike, a spectacular failure of the original expectation
described in Section 1.2.5.

Of course, the above picture where the entire finite boundary of spacetime consists of a Cauchy horizon
(of TIPs with non-compact intersection with initial data) could be an artifice of the two-ended case. Thus,
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Recall from Lecture 5: 
three regions

• red-shift region


• “no-shift” region


• blue-shift region
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Figure 4: Penrose diagram of M̃.

Note also that the vector field T , initially defined on M in (2.3), extends to a smooth vector field on M̃

with

T �HA=
@

@v
�HA , (2.23)

where @
@v is the coordinate derivative with respect to local chart defined in (2.15). Similarly, we have

T �HB= �
@

@u
�HB w.r.t. to the local chart (2.16), (2.24)

T �CHA= �
@

@u
�CHA w.r.t. to the local chart (2.17), (2.25)

T �CHB=
@

@v
�CHB w.r.t. to the local chart (2.18). (2.26)

Note that T is a Killing null generator of the Killing horizons HA,HB , CHA, and CHB . Recall also that
rTT �CH= �T �CH and rTT �H= +T �H, where ± is defined by (2.8).

At this point, we note that we can attach corners to H0 and CH0 to extend M̃ smoothly to a Lorentzian
manifold with corners. To be more precise, we attach the past bifurcation sphere B� to H0 as the point
(UH, VH) = (0, 0). Then, define H := H0 [B�. Similarly, we can attach the future bifurcation sphere B+ to
the Cauchy horizon which will be denoted by CH. We call the resulting manifold MRN. Further details are
not given since the precise construction is straight-forward and the metric extends smoothly. Moreover, the
T vector field extends smoothly to B+ and B� and vanishes there. Its Penrose diagram is depicted in Fig. 5.
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Figure 5: Penrose diagram of MRN which includes the bifurcate spheres B+ and B�.
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Stability of piece of Cauchy 
horizon from spacelike data    

Theorem. Consider Cauchy initial data on       for the 
Einstein vacuum equations which are both close to Kerr and 
approach a Kerr solution. Then the Cauchy evolution has 
Penrose diagram as shown on the right, and the metric 
extends, at least     , across a Cauchy horizon          .      C0 𝒞ℋ+
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Figure 13: The global stability of the Kerr Penrose diagram

one can still hold out hope that in the standard picture of gravitational collapse of asymptotically flat,
one-ended data, although the Corollary of Section 1.3.3 would apply to yield part of the boundary being
null, there would necessarily also exist a non-empty spacelike part of the boundary, at least generically.
This remains an open problem! In fact, it would be interesting simply to exhibit a single open set in the
moduli space of initial data for the vacuum equations (1.1) whose maximal Cauchy development is bounded
at least in part by a piece of “singularity” which can indeed naturally be thought of as spacelike. (Let us
note in contrast that, for the Einstein–scalar field system, such an open set has indeed been constructed
by Rodnianski–Speck [108, 107]. The presence of a non-trivial scalar field is, however, fundamental for the
proof, as it is the scalar field that drives the singular behaviour.)

1.4 Previous work and a reformulation of strong cosmic censorship

Though Theorem 1 disproves the original expectations concerning the interior structure of generic black
holes and the C0 formulation of strong cosmic censorship, it turns out that it is still compatible with a
well-motivated, reformulated version of strong cosmic censorship originally due to Christodoulou [20]. To
understand this, we must turn back to some previous work which inspired our study and is in fact the source
for many of the ideas here. Indeed, the present work can be thought of as a natural culmination of three
distinct but related threads.

1. The scalar wave equation (1.4) on Kerr. The first thread concerns the study of the scalar wave
equation (1.4) on a fixed Kerr black hole interior (as well as on the simpler, spherically-symmetric Reissner–

Nordström background [58] which again has a Cauchy horizon). Recall that it was precisely in this context
that Penrose first discussed the blue-shift instability suggesting strong cosmic censorship (cf. Section 1.2.3).
The mathematical study of (1.4) in these black hole interiors was initiated by McNamara [87]. Though it
can indeed be rigorously shown that the blue-shift instability induces energy blow up for generic solutions of
(1.4), at the same time, one can prove C0 stability statements all the way up to the Cauchy horizon. These
stability and instability statements in turn depend on quantitative upper and lower bounds, respectively, for
the decay of solutions of (1.4) in the black hole exterior. We will review all these statements in Section 1.4.1
below. Extrapolation of these results already suggests a re-formulation of strong cosmic censorship,
due to Christodoulou [20], compatible with the above behaviour. This will be given as Conjecture 3.

2. A non-linear spherically symmetric toy model. The second thread, to be described in Sec-
tion 1.4.2, concerns a toy-model [26, 27, 29], where (1.4) is coupled to the Einstein–Maxwell system in
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1.3 The main theorems

In this paper, we will inaugurate a series of works giving a definitive resolution of the C0-metric stability
properties of the Kerr Cauchy horizon. Our results will in particular imply (see Section 1.3.3 below) that, if
the exterior stability of Kerr (Conjecture 1) is indeed true, then the formulation of strong cosmic censorship
given in Section 1.2.4 (Conjecture 2) is in fact false, and moreover, the entire finite boundary of spacetime
is null for all spacetimes arising from data su�ciently near two-ended Kerr data.

1.3.1 The evolution of spacelike data and the non-linear C0
-stability of the Cauchy horizon

In the present paper, we take up the problem from initial data for (1.1) posed on a hypersurface ⌃0 which is
modelled on a Pretorius–Israel u+ u = C hypersurface sandwiched between two constant-r hypersurfaces of
the Kerr interior with r close to its event horizon value. The assumption on our data is that they asymptote
to induced Kerr data on ⌃0, with parameters 0 < |a| < M , at an inverse polynomial rate in u. We think
of these (see Section 1.3.2 immediately below!) as the “expected induced data” from a general dynamical
vacuum black hole settling down to Kerr, when viewed on a suitably chosen spacelike hypersurface “just
inside” the event horizon. The hypersurface is in fact foliated by trapped spheres. The main result of the
present paper is then the following

Theorem 1. Consider general vacuum initial data corresponding to the expected induced geometry of a
dynamical black hole settling down to Kerr (with parameters 0 < |a| < M) on a suitable spacelike hypersurface
⌃0 in the black hole interior. Then the maximal future development spacetime (M, g) corresponding to ⌃0

is globally covered by a double null foliation and has a non-trivial Cauchy horizon CH
+ across which the

metric is continuously extendible.

The domain of the spacetime is depicted in Figure 9. It turns out that we can in fact retrieve our
assumptions on the geometry of ⌃0 from an assumption on the event horizon H

+ and thus directly relate
them to the stability of Kerr conjecture as formulated in Conjecture 1, as well as to the expectation that
generic vacuum spacetimes (not necessarily initially close to Kerr) must either disperse or eventually settle
down to a number of Kerr black holes. This event horizon formulation will be the subject of the forthcoming
paper discussed below.

1.3.2 Forthcoming work: event horizon data and the stability of the red-shift region

In an upcoming follow-up paper of this series [32], we will obtain the above induced data of Theorem 1 on a
hypersurface ⌃0 in the interior of a spacetime arising from a characteristic initial value problem with data
posed on a bifurcate null hypersurface N [H

+. See Figure 10. Here, the initial hypersurface H
+ is meant

to represent the event horizon of a dynamic vacuum black hole settling down to a rotating Kerr solution.

Theorem 2 (to appear [32]). Consider vacuum initial data on a bifurcate null hypersurface N [H
+ such

that H+ is future a�ne complete and the data suitably approach the event horizon geometry of Kerr (with
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1.5.3 The method of [80]: Renormalisation, local weights and null structure

In anticipation of the fact that one expects (cf. the discussion in Section 1.4) that the Cauchy horizon
CH

+, although C0 stable, will generically represent a weak null singularity, the methods introduced in [80]
described in Section 1.4.3 will play an essential role in the proof. For otherwise, the estimates would be
inconsistent with controlling the solution up to CH

+.
Let us introduce briefly some of the main ideas of [80], directly in the context of Theorem 1.8. The proof

again employs a double null foliation, but we shall denote the coordinates by U and U in place of u and u
to emphasise that these coordinates naturally have finite range [U0, 0)⇥ [U0, 0).

• Renormalisation. To estimate solutions up to potentially singular null fronts U = 0 and U =
0 in Theorem 1.8, one must renormalise the Bianchi equations by eliminating the “most singular
components” ↵ = R(eA, e4, eB , e4), ↵ = R(eA, e3, eB , e3) and replacing the curvature components ⇢
and � discussed in Section 1.5.1 with

⇢ K
.
= �⇢+

1

2
�̂ · �̂�

1

4
/tr�/tr�, �  �̌ = � +

1

2
�̂ ^ �̂.

The significance of these quantities K and �̌ is that K represents the Gaussian curvature of the spheres
SU,U and �̌ the curvature of the normal bundle, respectively, and these quantities remain regular up
to the null boundary. These renormalisations in fact first appeared in [84, 85]. Remarkably, this
renormalisation respects the structure of Section 1.5.1, i.e. the renormalised system can still be viewed
as a set of coupled elliptic, transport and hyperbolic equations. Now the elliptic estimates through
(1.27) appear absolutely essential, not just for the purpose of gaining regularity, but for the system to
close.26

• Local weights. Even though the worst behaving components are now removed, the remaining com-
ponents, e.g. the curvature component � and the shear �̂ still are not expected to have finite “local”
energy at a weak null singular front. (This is in contrast to the situation in [84, 85], referred to above,
where, all Ricci coe�cients were locally square integrable.) One can only hope to prove weighted
estimates with respect to the local “regular” coordinate U , degenerating at U = 0, with weight which
is integrable at U = 0 when squared. An example of such a weight is

f(U) = (�U)
1
2 | log(�U)|

1
2+� (1.34)

appearing in expression (1.21). The finiteness of

kf(U)�̂kL2
U
L2(SU,U )

on an outgoing hypersurface U = c is compatible (say in the case of (1.34)) with the pointwise behaviour

�̂ ⇠ (�U)�1
| log(�U)|�1�2�.

26This is in contrast, for instance, with [31], where elliptic estimates are not used. This in turn was possible because �̂ could
be estimated by a transport equation involving /r4�̂ with ↵ appearing on the right hand side.
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1.5.3 The method of [80]: Renormalisation, local weights and null structure

In anticipation of the fact that one expects (cf. the discussion in Section 1.4) that the Cauchy horizon
CH

+, although C0 stable, will generically represent a weak null singularity, the methods introduced in [80]
described in Section 1.4.3 will play an essential role in the proof. For otherwise, the estimates would be
inconsistent with controlling the solution up to CH

+.
Let us introduce briefly some of the main ideas of [80], directly in the context of Theorem 1.8. The proof

again employs a double null foliation, but we shall denote the coordinates by U and U in place of u and u
to emphasise that these coordinates naturally have finite range [U0, 0)⇥ [U0, 0).

• Renormalisation. To estimate solutions up to potentially singular null fronts U = 0 and U =
0 in Theorem 1.8, one must renormalise the Bianchi equations by eliminating the “most singular
components” ↵ = R(eA, e4, eB , e4), ↵ = R(eA, e3, eB , e3) and replacing the curvature components ⇢
and � discussed in Section 1.5.1 with
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The significance of these quantities K and �̌ is that K represents the Gaussian curvature of the spheres
SU,U and �̌ the curvature of the normal bundle, respectively, and these quantities remain regular up
to the null boundary. These renormalisations in fact first appeared in [84, 85]. Remarkably, this
renormalisation respects the structure of Section 1.5.1, i.e. the renormalised system can still be viewed
as a set of coupled elliptic, transport and hyperbolic equations. Now the elliptic estimates through
(1.27) appear absolutely essential, not just for the purpose of gaining regularity, but for the system to
close.26

• Local weights. Even though the worst behaving components are now removed, the remaining com-
ponents, e.g. the curvature component � and the shear �̂ still are not expected to have finite “local”
energy at a weak null singular front. (This is in contrast to the situation in [84, 85], referred to above,
where, all Ricci coe�cients were locally square integrable.) One can only hope to prove weighted
estimates with respect to the local “regular” coordinate U , degenerating at U = 0, with weight which
is integrable at U = 0 when squared. An example of such a weight is

f(U) = (�U)
1
2 | log(�U)|

1
2+� (1.34)

appearing in expression (1.21). The finiteness of
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L2(SU,U )

on an outgoing hypersurface U = c is compatible (say in the case of (1.34)) with the pointwise behaviour
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26This is in contrast, for instance, with [31], where elliptic estimates are not used. This in turn was possible because �̂ could
be estimated by a transport equation involving /r4�̂ with ↵ appearing on the right hand side.
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1.5.3 The method of [80]: Renormalisation, local weights and null structure

In anticipation of the fact that one expects (cf. the discussion in Section 1.4) that the Cauchy horizon
CH

+, although C0 stable, will generically represent a weak null singularity, the methods introduced in [80]
described in Section 1.4.3 will play an essential role in the proof. For otherwise, the estimates would be
inconsistent with controlling the solution up to CH

+.
Let us introduce briefly some of the main ideas of [80], directly in the context of Theorem 1.8. The proof

again employs a double null foliation, but we shall denote the coordinates by U and U in place of u and u
to emphasise that these coordinates naturally have finite range [U0, 0)⇥ [U0, 0).

• Renormalisation. To estimate solutions up to potentially singular null fronts U = 0 and U =
0 in Theorem 1.8, one must renormalise the Bianchi equations by eliminating the “most singular
components” ↵ = R(eA, e4, eB , e4), ↵ = R(eA, e3, eB , e3) and replacing the curvature components ⇢
and � discussed in Section 1.5.1 with
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The significance of these quantities K and �̌ is that K represents the Gaussian curvature of the spheres
SU,U and �̌ the curvature of the normal bundle, respectively, and these quantities remain regular up
to the null boundary. These renormalisations in fact first appeared in [84, 85]. Remarkably, this
renormalisation respects the structure of Section 1.5.1, i.e. the renormalised system can still be viewed
as a set of coupled elliptic, transport and hyperbolic equations. Now the elliptic estimates through
(1.27) appear absolutely essential, not just for the purpose of gaining regularity, but for the system to
close.26

• Local weights. Even though the worst behaving components are now removed, the remaining com-
ponents, e.g. the curvature component � and the shear �̂ still are not expected to have finite “local”
energy at a weak null singular front. (This is in contrast to the situation in [84, 85], referred to above,
where, all Ricci coe�cients were locally square integrable.) One can only hope to prove weighted
estimates with respect to the local “regular” coordinate U , degenerating at U = 0, with weight which
is integrable at U = 0 when squared. An example of such a weight is

f(U) = (�U)
1
2 | log(�U)|

1
2+� (1.34)

appearing in expression (1.21). The finiteness of

kf(U)�̂kL2
U
L2(SU,U )

on an outgoing hypersurface U = c is compatible (say in the case of (1.34)) with the pointwise behaviour

�̂ ⇠ (�U)�1
| log(�U)|�1�2�.

26This is in contrast, for instance, with [31], where elliptic estimates are not used. This in turn was possible because �̂ could
be estimated by a transport equation involving /r4�̂ with ↵ appearing on the right hand side.
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Figure 18: Stability of bifurcate weak null singularities from compactly supported perturbations on K ⇢ ⌃0

We begin in Section 1.5.1 where we shall introduce the double null gauge which is central to our analysis.
The logic of the proof will rest on a bootstrap argument which is discussed briefly in Section 1.5.2. We then
describe in Section 1.5.3 the estimates of [80], and with this background turn to the main global estimates
of the present paper in Section 1.5.4. We leave a brief discussion of certain auxiliary issues of the proof to
Section 1.5.5 and the issue of continuous extendibility beyond the Cauchy horizon to Section 1.5.6. Finally,
our guide to the rest of the paper will be given in Section 1.5.7.

The reader may wish to return to this section upon reading the bulk of the paper.

1.5.1 The Einstein equations in double null gauge

The proof of Theorem 1 will employ a double null gauge to write the Einstein vacuum equations (1.1) in
what will turn out to be the entire maximal future evolution of the data on ⌃0. The leaves of the foliation
will be null hypersurfaces which are level sets of the ingoing null coordinate u and outgoing null coordinate
u. The metric then takes the form

g = �2⌦2(du⌦ du+ du⌦ du) + �AB(d✓
A
� bAdu)⌦ (d✓B � bBdu), (1.24)

where ⌦ is a function, �AB a metric on the spheres of intersection Su,u and bA a vector field tangential to
the spheres. This type of gauge has been applied most spectacularly in Christodoulou’s formation of black
holes theorem [20]. In the context of the present problem, its use was in fact already suggested in [8]. We
have previously remarked that Pretorius–Israel [103] have shown that the Kerr solution itself can be covered
by such a coordinate system in the region of interest as the coordinate range

{�uf + CR < u < 1} \ {uf > u > �1} \ {u+ u � CR}, (1.25)

with ⌃0 corresponding to u + u = CR. The normalisation should be thought of as a generalisation of
the Eddington–Finkelstein retarded and advanced coordinates (1.9) on Reissner–Nordström. The problem
is thus to show both global existence and appropriate stability in the range (1.25), allowing one to infer
C0-extendibility across what will be a non-trivial Cauchy horizon corresponding to u = 1.

Associated to such a double null foliation is a normalised null frame e3 = @u, and e4 = ⌦�2(@u + bA@✓A),
completed by a coordinate frame eA = @✓A for the spheres Su,u. The content of the Einstein equations in
this gauge can be viewed as a coupled system of the so-called null structure equations (relating both the
components of the metric itself and the so-called Ricci coe�cients (including the second fundamental form
of the foliation), decomposed into this null frame) and the Bianchi equations satisfied by the null-frame
decomposed components of curvature.

One can compare the above system of equations with the more general Newman–Penrose formalism which
expresses the Einstein equations (1.1) in terms of a general null frame [90]. In our case here, it is essential
that the null frame is tied explicitly to a double null foliation. This allows for the null structure equations
to be estimated as transport equations on the constant u cones and u cones or elliptic equations on the Su,u

spheres. The Bianchi equations can be treated as hyperbolic systems, similar to the Maxwell system (1.7).
An example of a transport equation is the well-known Raychaudhuri equation

/r4 /tr�+
1

2
(/tr�)2 = �|�̂|2 (1.26)
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1.5.3 The method of [80]: Renormalisation, local weights and null structure

In anticipation of the fact that one expects (cf. the discussion in Section 1.4) that the Cauchy horizon
CH

+, although C0 stable, will generically represent a weak null singularity, the methods introduced in [80]
described in Section 1.4.3 will play an essential role in the proof. For otherwise, the estimates would be
inconsistent with controlling the solution up to CH

+.
Let us introduce briefly some of the main ideas of [80], directly in the context of Theorem 1.8. The proof

again employs a double null foliation, but we shall denote the coordinates by U and U in place of u and u
to emphasise that these coordinates naturally have finite range [U0, 0)⇥ [U0, 0).

• Renormalisation. To estimate solutions up to potentially singular null fronts U = 0 and U =
0 in Theorem 1.8, one must renormalise the Bianchi equations by eliminating the “most singular
components” ↵ = R(eA, e4, eB , e4), ↵ = R(eA, e3, eB , e3) and replacing the curvature components ⇢
and � discussed in Section 1.5.1 with
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The significance of these quantities K and �̌ is that K represents the Gaussian curvature of the spheres
SU,U and �̌ the curvature of the normal bundle, respectively, and these quantities remain regular up
to the null boundary. These renormalisations in fact first appeared in [84, 85]. Remarkably, this
renormalisation respects the structure of Section 1.5.1, i.e. the renormalised system can still be viewed
as a set of coupled elliptic, transport and hyperbolic equations. Now the elliptic estimates through
(1.27) appear absolutely essential, not just for the purpose of gaining regularity, but for the system to
close.26

• Local weights. Even though the worst behaving components are now removed, the remaining com-
ponents, e.g. the curvature component � and the shear �̂ still are not expected to have finite “local”
energy at a weak null singular front. (This is in contrast to the situation in [84, 85], referred to above,
where, all Ricci coe�cients were locally square integrable.) One can only hope to prove weighted
estimates with respect to the local “regular” coordinate U , degenerating at U = 0, with weight which
is integrable at U = 0 when squared. An example of such a weight is

f(U) = (�U)
1
2 | log(�U)|

1
2+� (1.34)

appearing in expression (1.21). The finiteness of

kf(U)�̂kL2
U
L2(SU,U )

on an outgoing hypersurface U = c is compatible (say in the case of (1.34)) with the pointwise behaviour

�̂ ⇠ (�U)�1
| log(�U)|�1�2�.

26This is in contrast, for instance, with [31], where elliptic estimates are not used. This in turn was possible because �̂ could
be estimated by a transport equation involving /r4�̂ with ↵ appearing on the right hand side.
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Figure 18: Stability of bifurcate weak null singularities from compactly supported perturbations on K ⇢ ⌃0

We begin in Section 1.5.1 where we shall introduce the double null gauge which is central to our analysis.
The logic of the proof will rest on a bootstrap argument which is discussed briefly in Section 1.5.2. We then
describe in Section 1.5.3 the estimates of [80], and with this background turn to the main global estimates
of the present paper in Section 1.5.4. We leave a brief discussion of certain auxiliary issues of the proof to
Section 1.5.5 and the issue of continuous extendibility beyond the Cauchy horizon to Section 1.5.6. Finally,
our guide to the rest of the paper will be given in Section 1.5.7.

The reader may wish to return to this section upon reading the bulk of the paper.

1.5.1 The Einstein equations in double null gauge

The proof of Theorem 1 will employ a double null gauge to write the Einstein vacuum equations (1.1) in
what will turn out to be the entire maximal future evolution of the data on ⌃0. The leaves of the foliation
will be null hypersurfaces which are level sets of the ingoing null coordinate u and outgoing null coordinate
u. The metric then takes the form

g = �2⌦2(du⌦ du+ du⌦ du) + �AB(d✓
A
� bAdu)⌦ (d✓B � bBdu), (1.24)

where ⌦ is a function, �AB a metric on the spheres of intersection Su,u and bA a vector field tangential to
the spheres. This type of gauge has been applied most spectacularly in Christodoulou’s formation of black
holes theorem [20]. In the context of the present problem, its use was in fact already suggested in [8]. We
have previously remarked that Pretorius–Israel [103] have shown that the Kerr solution itself can be covered
by such a coordinate system in the region of interest as the coordinate range

{�uf + CR < u < 1} \ {uf > u > �1} \ {u+ u � CR}, (1.25)

with ⌃0 corresponding to u + u = CR. The normalisation should be thought of as a generalisation of
the Eddington–Finkelstein retarded and advanced coordinates (1.9) on Reissner–Nordström. The problem
is thus to show both global existence and appropriate stability in the range (1.25), allowing one to infer
C0-extendibility across what will be a non-trivial Cauchy horizon corresponding to u = 1.

Associated to such a double null foliation is a normalised null frame e3 = @u, and e4 = ⌦�2(@u + bA@✓A),
completed by a coordinate frame eA = @✓A for the spheres Su,u. The content of the Einstein equations in
this gauge can be viewed as a coupled system of the so-called null structure equations (relating both the
components of the metric itself and the so-called Ricci coe�cients (including the second fundamental form
of the foliation), decomposed into this null frame) and the Bianchi equations satisfied by the null-frame
decomposed components of curvature.

One can compare the above system of equations with the more general Newman–Penrose formalism which
expresses the Einstein equations (1.1) in terms of a general null frame [90]. In our case here, it is essential
that the null frame is tied explicitly to a double null foliation. This allows for the null structure equations
to be estimated as transport equations on the constant u cones and u cones or elliptic equations on the Su,u

spheres. The Bianchi equations can be treated as hyperbolic systems, similar to the Maxwell system (1.7).
An example of a transport equation is the well-known Raychaudhuri equation
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2.3.2 Ricci coe�cients and null curvature components

As before, we use capital Latin indices A,B to denote 1, 2, which are indices on the spheres Su,u. Letting
eA = @

@✓A for A = 1, 2, we define the Ricci coe�cients relative to {e1, e2, e3, e4}. These can be viewed as
tensor fields tangent to Su,u, the 2-spheres adapted to the double null foliation. Let
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(2.20)

where DA = DeA
, D3 = De3 and D4 = De4 . It is clear from the definitions that these Ricci coe�cients are

of di↵erent rank, namely that � and � are symmetric 2-tensors, ⌘, ⌘ and ⇣ are 1-forms and ! and ! are
scalars.

We also introduce the null curvature components as follows:
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Here, R is the Riemann curvature tensor of g, given by

R(X,Y, Z,W )
.
= �g(DXDY Z �DY DXZ,W ),

and ⇤R denotes the Hodge dual of R given by36

⇤Rµ⌫��

.
= "µ⌫↵�R

↵�
��,

where " is the volume form of (U , g). As the Ricci coe�cients, the null curvature components are also tensor
fields tangent to Su,u. It is easy to see that ↵ and ↵ are symmetric 2-tensors, �A and �

A
are 1-forms and ⇢,

� are scalars.
For the null second fundamental forms �AB and �

AB
, we also use �̂AB and �̂

AB
to denote their respective

traceless parts, i.e.
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where /tr� and /tr� denote the trace of the null second fundamental forms with respect to �, i.e.

/tr�
.
= (��1)AB�AB , /tr�

.
= (��1)AB�

AB
. (2.23)

As we will see later, it will be convenient to also introduce two more scalars related to curvature37. First,
we use K to denote the Gauss curvature of the 2-surface Su,u adapted to the double null foliation, i.e.

�BCK =
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where /� is as in (2.10). We also define
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36Recall that Greek indices denote spacetime indices.
37These are the renormalised curvature components; see Sections 1.5.3 and 3.1.
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eA = @

@✓A for A = 1, 2, we define the Ricci coe�cients relative to {e1, e2, e3, e4}. These can be viewed as
tensor fields tangent to Su,u, the 2-spheres adapted to the double null foliation. Let

�AB
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g(D3e4, e3),

⇣A
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1

2
g(DAe4, e3),

(2.20)

where DA = DeA
, D3 = De3 and D4 = De4 . It is clear from the definitions that these Ricci coe�cients are

of di↵erent rank, namely that � and � are symmetric 2-tensors, ⌘, ⌘ and ⇣ are 1-forms and ! and ! are
scalars.

We also introduce the null curvature components as follows:

↵AB
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⇢
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⇤R(e4, e3, e4, e3).

(2.21)

Here, R is the Riemann curvature tensor of g, given by

R(X,Y, Z,W )
.
= �g(DXDY Z �DY DXZ,W ),

and ⇤R denotes the Hodge dual of R given by36

⇤Rµ⌫��

.
= "µ⌫↵�R

↵�
��,

where " is the volume form of (U , g). As the Ricci coe�cients, the null curvature components are also tensor
fields tangent to Su,u. It is easy to see that ↵ and ↵ are symmetric 2-tensors, �A and �

A
are 1-forms and ⇢,

� are scalars.
For the null second fundamental forms �AB and �

AB
, we also use �̂AB and �̂

AB
to denote their respective

traceless parts, i.e.

�̂AB
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= �AB �
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2
(/tr�)�AB , (2.22)

where /tr� and /tr� denote the trace of the null second fundamental forms with respect to �, i.e.

/tr�
.
= (��1)AB�AB , /tr�

.
= (��1)AB�

AB
. (2.23)

As we will see later, it will be convenient to also introduce two more scalars related to curvature37. First,
we use K to denote the Gauss curvature of the 2-surface Su,u adapted to the double null foliation, i.e.

�BCK =
@
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/�
A
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�
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/�
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� /�
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where /� is as in (2.10). We also define

�̌
.
= � +

1

2
2
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�̂BD (2.25)

36Recall that Greek indices denote spacetime indices.
37These are the renormalised curvature components; see Sections 1.5.3 and 3.1.
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The equations I
Black holes and spacetime singularities in general relativity

�∇4
�tr� + 1

2
( �tr�)2 = −��̂�2 − 2! �tr�,

�∇4�̂ + �tr��̂ = −2!�̂ − ↵,
�∇3
�tr� + 1

2
( �tr�)2 = −2! �tr� − ��̂�2,

�∇3�̂ + �tr� �̂ = −2!�̂ − ↵,
�∇4
�tr� + 1

2
�tr� �tr� = 2! �tr� + 2⇢ − �̂ ⋅ �̂ + 2 �div ⌘ + 2�⌘�2,

�∇4�̂ + 1

2
�tr��̂ = �∇⊗̂⌘ + 2!�̂ − 1

2
�tr��̂ + ⌘⊗̂⌘,

�∇3
�tr� + 1

2
�tr� �tr� = 2! �tr� + 2⇢ − �̂ ⋅ �̂ + 2 �div ⌘ + 2�⌘�2,

�∇3�̂ + 1

2
�tr��̂ = �∇⊗̂⌘ + 2!�̂ − 1

2
�tr��̂ + ⌘⊗̂⌘.
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The equations IIBlack holes and spacetime singularities in general relativity

�∇4⌘ = −� ⋅ (⌘ − ⌘) − �,
�∇3⌘ = −� ⋅ (⌘ − ⌘) + �,
�∇4! = ⇣ ⋅ (⌘ − ⌘) − ⌘ ⋅ ⌘ + ⇢,
�div �̂ = 1

2
�∇ �tr� − ⇣ ⋅ (� − �tr��) − �,

�div �̂ = 1

2
�∇ �tr� + ⇣ ⋅ (�̂ − �tr��) + �,

�curl ⌘ = − �curl ⌘ = � + 1

2
�̂ ∧ �̂,

K = −⇢ + 1

2
�̂ ⋅ �̂ − 1

4
�tr� �tr�.
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The equations III
Black holes and spacetime singularities in general relativity

�∇3↵ + 1

2
�tr�↵ = �∇⊗̂� + 4!↵ − 3(�̂⇢ +∗ �̂�) + (⇣ + 4⌘)⊗̂�,

�∇4� + 2 �tr�� = �div ↵ − 2!� + (2⇣ + ⌘) ⋅ ↵,
�∇3� + �tr�� = �∇⇢ + 2!� +∗ �∇� + 2�̂ ⋅ � + 3(⌘⇢ +∗ ⌘�),
�∇4� + 3

2
�tr�� = − �div ∗� + 1

2
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2
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2
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2
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2
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2
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�∇4� + �tr�� = − �∇⇢ +∗ �∇� + 2!� + 2�̂ ⋅ � − 3(⌘⇢ −∗ ⌘�),
�∇3� + 2 �tr�� = − �div ↵ − 2!� − (−2⇣ + ⌘) ⋅ ↵,
�∇4↵ + 1

2
�tr�↵ = − �∇⊗̂� + 4!↵ − 3(�̂⇢ −∗ �̂�) + (⇣ − 4⌘)⊗̂�.
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Recall from Lecture 2:  
generic blow up at Cauchy horizon

Theorem. (Luk–Oh, M.D.–Shlapentokh-Rothman, Luk–
Sbierski) Consider generic smooth localised initial data             
on      for the wave equation                   on subextremal Kerr 
or Reissner–Nordström. Then the local energy of      blows 
up at         ,  i.e.     is inextendible in          across        .     

Before trying to prove our main Theorem, must address 
question: Is this consistent with non-linear evolution?

(ψ0, ψ1)
□g ψ = 0Σ

ψ
𝒞ℋ+ψ𝒞ℋ+ H1

loc
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Luk’s weak null singularities

Theorem. (J. Luk 2013) Consider vacuum characteristic initial data posed 
on the above hypersurfaces such that on the outgoing part              the 
Christoffel symbols are bounded in a norm consistent with the singular 
behaviour of the previous theorem. Then the Cauchy evolution can be 
covered by a full rectangular domain                              , i.e. it has Penrose 
diagram as shown above, and the metric extends, at least     , across a 
Cauchy horizon            .  

Moreover, if the Christoffel symbols indeed have the singular profile of the 
previous theorem, then this profile propages. Thus             can be thought 
of as a weak null singularity.     

C0

U
=
U 0

U
=
0U

=
U 1

U
=
U
0

Figure 16: Local existence allowing for a singular profile

energy momentum tensor Tµ⌫ and in the equations of motion are replaced by gauge covariant derivatives
Dµ, including a gauge potential Aµ whose curvature is now Fµ⌫ , and a current density 2⇡ie( Dµ � Dµ )
is added to the right hand side of the first Maxwell equation. In the massive case, a Klein–Gordon term is
also added to the wave equation and the definition of the energy momentum tensor. For a general discussion
of this system, see [72]. The direct coupling of F with  means that the system now admits also solutions
with a single end but non-trivial charge, which is the physical case, and thus allows for a setting where one
can non-trivially study both cosmic censorship conjectures and the instability of Kerr-like Cauchy horizons.
Including the mass term also allows for boson star-like solutions. In the two-ended case, the Penrose diagram
is again as given in Figure 15 (where various boundary components are potentially empty), whereas in the
one-ended case, there is an additional (possibly empty) null component arising from the centre of symmetry,
which may or may not terminate at I+, which then may or may not be complete [72]. There are thus a host
of open problems to understand for this model! Assuming, however, the non-vanishing and non-extremality
of the asymptotic charge on H

+, together with appropriate upper and lower bounds on the decay of  , the
recent [114] has shown (a) the non-emptiness of CH+, (b) the continuous extendibility of the metric g beyond
CH

+ and (c) the C2-inextendibility of g. For previous results in this direction, see also [73].

1.4.3 Local construction of vacuum weak null singularities without symmetry

Are the results of Section 1.4.2 truly indicative of the vacuum case, or are they due to the restrictive nature
of the spherically symmetric model considered?

Before trying to understand this in our complicated context of black hole interiors, one can pose a simpler,
purely local question. Suppose one started with characteristic initial data for (1.1) on a null hypersurface with
the profile of a weak null singularity. Would this indeed propagate as such, or would spacetime immediately
break down forming a spacelike singularity? A definitive answer to this question is given by the following:

Theorem 1.7 (L. [80]). Consider vacuum initial data posed on a suitable bifurcate null hypersurface such that
the data are regular on the ingoing part [U0, U1]⇥ {U0} up to U1, while on the outgoing part {U0}⇥ [U0, 0),
the Christo↵el symbols are assumed bounded in a norm consistent with the singular profile suggested by
Theorem 1.5 as U ! 0. Then the maximal future development can still be covered by a full rectangular
domain [U0, U1] ⇥ [U0, 0) of double null coordinates U , U , for which the metric is continuously extendible
across U = 0. See Figure 16.

If the Christo↵el symbols indeed have the singular profile suggested by Theorem 1.5 on U = U0, then this
profile propagates for all U 2 [U0, U1]. Thus U = 0 can be thought of as a weak null singularity.

See also earlier work of Ori–Flanagan [95].
The proof of the above theorem relies on expressing the Einstein vacuum equations (1.1) with respect

to a double null foliation, and moreover renormalising the resulting set of equations so as to remove the
components with the worst behaviour at U = U0. The result generalises previous work of [84]. We shall
review the main elements of the proof in the context of Section 1.5, as they shall play a central role in the
proof of Theorem 1. The precise assumption on the initial data in Theorem 1.7 is boundedness with respect
to norms which generalise (1.21).

In fact, not only can one construct in the above way local “weak null singularities”, but one can construct
bifurcate weak null singularities:
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Proof of Luk’s theorem
• Best general well posedness results for the vacuum equation need 

curvature to be square integrable (Klainerman–Rodnianski–Szeftel)


• Here even the Christoffel symbols fail to be square integrable


• This is compensated by additional angular regularity


• Compare with impulsive gravitational waves (Penrose, Luk–Rodnianski) 
where Christoffel symbols were square integrable. Could do usual energy 
estimates but with renormalised Bianchi equations (see next slide).


• In contrast, here need in addition weighted estimates:


i.e. estimate                                    with e.g.


• Null condition ensures non-linear terms can be estimated!

kf(U)�̂kL2
U
L2(SU,U ) f(U) = (�U)

1
2 | log(�U)|

1
2+�
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Figure 19: The region defined by (1.33)

1.5.3 The method of [80]: Renormalisation, local weights and null structure

In anticipation of the fact that one expects (cf. the discussion in Section 1.4) that the Cauchy horizon
CH

+, although C0 stable, will generically represent a weak null singularity, the methods introduced in [80]
described in Section 1.4.3 will play an essential role in the proof. For otherwise, the estimates would be
inconsistent with controlling the solution up to CH

+.
Let us introduce briefly some of the main ideas of [80], directly in the context of Theorem 1.8. The proof

again employs a double null foliation, but we shall denote the coordinates by U and U in place of u and u
to emphasise that these coordinates naturally have finite range [U0, 0)⇥ [U0, 0).

• Renormalisation. To estimate solutions up to potentially singular null fronts U = 0 and U =
0 in Theorem 1.8, one must renormalise the Bianchi equations by eliminating the “most singular
components” ↵ = R(eA, e4, eB , e4), ↵ = R(eA, e3, eB , e3) and replacing the curvature components ⇢
and � discussed in Section 1.5.1 with

⇢ K
.
= �⇢+

1

2
�̂ · �̂�

1

4
/tr�/tr�, �  �̌ = � +

1

2
�̂ ^ �̂.

The significance of these quantities K and �̌ is that K represents the Gaussian curvature of the spheres
SU,U and �̌ the curvature of the normal bundle, respectively, and these quantities remain regular up
to the null boundary. These renormalisations in fact first appeared in [84, 85]. Remarkably, this
renormalisation respects the structure of Section 1.5.1, i.e. the renormalised system can still be viewed
as a set of coupled elliptic, transport and hyperbolic equations. Now the elliptic estimates through
(1.27) appear absolutely essential, not just for the purpose of gaining regularity, but for the system to
close.26

• Local weights. Even though the worst behaving components are now removed, the remaining com-
ponents, e.g. the curvature component � and the shear �̂ still are not expected to have finite “local”
energy at a weak null singular front. (This is in contrast to the situation in [84, 85], referred to above,
where, all Ricci coe�cients were locally square integrable.) One can only hope to prove weighted
estimates with respect to the local “regular” coordinate U , degenerating at U = 0, with weight which
is integrable at U = 0 when squared. An example of such a weight is

f(U) = (�U)
1
2 | log(�U)|

1
2+� (1.34)

appearing in expression (1.21). The finiteness of

kf(U)�̂kL2
U
L2(SU,U )

on an outgoing hypersurface U = c is compatible (say in the case of (1.34)) with the pointwise behaviour

�̂ ⇠ (�U)�1
| log(�U)|�1�2�.

26This is in contrast, for instance, with [31], where elliptic estimates are not used. This in turn was possible because �̂ could
be estimated by a transport equation involving /r4�̂ with ↵ appearing on the right hand side.
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1.5.3 The method of [80]: Renormalisation, local weights and null structure

In anticipation of the fact that one expects (cf. the discussion in Section 1.4) that the Cauchy horizon
CH

+, although C0 stable, will generically represent a weak null singularity, the methods introduced in [80]
described in Section 1.4.3 will play an essential role in the proof. For otherwise, the estimates would be
inconsistent with controlling the solution up to CH

+.
Let us introduce briefly some of the main ideas of [80], directly in the context of Theorem 1.8. The proof

again employs a double null foliation, but we shall denote the coordinates by U and U in place of u and u
to emphasise that these coordinates naturally have finite range [U0, 0)⇥ [U0, 0).

• Renormalisation. To estimate solutions up to potentially singular null fronts U = 0 and U =
0 in Theorem 1.8, one must renormalise the Bianchi equations by eliminating the “most singular
components” ↵ = R(eA, e4, eB , e4), ↵ = R(eA, e3, eB , e3) and replacing the curvature components ⇢
and � discussed in Section 1.5.1 with
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The significance of these quantities K and �̌ is that K represents the Gaussian curvature of the spheres
SU,U and �̌ the curvature of the normal bundle, respectively, and these quantities remain regular up
to the null boundary. These renormalisations in fact first appeared in [84, 85]. Remarkably, this
renormalisation respects the structure of Section 1.5.1, i.e. the renormalised system can still be viewed
as a set of coupled elliptic, transport and hyperbolic equations. Now the elliptic estimates through
(1.27) appear absolutely essential, not just for the purpose of gaining regularity, but for the system to
close.26

• Local weights. Even though the worst behaving components are now removed, the remaining com-
ponents, e.g. the curvature component � and the shear �̂ still are not expected to have finite “local”
energy at a weak null singular front. (This is in contrast to the situation in [84, 85], referred to above,
where, all Ricci coe�cients were locally square integrable.) One can only hope to prove weighted
estimates with respect to the local “regular” coordinate U , degenerating at U = 0, with weight which
is integrable at U = 0 when squared. An example of such a weight is

f(U) = (�U)
1
2 | log(�U)|

1
2+� (1.34)

appearing in expression (1.21). The finiteness of

kf(U)�̂kL2
U
L2(SU,U )

on an outgoing hypersurface U = c is compatible (say in the case of (1.34)) with the pointwise behaviour

�̂ ⇠ (�U)�1
| log(�U)|�1�2�.

26This is in contrast, for instance, with [31], where elliptic estimates are not used. This in turn was possible because �̂ could
be estimated by a transport equation involving /r4�̂ with ↵ appearing on the right hand side.

28



Proof of Luk’s theorem
• Best general well posedness results for the vacuum equation need 

curvature to be square integrable (Klainerman–Rodnianski–Szeftel)


• Here even the Christoffel symbols fail to be square integrable


• This is compensated by additional angular regularity


• Compare with impulsive gravitational waves (Penrose, Luk–Rodnianski) 
where Christoffel symbols were square integrable. Could do usual energy 
estimates but with renormalised Bianchi equations (see next slide).


• In contrast, here need in addition weighted estimates:


i.e. estimate                                    with e.g.


• Null condition ensures non-linear terms can be estimated!
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1.5.3 The method of [80]: Renormalisation, local weights and null structure

In anticipation of the fact that one expects (cf. the discussion in Section 1.4) that the Cauchy horizon
CH

+, although C0 stable, will generically represent a weak null singularity, the methods introduced in [80]
described in Section 1.4.3 will play an essential role in the proof. For otherwise, the estimates would be
inconsistent with controlling the solution up to CH

+.
Let us introduce briefly some of the main ideas of [80], directly in the context of Theorem 1.8. The proof

again employs a double null foliation, but we shall denote the coordinates by U and U in place of u and u
to emphasise that these coordinates naturally have finite range [U0, 0)⇥ [U0, 0).

• Renormalisation. To estimate solutions up to potentially singular null fronts U = 0 and U =
0 in Theorem 1.8, one must renormalise the Bianchi equations by eliminating the “most singular
components” ↵ = R(eA, e4, eB , e4), ↵ = R(eA, e3, eB , e3) and replacing the curvature components ⇢
and � discussed in Section 1.5.1 with
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The significance of these quantities K and �̌ is that K represents the Gaussian curvature of the spheres
SU,U and �̌ the curvature of the normal bundle, respectively, and these quantities remain regular up
to the null boundary. These renormalisations in fact first appeared in [84, 85]. Remarkably, this
renormalisation respects the structure of Section 1.5.1, i.e. the renormalised system can still be viewed
as a set of coupled elliptic, transport and hyperbolic equations. Now the elliptic estimates through
(1.27) appear absolutely essential, not just for the purpose of gaining regularity, but for the system to
close.26

• Local weights. Even though the worst behaving components are now removed, the remaining com-
ponents, e.g. the curvature component � and the shear �̂ still are not expected to have finite “local”
energy at a weak null singular front. (This is in contrast to the situation in [84, 85], referred to above,
where, all Ricci coe�cients were locally square integrable.) One can only hope to prove weighted
estimates with respect to the local “regular” coordinate U , degenerating at U = 0, with weight which
is integrable at U = 0 when squared. An example of such a weight is

f(U) = (�U)
1
2 | log(�U)|

1
2+� (1.34)

appearing in expression (1.21). The finiteness of

kf(U)�̂kL2
U
L2(SU,U )

on an outgoing hypersurface U = c is compatible (say in the case of (1.34)) with the pointwise behaviour

�̂ ⇠ (�U)�1
| log(�U)|�1�2�.

26This is in contrast, for instance, with [31], where elliptic estimates are not used. This in turn was possible because �̂ could
be estimated by a transport equation involving /r4�̂ with ↵ appearing on the right hand side.
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In anticipation of the fact that one expects (cf. the discussion in Section 1.4) that the Cauchy horizon
CH

+, although C0 stable, will generically represent a weak null singularity, the methods introduced in [80]
described in Section 1.4.3 will play an essential role in the proof. For otherwise, the estimates would be
inconsistent with controlling the solution up to CH

+.
Let us introduce briefly some of the main ideas of [80], directly in the context of Theorem 1.8. The proof

again employs a double null foliation, but we shall denote the coordinates by U and U in place of u and u
to emphasise that these coordinates naturally have finite range [U0, 0)⇥ [U0, 0).

• Renormalisation. To estimate solutions up to potentially singular null fronts U = 0 and U =
0 in Theorem 1.8, one must renormalise the Bianchi equations by eliminating the “most singular
components” ↵ = R(eA, e4, eB , e4), ↵ = R(eA, e3, eB , e3) and replacing the curvature components ⇢
and � discussed in Section 1.5.1 with
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The significance of these quantities K and �̌ is that K represents the Gaussian curvature of the spheres
SU,U and �̌ the curvature of the normal bundle, respectively, and these quantities remain regular up
to the null boundary. These renormalisations in fact first appeared in [84, 85]. Remarkably, this
renormalisation respects the structure of Section 1.5.1, i.e. the renormalised system can still be viewed
as a set of coupled elliptic, transport and hyperbolic equations. Now the elliptic estimates through
(1.27) appear absolutely essential, not just for the purpose of gaining regularity, but for the system to
close.26

• Local weights. Even though the worst behaving components are now removed, the remaining com-
ponents, e.g. the curvature component � and the shear �̂ still are not expected to have finite “local”
energy at a weak null singular front. (This is in contrast to the situation in [84, 85], referred to above,
where, all Ricci coe�cients were locally square integrable.) One can only hope to prove weighted
estimates with respect to the local “regular” coordinate U , degenerating at U = 0, with weight which
is integrable at U = 0 when squared. An example of such a weight is

f(U) = (�U)
1
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1
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appearing in expression (1.21). The finiteness of
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on an outgoing hypersurface U = c is compatible (say in the case of (1.34)) with the pointwise behaviour
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| log(�U)|�1�2�.

26This is in contrast, for instance, with [31], where elliptic estimates are not used. This in turn was possible because �̂ could
be estimated by a transport equation involving /r4�̂ with ↵ appearing on the right hand side.
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equations
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1.5.3 The method of [80]: Renormalisation, local weights and null structure

In anticipation of the fact that one expects (cf. the discussion in Section 1.4) that the Cauchy horizon
CH

+, although C0 stable, will generically represent a weak null singularity, the methods introduced in [80]
described in Section 1.4.3 will play an essential role in the proof. For otherwise, the estimates would be
inconsistent with controlling the solution up to CH

+.
Let us introduce briefly some of the main ideas of [80], directly in the context of Theorem 1.8. The proof

again employs a double null foliation, but we shall denote the coordinates by U and U in place of u and u
to emphasise that these coordinates naturally have finite range [U0, 0)⇥ [U0, 0).

• Renormalisation. To estimate solutions up to potentially singular null fronts U = 0 and U =
0 in Theorem 1.8, one must renormalise the Bianchi equations by eliminating the “most singular
components” ↵ = R(eA, e4, eB , e4), ↵ = R(eA, e3, eB , e3) and replacing the curvature components ⇢
and � discussed in Section 1.5.1 with

⇢ K
.
= �⇢+

1

2
�̂ · �̂�

1

4
/tr�/tr�, �  �̌ = � +

1

2
�̂ ^ �̂.

The significance of these quantities K and �̌ is that K represents the Gaussian curvature of the spheres
SU,U and �̌ the curvature of the normal bundle, respectively, and these quantities remain regular up
to the null boundary. These renormalisations in fact first appeared in [84, 85]. Remarkably, this
renormalisation respects the structure of Section 1.5.1, i.e. the renormalised system can still be viewed
as a set of coupled elliptic, transport and hyperbolic equations. Now the elliptic estimates through
(1.27) appear absolutely essential, not just for the purpose of gaining regularity, but for the system to
close.26

• Local weights. Even though the worst behaving components are now removed, the remaining com-
ponents, e.g. the curvature component � and the shear �̂ still are not expected to have finite “local”
energy at a weak null singular front. (This is in contrast to the situation in [84, 85], referred to above,
where, all Ricci coe�cients were locally square integrable.) One can only hope to prove weighted
estimates with respect to the local “regular” coordinate U , degenerating at U = 0, with weight which
is integrable at U = 0 when squared. An example of such a weight is

f(U) = (�U)
1
2 | log(�U)|

1
2+� (1.34)

appearing in expression (1.21). The finiteness of

kf(U)�̂kL2
U
L2(SU,U )

on an outgoing hypersurface U = c is compatible (say in the case of (1.34)) with the pointwise behaviour

�̂ ⇠ (�U)�1
| log(�U)|�1�2�.

26This is in contrast, for instance, with [31], where elliptic estimates are not used. This in turn was possible because �̂ could
be estimated by a transport equation involving /r4�̂ with ↵ appearing on the right hand side.
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The (renormalised) Bianchi equations take the following form:
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(3.7)

Notice that we have obtained a system for the renormalised null curvature components in which the null
curvature components ↵ and ↵ do not appear.44

3.2 Schematic Notation

We introduce a schematic notation for the equations that we consider. We will use the symbol =S to
emphasise that an equation is only to be understood schematically.

We first introduce schematic expressions for the Ricci coe�cients according to the estimates that they
will eventually be shown to obey. More precisely, let

 2 {⌘, ⌘},  H 2 {/tr�, �̂},  H 2 {/tr�, �̂}.

When writing an equation in the schematic notation, the following conventions will be used:

• (Numerical constants) We use the convention that the exact constants are kept on the left hand side
of =S while we do not keep track45 of the constants on the right hand side of =S.

• (Quantities on left and right hand side) When a schematic quantity, say  H , appears on the right hand
side of a schematic equation, one should understand it as summing over all possible  H 2 {/tr�, �̂}. On
the other hand, when a schematic quantity, again say  H , appears on the left hand side, one should
understand it as representing a fixed  H 2 {/tr�, �̂}. For instance, in (3.8) below, the /r3 H �2! H on
the left hand side is meant to represent either /r3 /tr��2! /tr� or /r3�̂�2!�̂ (but not, say, /r3�̂�2! /tr��).

• (Contractions with respect to the metric) We will denote by   (or   H , etc) an arbitrary contraction
with respect to the metric �.

• (Derivatives and products) /r
i
 j will be used to denote the sum of all terms which are products of j

factors, such that each factor takes the form /r
ik and that the sum of all ik’s is i, i.e.

/r
i
 j =S

X

i1+i2+...+ij=i

/r
i1 /r

i2 ... /r
ij | {z }

j factors

.

• (The bracket notation) We will use brackets to denote terms with one of the components in the brackets.
For instance, the notation  ( , H) denotes the sum of all terms of the form   or   H .

44Moreover, compared to the renormalisation in [84], this system do not contain the terms /tr�|�̂|2 and /tr�|�̂|2 which would
be uncontrollable in the context of this paper. This observation already played an important role in [80].

45Obviously, we will use this schematic notation only in situations where the exact constant in front of the term is irrelevant
to the argument.
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1.5.3 The method of [80]: Renormalisation, local weights and null structure

In anticipation of the fact that one expects (cf. the discussion in Section 1.4) that the Cauchy horizon
CH

+, although C0 stable, will generically represent a weak null singularity, the methods introduced in [80]
described in Section 1.4.3 will play an essential role in the proof. For otherwise, the estimates would be
inconsistent with controlling the solution up to CH

+.
Let us introduce briefly some of the main ideas of [80], directly in the context of Theorem 1.8. The proof

again employs a double null foliation, but we shall denote the coordinates by U and U in place of u and u
to emphasise that these coordinates naturally have finite range [U0, 0)⇥ [U0, 0).

• Renormalisation. To estimate solutions up to potentially singular null fronts U = 0 and U =
0 in Theorem 1.8, one must renormalise the Bianchi equations by eliminating the “most singular
components” ↵ = R(eA, e4, eB , e4), ↵ = R(eA, e3, eB , e3) and replacing the curvature components ⇢
and � discussed in Section 1.5.1 with
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The significance of these quantities K and �̌ is that K represents the Gaussian curvature of the spheres
SU,U and �̌ the curvature of the normal bundle, respectively, and these quantities remain regular up
to the null boundary. These renormalisations in fact first appeared in [84, 85]. Remarkably, this
renormalisation respects the structure of Section 1.5.1, i.e. the renormalised system can still be viewed
as a set of coupled elliptic, transport and hyperbolic equations. Now the elliptic estimates through
(1.27) appear absolutely essential, not just for the purpose of gaining regularity, but for the system to
close.26

• Local weights. Even though the worst behaving components are now removed, the remaining com-
ponents, e.g. the curvature component � and the shear �̂ still are not expected to have finite “local”
energy at a weak null singular front. (This is in contrast to the situation in [84, 85], referred to above,
where, all Ricci coe�cients were locally square integrable.) One can only hope to prove weighted
estimates with respect to the local “regular” coordinate U , degenerating at U = 0, with weight which
is integrable at U = 0 when squared. An example of such a weight is

f(U) = (�U)
1
2 | log(�U)|

1
2+� (1.34)

appearing in expression (1.21). The finiteness of

kf(U)�̂kL2
U
L2(SU,U )

on an outgoing hypersurface U = c is compatible (say in the case of (1.34)) with the pointwise behaviour

�̂ ⇠ (�U)�1
| log(�U)|�1�2�.

26This is in contrast, for instance, with [31], where elliptic estimates are not used. This in turn was possible because �̂ could
be estimated by a transport equation involving /r4�̂ with ↵ appearing on the right hand side.
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Bifurcate weak null 
singularities

Theorem. (J. Luk 2013) Consider initial data such that the 
Christoffel symbols have the singular profile suggested by 
the previous on both ingoing and outgoing parts. Then, with 
an appropriate smallness condition, the maximal future 
development is bounded by a bifurcate null singularity, 
across which the metric is globally continuously extendible.
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Figure 17: Two singular profiles meet

Theorem 1.8 (L. [80]). Consider initial data such that the Christo↵el symbols have the singular profile
suggested by Theorem 1.5 on both ingoing and outgoing parts. Then, with an appropriate smallness condition,
the maximal future development is bounded in the future by a bifurcate null singularity, across which the
metric is globally continuously extendible. See Figure 17.

As with Theorem 1.5, a truly geometrical characterization of the above weak null singularities is still
lacking. For the continuous extensions which are constructed in [80], indeed the Christo↵el symbols fail to
be square integrable. Conjecturally this is true for any continuous extension of the metric, and this would
provide a geometric characterization of the singular nature of the boundary, justifying thinking of it as
“terminal” (see the discussion concerning Conjecture 3). At present, however, the only geometric invariant
statement that can be easily inferred is that the metric is inextendible with g 2 C2, which is clearly highly
sub-optimal.

We emphasise again that the above two theorems are purely local. They show that bifurcate, weak null
singularities can occur in principle, but they in no way imply that weak null singularities necessarily form
in black hole interiors for (1.1). They do show, however, that once they occur, they are stable to small
perturbation. We proceed to formulate this corollary below.

In view of the fact that our only examples of already-formed weak null singularities inside black holes
concern the system (1.22)–(1.23), it is useful to consider this system in place of (1.1). Let us first note then
that analogues of Theorems 1.7 and 1.8 indeed easily generalise to the case where the vacuum equations
(1.1) are replaced by the system (1.22)–(1.23), where the latter are considered without the assumption of
spherical symmetry.

Let (M, g) now be a spacetime as in the last statement of Theorem 1.3, i.e. with a bifurcate Cauchy
horizon CH

+, satisfying moreover the generic condition of Theorem 1.5 ensuring that CH
+ is singular.

Passing to a Kruskal-like coordinate U with U = 0 on the right segment of CH+, one can thus think of
the induced geometry on the null hypersurfaces {u0} ⇥ [U0, 0) as a special case of the initial data allowed
by Theorem 1.7, the latter generalised to apply to the system (1.22)–(1.23). Moreover, if U is a conjugate
Kruskal-like coordinate such that U = 0 on the left segment of CH+, then the induced geometry on {U0}⇥

[U0, 0) [ [U0, 0)⇥ {U0} satisfies the assumptions of Theorem 1.8 (again, generalised to (1.22)–(1.23)), if U0

and U0 are both su�ciently late times. Together with an appeal to Cauchy stability and the domain of
dependence property, this allows us to infer the following stability statement for the already-formed weak
null singularities of Theorem 1.5:

Corollary 1.9 (Stability of already-formed weak null singularities). Let (M, g, Fµ⌫ , ) be as in the last
statement of Theorem 1.3, satisfying moreover the generic condition of Theorem 1.5 ensuring that CH+ is
singular, and let ⌃0 be a hypersurface in the black hole interior as depicted in Figure 18. Consider a new
initial data set on ⌃0 which is a small perturbation of the induced data of M and which identically coincides
with that data outside a compact subset K ⇢ ⌃0, and consider the future development M0 of the new data
on ⌃0. Then M

0 is again globally extendible continuously beyond a bifurcate Cauchy horizon, which can
moreover be interpreted as a weak null singularity.

1.5 First remarks on the proof and guide to the paper

We make some preliminary remarks concerning the proof of Theorem 1, followed by a guide to the remainder
of the paper.
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1.3 The main theorems

In this paper, we will inaugurate a series of works giving a definitive resolution of the C0-metric stability
properties of the Kerr Cauchy horizon. Our results will in particular imply (see Section 1.3.3 below) that, if
the exterior stability of Kerr (Conjecture 1) is indeed true, then the formulation of strong cosmic censorship
given in Section 1.2.4 (Conjecture 2) is in fact false, and moreover, the entire finite boundary of spacetime
is null for all spacetimes arising from data su�ciently near two-ended Kerr data.

1.3.1 The evolution of spacelike data and the non-linear C0
-stability of the Cauchy horizon

In the present paper, we take up the problem from initial data for (1.1) posed on a hypersurface ⌃0 which is
modelled on a Pretorius–Israel u+ u = C hypersurface sandwiched between two constant-r hypersurfaces of
the Kerr interior with r close to its event horizon value. The assumption on our data is that they asymptote
to induced Kerr data on ⌃0, with parameters 0 < |a| < M , at an inverse polynomial rate in u. We think
of these (see Section 1.3.2 immediately below!) as the “expected induced data” from a general dynamical
vacuum black hole settling down to Kerr, when viewed on a suitably chosen spacelike hypersurface “just
inside” the event horizon. The hypersurface is in fact foliated by trapped spheres. The main result of the
present paper is then the following

Theorem 1. Consider general vacuum initial data corresponding to the expected induced geometry of a
dynamical black hole settling down to Kerr (with parameters 0 < |a| < M) on a suitable spacelike hypersurface
⌃0 in the black hole interior. Then the maximal future development spacetime (M, g) corresponding to ⌃0

is globally covered by a double null foliation and has a non-trivial Cauchy horizon CH
+ across which the

metric is continuously extendible.

The domain of the spacetime is depicted in Figure 9. It turns out that we can in fact retrieve our
assumptions on the geometry of ⌃0 from an assumption on the event horizon H

+ and thus directly relate
them to the stability of Kerr conjecture as formulated in Conjecture 1, as well as to the expectation that
generic vacuum spacetimes (not necessarily initially close to Kerr) must either disperse or eventually settle
down to a number of Kerr black holes. This event horizon formulation will be the subject of the forthcoming
paper discussed below.

1.3.2 Forthcoming work: event horizon data and the stability of the red-shift region

In an upcoming follow-up paper of this series [32], we will obtain the above induced data of Theorem 1 on a
hypersurface ⌃0 in the interior of a spacetime arising from a characteristic initial value problem with data
posed on a bifurcate null hypersurface N [H

+. See Figure 10. Here, the initial hypersurface H
+ is meant

to represent the event horizon of a dynamic vacuum black hole settling down to a rotating Kerr solution.

Theorem 2 (to appear [32]). Consider vacuum initial data on a bifurcate null hypersurface N [H
+ such

that H+ is future a�ne complete and the data suitably approach the event horizon geometry of Kerr (with
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schematic equation:

Note that this is in turn compatible with the finiteness of the L1 norm

k�̂kL1
U
L2(SU,U ),

which is to be expected if the metric is to be continuously extendible beyond U = 0.

For a linear equation like (1.4), such weighted estimates are readily seen to locally propagate. For the
non-linear Einstein equations (1.1), however, the question of the local propagation of such weighted
estimates becomes highly non-trivial, dependent on the precise null structure in the nonlinearities.

• Schematic notation and null structure. In order to describe the above structure, it is useful to
first introduce a schematic notation.27 One can group (a subset of) the Ricci coe�cients into families
as follows:

 2 {⌘, ⌘},  H 2 {/tr�, �̂},  H 2 {/tr�, �̂}

according to their expected singular behaviour. All terms  H have expected behaviour similar to
�̂ (and �) and thus can be estimated either in L1

U
L2(S) on outgoing hypersurfaces U = c, or with

the weight (1.34) in L2
U
L2(S). Analogous statements hold for  H with ingoing hypersurfaces U = c

replacing outgoing ones. The terms  , on the other hand, can be estimated without degeneration.
Energy identities for � lead in particular to having to estimate spacetime integrals of the form

kf2(U)(� H� + � H� + � K)kL1
U
L

1
U
L1(S) (1.35)

All the terms appearing above can be seen to be admissible from the point of view of integrability. In
contrast, terms like � H� or � H� would not have been controllable. It is thus precisely the absence
of such terms which captures the “null structure” essential for this argument.

Of course, the story is more complicated, in that the equations need to be su�ciently commuted so
that indeed trilinear terms can be controlled by top order L2 estimates and Sobolev inequalities. We defer
discussion of these issues to the setting of our actual problem in Section 1.5.4 below.

1.5.4 The main estimates

Already in the context of the linear wave equation (1.4) discussed in Section 1.4.1, it is clear that weighted
estimates with respect to the (infinite-range) coordinates u and u are necessary in view of the global aspects
of the problem special to the black hole interior.

The remarkable fact, central to the present work, is that these two systems of weights, those
introduced in the study of the wave equation as discussed in Section 1.4.1 and those introduced
in [80] as discussed in Section 1.4.3, are in fact compatible, and the null condition is reflected
in both.

Indeed, we have already seen that the polynomially growing weight in u, coupled with the degenerate
coordinate derivative @u and degenerate one-form du, when looked at for fixed u, behaves precisely like
(1.21).

We outline below the main ideas in adapting the global weighted estimates of (1.4), combined with the
renormalisation of Section 1.5.3, to the global analysis of the Einstein vacuum equations (1.1) in the black
hole interior.

• Di↵erences, angular commutation and reduced schematic notation. First of all, it is now
di↵erences which must be estimated, i.e. one must subtract from each quantity, e.g. the outgoing
expansion /tr� or the curvature component �, its Kerr value, considering

f/tr� .
= /tr�� (/tr�)K, e� .

= � � �K. (1.36)

We will extend the schematic notation of Section 1.5.3 to di↵erences by defining

e 2 {e⌘,e⌘} , e H 2 {
f/tr�, ê�} , e H 2 {

f/tr�, ê�}
27The notation and conventions of [80] are slightly di↵erent. Here we follow notation to be used in the present paper.
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and defining also a schematic notation for di↵erence quantities at the level of the metric itself:

eg 2 {�AB � (�AB)K, . . . , log⌦� log⌦K}.

We note already that the metric component eb and the Ricci coe�cient di↵erence e! defined from (1.30)
do not have a schematic representation and must always be dealt with explicitly. Moreover, for our
estimates to close, we will need to control quantities in a higher Lp norm via Sobolev inequalities (see
also Section 1.5.5 below!), so we will have to commute (in the angular directions /r) the null structure
equations for the Ricci coe�cients up to three times, and the Bianchi equations up to two times, i.e. we

shall consider quantities /r
3 e ,. . . /r2e�,. . . .28 After commuting the equations, we shall moreover adopt

the convention that lower order terms which can be controlled in L1 will not be written explicitly. The
system for di↵erences will retain the structural properties of the renormalised system, but gives rise
to additional “inhomogeneous” terms. We shall call this system the “reduced schematic equations”.
They are derived in Section 7.

For instance, the equation for /r
3 f/tr� arising from taking di↵erences and commuting (1.26) can be

written in reduced schematic form as

/r4 /r
3 f/tr� =RS

X

i1+i2+i33

(1 + /r
i1eg + /r

min{i1,2} e )(1 + /r
i2 e H)( /r

i3( e H , eg) + ⌦�2
K

/r
i3eb), (1.37)

where =RS denotes that the relation holds in the sense of our conventions described above. As we

shall see, the quantity f/tr� has a special role in the context of not losing di↵erentiability for the second
fundamental form (cf. the discussion at the end of Section 1.5.1). We remark already that the equation

(1.37) does not contain top-order terms (e.g. terms like /r
3
 or /r

2
� on its right hand side).

• Global weights in ⌦K, $N
, u and u. In contrast to the case of the linear scalar wave equation

(1.4), there is no longer a standard Lagrangian structure naturally giving rise to weighted estimates
via vector fields such as (1.13), so the weights must be put in by hand in a more ad hoc fashion in

the context of direct integration by parts. For instance, the curvature di↵erence quantity e� of (1.36)
is estimated in the weighted norm

ku
1
2+�$N⌦2

K
e�kL1

u
L2

u
L2(Su,v). (1.38)

Comparing the above expression to the first expression in (1.14) which arose as a flux of the vector field
(1.13), we note that ⌦2

K
e4 is in some sense equivalent to @u, and we see the quantity rN is replaced by

$N , appropriate for Kerr, as discussed in Section 1.4.1.

• The controlling energies N . As remarked already, the top-order estimates will be at the level of

two angular commutations of curvature, e.g. /r
2e�. In view of the elliptic estimates mentioned already

in Section 1.5.1 (see also below), we will be able to estimate all terms /r
3 e , /r

3 e H , /r
3 e H , from top-

order curvature terms, and conversely. This motivates defining a certain master energy, defined with
reference only to the metric and Ricci coe�cients, which will finally be shown to control the entire
system.

The master energy is in fact best separated into three parts, some of whose terms are displayed below:

Nhyp = ku
1
2+�$N⌦2

K
/r
3 e Hk

2
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u
L2

u
L2(S) + k|u|

1
2+�$N /r

3 e Hk
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u
L2(S) + · · · (1.39)

Nint = ku
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+ku
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L2(S) · · · (1.40)

Nsph = k /r
3egk2

L1
u

L1
u

L2(S) + · · ·+ k e Hk
2
L1

u
L1

u
L2(S) + · · · . (1.41)
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Figure 4: Penrose diagram of M̃.

Note also that the vector field T , initially defined on M in (2.3), extends to a smooth vector field on M̃

with

T �HA=
@

@v
�HA , (2.23)

where @
@v is the coordinate derivative with respect to local chart defined in (2.15). Similarly, we have

T �HB= �
@

@u
�HB w.r.t. to the local chart (2.16), (2.24)

T �CHA= �
@

@u
�CHA w.r.t. to the local chart (2.17), (2.25)

T �CHB=
@

@v
�CHB w.r.t. to the local chart (2.18). (2.26)

Note that T is a Killing null generator of the Killing horizons HA,HB , CHA, and CHB . Recall also that
rTT �CH= �T �CH and rTT �H= +T �H, where ± is defined by (2.8).

At this point, we note that we can attach corners to H0 and CH0 to extend M̃ smoothly to a Lorentzian
manifold with corners. To be more precise, we attach the past bifurcation sphere B� to H0 as the point
(UH, VH) = (0, 0). Then, define H := H0 [B�. Similarly, we can attach the future bifurcation sphere B+ to
the Cauchy horizon which will be denoted by CH. We call the resulting manifold MRN. Further details are
not given since the precise construction is straight-forward and the metric extends smoothly. Moreover, the
T vector field extends smoothly to B+ and B� and vanishes there. Its Penrose diagram is depicted in Fig. 5.

H
A
=
{
u
=
�
1
}

H
B
=
{v
=
�
1
}

C
H
A
=
{v
=
1
}

C
H

B
=
{
u
=
1
}

i+i+

B+

B�

Figure 5: Penrose diagram of MRN which includes the bifurcate spheres B+ and B�.
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and defining also a schematic notation for di↵erence quantities at the level of the metric itself:

eg 2 {�AB � (�AB)K, . . . , log⌦� log⌦K}.

We note already that the metric component eb and the Ricci coe�cient di↵erence e! defined from (1.30)
do not have a schematic representation and must always be dealt with explicitly. Moreover, for our
estimates to close, we will need to control quantities in a higher Lp norm via Sobolev inequalities (see
also Section 1.5.5 below!), so we will have to commute (in the angular directions /r) the null structure
equations for the Ricci coe�cients up to three times, and the Bianchi equations up to two times, i.e. we

shall consider quantities /r
3 e ,. . . /r2e�,. . . .28 After commuting the equations, we shall moreover adopt

the convention that lower order terms which can be controlled in L1 will not be written explicitly. The
system for di↵erences will retain the structural properties of the renormalised system, but gives rise
to additional “inhomogeneous” terms. We shall call this system the “reduced schematic equations”.
They are derived in Section 7.
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where =RS denotes that the relation holds in the sense of our conventions described above. As we

shall see, the quantity f/tr� has a special role in the context of not losing di↵erentiability for the second
fundamental form (cf. the discussion at the end of Section 1.5.1). We remark already that the equation

(1.37) does not contain top-order terms (e.g. terms like /r
3
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2
� on its right hand side).

• Global weights in ⌦K, $N
, u and u. In contrast to the case of the linear scalar wave equation

(1.4), there is no longer a standard Lagrangian structure naturally giving rise to weighted estimates
via vector fields such as (1.13), so the weights must be put in by hand in a more ad hoc fashion in

the context of direct integration by parts. For instance, the curvature di↵erence quantity e� of (1.36)
is estimated in the weighted norm
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Comparing the above expression to the first expression in (1.14) which arose as a flux of the vector field
(1.13), we note that ⌦2

K
e4 is in some sense equivalent to @u, and we see the quantity rN is replaced by

$N , appropriate for Kerr, as discussed in Section 1.4.1.

• The controlling energies N . As remarked already, the top-order estimates will be at the level of

two angular commutations of curvature, e.g. /r
2e�. In view of the elliptic estimates mentioned already

in Section 1.5.1 (see also below), we will be able to estimate all terms /r
3 e , /r
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3 e H , from top-

order curvature terms, and conversely. This motivates defining a certain master energy, defined with
reference only to the metric and Ricci coe�cients, which will finally be shown to control the entire
system.

The master energy is in fact best separated into three parts, some of whose terms are displayed below:
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28Compare with the role of commutation in obtaining the L1 estimate (1.20). Note that in view of the lack of exactly

commuting operators Wi, it is more natural to commute tensorially here, just as in [84, 85, 31]. Note that /r
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28Compare with the role of commutation in obtaining the L1 estimate (1.20). Note that in view of the lack of exactly

commuting operators Wi, it is more natural to commute tensorially here, just as in [84, 85, 31]. Note that /r
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 is a higher rank
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system.
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e4 is in some sense equivalent to @u, and we see the quantity rN is replaced by

$N , appropriate for Kerr, as discussed in Section 1.4.1.

• The controlling energies N . As remarked already, the top-order estimates will be at the level of
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2e�. In view of the elliptic estimates mentioned already

in Section 1.5.1 (see also below), we will be able to estimate all terms /r
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order curvature terms, and conversely. This motivates defining a certain master energy, defined with
reference only to the metric and Ricci coe�cients, which will finally be shown to control the entire
system.

The master energy is in fact best separated into three parts, some of whose terms are displayed below:
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28Compare with the role of commutation in obtaining the L1 estimate (1.20). Note that in view of the lack of exactly

commuting operators Wi, it is more natural to commute tensorially here, just as in [84, 85, 31]. Note that /r
i
 is a higher rank

Su,u-tensor than  .
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Global weights: mimicking 
the      vector field

• hyperbolic, transport and elliptic estimates under these 
weights


• “null condition” and the geometric properties of the solution 
near the Cauchy horizon ensures estimates close

and defining also a schematic notation for di↵erence quantities at the level of the metric itself:

eg 2 {�AB � (�AB)K, . . . , log⌦� log⌦K}.

We note already that the metric component eb and the Ricci coe�cient di↵erence e! defined from (1.30)
do not have a schematic representation and must always be dealt with explicitly. Moreover, for our
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the convention that lower order terms which can be controlled in L1 will not be written explicitly. The
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where =RS denotes that the relation holds in the sense of our conventions described above. As we

shall see, the quantity f/tr� has a special role in the context of not losing di↵erentiability for the second
fundamental form (cf. the discussion at the end of Section 1.5.1). We remark already that the equation
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Relation of the weights with 
weak null singularities
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Figure 24: The region of validity of our estimates
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!
K
= �

@

@u
log⌦K. (A.55)

The values of ⌘ and ⌘ can then be derived using the relations in (2.27) together with (A.43) and (A.54).
For the purpose of this paper, we will not use the precise formulae for the Ricci coe�cients above,

but instead it su�ces to obtain estimates for them. We will only be concerned with bounds for the Ricci
coe�cients in the region {(u, u, ✓⇤,�⇤) : u + u � CR, u  �1} for some fixed (but arbitrary) CR 2 R; see
Figure 24 for a depiction of the region of interest. (Notice that the bounds we derive below degenerate
as CR ! �1.) In the remaining propositions of this section (Propositions A.17, A.19, A.21,
A.23 and A.24), the implicit constants in the inequalities . depend on M , a and CR. We have
estimates for the Ricci coe�cients as well as for their higher order angular covariant derivatives. For clarity
of the exposition, let us first give the estimates for the Ricci coe�cients themselves:

Proposition A.17. In the region {(u, u, ✓⇤,�⇤) : u + u � CR, u  �1}, the components of �
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following estimates:
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the components of ⇣K verify
|(⇣K)�⇤

| .CR
sin2 ✓⇤, |(⇣K)✓⇤ | .CR

sin ✓⇤;

and !
K

verifies ����!K
�

1

2

r+ � r�
r2
�
+ a2

���� .CR
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In particular, using the convention in Definition A.13, this implies
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(A.56)

Proof. In the proof, we suppress the explicit dependence on CR in the notations.
Estimates for �

K
. The estimates for �

K
can be inferred from the formula (A.52) and the estimates for

the @

@r⇤
derivatives of components of �K in Proposition A.12.

Estimates for �K. We then turn to the estimates for �K. Recall from (A.53) that �K is given by
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Figure 14: Null coordinates in the black hole interior

Defining r⇤ by dr
⇤

dr
= (1�2M/r+Q2/r2)�1, then the region (1.8) is covered by the unbounded null coordinates

u =
1

2
(r⇤ � t), u =

1

2
(r⇤ + t) (1.9)

as (�1,1) ⇥ (�1,1), with the Cauchy horizon formally parameterised as {u = 1} [ {u = 1}. See
Figure 14. The metric can be extended beyond the Cauchy horizon by passing to Kruskal type coordinates:
For instance, defining

U = �e�2�u, (1.10)

where � = r+�r�

2r2
�

is the surface gravity of the Cauchy horizon, then u = 1 maps to U = 0, and the metric

is seen to be smooth. We will discuss versions of the null coordinates u and u appropriate for non-spherically
symmetric spacetimes including Kerr in Section 1.5.1. The hypersurface ⌃0 corresponds to u+ u = C.

As described in Section 1.2.3, it was precisely in the setting of (1.4) that the blue-shift e↵ect, and its
possible role in allowing for some version of strong cosmic censorship to be true, was originally discussed.
Theorem 1.2, to follow shortly below, will indeed provide a rigorous manifestation of the instability associated
with this e↵ect. What is much less well known, however, is that solutions of the wave equation enjoy

global C0
stability properties within the black hole interior, still compatible with the blue-shift

instability. The proof of these interior stability statements is in turn related to quantitative decay estimates
in the exterior, which themselves have only been obtained recently. We turn first to both of these stability
statements.

Stability. The study of the wave equation (1.4) on a Kerr background has been the subject of intense
activity in the past years, and definitive boundedness and decay results, both in the exterior, but, surprisingly,
in the interior, have been obtained. The following theorem summarises the statements relevant for us.

Theorem 1.1. Let  be a solution of (1.4) on sub-extremal Kerr or Reissner–Nordström arising from regular
Cauchy data on ⌃ decaying su�ciently fast at spatial infinity.17 Then

1. The solution  remains globally bounded in the exterior J�(I+) and decays inverse polynomially to 0,
in particular, on the event horizon H

+. See [36, 22].

2. The polynomial decay on H
+ propagates to similar decay on the spacelike hypersurface ⌃0 in the black

hole interior, with respect to coordinates u, u. See [78, 44].

3. The solution  is in fact uniformly bounded in all of M, and extends continuously to CH
+. See [44,

45, 62, 86].

Let us note that the first partial result in the direction of statement 3. was due to McNamara [87], who
essentially showed that 3. held for fixed spherical harmonics  ` on Reissner–Nordström, provided that the
scalar field decayed suitably fast on the event horizon, i.e. assuming the analogue of 1., something which at
the time had not been proven. It is interesting that the significance of this stability does not seem to have
been explicitly noted in most subsequent papers. As we shall see in the discussion below, statement 3. of
the above theorem can be thought of as the first prototype of our Theorem 1.

17For convenience, one can assume that the data are smooth and compactly supported on ⌃, but the result is true under
much weaker regularity and decay assumptions!
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Figure 19: The region defined by (1.33)

1.5.3 The method of [80]: Renormalisation, local weights and null structure

In anticipation of the fact that one expects (cf. the discussion in Section 1.4) that the Cauchy horizon
CH

+, although C0 stable, will generically represent a weak null singularity, the methods introduced in [80]
described in Section 1.4.3 will play an essential role in the proof. For otherwise, the estimates would be
inconsistent with controlling the solution up to CH

+.
Let us introduce briefly some of the main ideas of [80], directly in the context of Theorem 1.8. The proof

again employs a double null foliation, but we shall denote the coordinates by U and U in place of u and u
to emphasise that these coordinates naturally have finite range [U0, 0)⇥ [U0, 0).

• Renormalisation. To estimate solutions up to potentially singular null fronts U = 0 and U =
0 in Theorem 1.8, one must renormalise the Bianchi equations by eliminating the “most singular
components” ↵ = R(eA, e4, eB , e4), ↵ = R(eA, e3, eB , e3) and replacing the curvature components ⇢
and � discussed in Section 1.5.1 with

⇢ K
.
= �⇢+

1

2
�̂ · �̂�

1

4
/tr�/tr�, �  �̌ = � +

1

2
�̂ ^ �̂.

The significance of these quantities K and �̌ is that K represents the Gaussian curvature of the spheres
SU,U and �̌ the curvature of the normal bundle, respectively, and these quantities remain regular up
to the null boundary. These renormalisations in fact first appeared in [84, 85]. Remarkably, this
renormalisation respects the structure of Section 1.5.1, i.e. the renormalised system can still be viewed
as a set of coupled elliptic, transport and hyperbolic equations. Now the elliptic estimates through
(1.27) appear absolutely essential, not just for the purpose of gaining regularity, but for the system to
close.26

• Local weights. Even though the worst behaving components are now removed, the remaining com-
ponents, e.g. the curvature component � and the shear �̂ still are not expected to have finite “local”
energy at a weak null singular front. (This is in contrast to the situation in [84, 85], referred to above,
where, all Ricci coe�cients were locally square integrable.) One can only hope to prove weighted
estimates with respect to the local “regular” coordinate U , degenerating at U = 0, with weight which
is integrable at U = 0 when squared. An example of such a weight is

f(U) = (�U)
1
2 | log(�U)|

1
2+� (1.34)

appearing in expression (1.21). The finiteness of

kf(U)�̂kL2
U
L2(SU,U )

on an outgoing hypersurface U = c is compatible (say in the case of (1.34)) with the pointwise behaviour

�̂ ⇠ (�U)�1
| log(�U)|�1�2�.

26This is in contrast, for instance, with [31], where elliptic estimates are not used. This in turn was possible because �̂ could
be estimated by a transport equation involving /r4�̂ with ↵ appearing on the right hand side.
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close.26
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Recall from Lecture 5: 
Deducing      bounds

• now integrate the above over the spheres


• Since          , the second factor is finite


• commute with 


• and apply Sobolev on the spheres

C0

|ψ |2 ≤ (∫
∞

1
|∂vψ |)

2

+ data ≤ (∫
∞

1
vp |∂vψ |2 dv) (∫

∞

1
v−pdv) + data
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�
1
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C
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=
{v
=
1
}

C
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=
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u
=
1
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i+i+

Figure 4: Penrose diagram of M̃.

Note also that the vector field T , initially defined on M in (2.3), extends to a smooth vector field on M̃

with

T �HA=
@

@v
�HA , (2.23)

where @
@v is the coordinate derivative with respect to local chart defined in (2.15). Similarly, we have

T �HB= �
@

@u
�HB w.r.t. to the local chart (2.16), (2.24)

T �CHA= �
@

@u
�CHA w.r.t. to the local chart (2.17), (2.25)

T �CHB=
@

@v
�CHB w.r.t. to the local chart (2.18). (2.26)

Note that T is a Killing null generator of the Killing horizons HA,HB , CHA, and CHB . Recall also that
rTT �CH= �T �CH and rTT �H= +T �H, where ± is defined by (2.8).

At this point, we note that we can attach corners to H0 and CH0 to extend M̃ smoothly to a Lorentzian
manifold with corners. To be more precise, we attach the past bifurcation sphere B� to H0 as the point
(UH, VH) = (0, 0). Then, define H := H0 [B�. Similarly, we can attach the future bifurcation sphere B+ to
the Cauchy horizon which will be denoted by CH. We call the resulting manifold MRN. Further details are
not given since the precise construction is straight-forward and the metric extends smoothly. Moreover, the
T vector field extends smoothly to B+ and B� and vanishes there. Its Penrose diagram is depicted in Fig. 5.
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Figure 5: Penrose diagram of MRN which includes the bifurcate spheres B+ and B�.
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Showing continuity of the 
metric

• Similar in view of first variation relations                   , etc…ℒe4
γ = 2χ



Open problem I

Finish the proof of the nonlinear exterior stability of Kerr conjecture!

Black holes and spacetime singularities in general relativity

The exterior stability conjecture of Kerr: Penrose diagram

(⌃, ĝ, k̂) ≈ (⌃, ĝa0,M0
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Remark: 
the             analogue

Theorem. (Hintz–Vasy) The region between the event and 
cosmological horizons is stable for very slowly rotating        
Kerr–de Sitter, with exponential decay along          .           

Thus our theorem can be applied to yield stability of the above 
Penrose diagram and the falsification of the      formulation of SCC 
for           .  
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Figure 1: Portion of maximally extended Reissner–Nordström–de Sitter and a hypersurface Σ̃

The above apparent failure of even Christodoulou’s revised formulation of strong cosmic censorship
(already a weakening of the original C0-formulation!) would leave a rather discomforting situation for general
relativity in the presence of a positive cosmological constant Λ > 0: For if Cauchy horizons generically occur
at which spacetime can moreover still be interpreted as a weak solution of the Einstein equations, then it is
difficult to argue decisively that the classical description has “broken down”, and thus, it would appear that
the paradox persists of classical predictability failing without manifestly exiting the classical regime.

The purpose of this short note is to suggest a way out. We will prove that, at the level of the
proxy problem (4), there is indeed a way to retain the desirable generic H1

loc blowup at the Cauchy horizon:
It suffices to consider a slightly less regular, but still well-motivated, class of initial data.

To formulate our result, let M̃ denote maximally extended subextremal Reissner–Nordström–de Sitter
spacetime (or more generally, Kerr–Newman–de Sitter spacetime). Let Σ̃ denote a complete spacelike hy-
persurface intersecting two cosmological horizons C+ as in Figure 1. Initial data (Ψ,Ψ′) on Σ̃ give rise to
a solution ψ on the future domain of dependence D+(Σ̃), with ψ|Σ̃ = Ψ, nΣ̃ψ|Σ̃ = Ψ′, where nΣ̃ denotes

the future normal to Σ̃. The local energy flux of ψ along Σ̃ is of course computable in terms of initial data
(Ψ,Ψ′), in particular ψ has finite local energy flux along Σ̃ if (Ψ,Ψ′) ∈ H1

loc(Σ̃) × L2
loc(Σ̃). For brevity, we

will say in this case that the data (Ψ,Ψ′) have finite local energy along Σ̃.
Our main result is the following

Theorem 1.1. Consider a subextremal Reissner–Nordström–de Sitter spacetime, or more generally, Kerr–
Newman–de Sitter spacetime M̃. For generic initial data (Ψ,Ψ′) with finite local energy along Σ̃, the resulting
solution ψ of (4) in D+(Σ̃) has infinite local energy along hypersurfaces intersecting transversally the Cauchy
horizon CH+, i.e. ψ in particular fails to extend H1

loc around any point of CH+.

The genericity statement can be understood as the following “co-dimension 1 property”: For all Cauchy
data (Ψ0,Ψ′

0) which lead to a solution ψ0 of finite energy along hypersurfaces transversally intersecting the
Cauchy horizon CH+, the solution ψ corresponding to the Cauchy data (Ψ0 + cΨ1,Ψ′

0 + cΨ′
1) has infinite

energy along hypersurfaces transversally intersecting CH+ for some (Ψ1,Ψ′
1) and every c ∈ R \ {0}. By

linearity, it suffices to construct a single (Ψ1,Ψ′
1) in the case (Ψ0,Ψ′

0) = (0, 0). Note that this is analogous
to the notion of genericity used by Christodoulou in his proof of weak cosmic censorship for the spherically
symmetric Einstein-scalar-field system [Chr99b, Chr99a]. (We also observe that one can show that the initial
data leading to the desired Cauchy horizon blow-up form a set of Baire second category within the class
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Open problem II

In the context of the nonlinear exterior stability of Kerr conjecture, 
show in addition that there is a generic lower bound on the rate of 
approach to Kerr. 

See Luk–Oh, Angelopoulos–Aretakis–Gajic

Black holes and spacetime singularities in general relativity

The exterior stability conjecture of Kerr: Penrose diagram
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Open problem III

Use the above to show that generically, the Cauchy horizon is indeed 
a weak null singularity and Christodoulou’s formulation of strong 
cosmic censorship is true 

See M.D., Luk–Oh, Luk–Sbierski

Black holes and spacetime singularities in general relativity

Corollary. If the exterior stability of Kerr conjecture is true,

then both the C0 formulation of strong cosmic censorship

and the spacelike singularity conjecture are false.

(⌃, ĝ, k̂) ≈ (⌃, ĝa0,M0
, k̂a0,M0)

I
+ I +

H +
2 H

+
1

C
H

+
C
H +

g
a
2 ,M

2 ←�
g

g
�→

g a
1
,M

1

Yamabe Lectures, Northwestern University, 25–26 October 2017 30



Open problem III

Use the above to show that generically, the Cauchy horizon is indeed 
a weak null singularity and Christodoulou’s formulation of strong 
cosmic censorship is true 

See M.D., Luk–Oh, Luk–Sbierski

Black holes and spacetime singularities in general relativity

Corollary. If the exterior stability of Kerr conjecture is true,

then both the C0 formulation of strong cosmic censorship

and the spacelike singularity conjecture are false.
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Strong cosmic censorship 
(Christodoulou formulation)

Conjecture. (R. Penrose, 1973) The Kerr Cauchy horizon is 
a fluke! For generic asymptotically flat initial data                
for the vacuum equations, the maximal future Cauchy 
development              is inextendible as a       Lorentzian 
manifold with locally square integrable Christoffel symbols.        

This formulation is sufficiently strong to assure that 
there is no extension even as a weak solution.

(Σ, ḡ, K)

(ℳ, g) C0



Open problem IV

Is there an open set in the moduli space of vacuum initial data 
leading to a spacelike singularity? 

See Rodnianski–Speck for Einstein-scalar field

The cosmic censorship conjectures in classical general relativity

Open problem II

In gravitational collapse

from complete initial data ⌃ with one asymptotically flat end,

is there generically

an additional non-empty spacelike piece of the spacetime boundary, or

can the Cauchy horizon close o↵ the spacetime?

⌃

C
H +

ga,M

H

+

Gravity and black holes: Stephen Hawking 75th Birthday Conference 43
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