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Introduction: Objects

-Σ: an orientable, compact, hyperbolic surface.
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Introduction: Objects

- α: a closed, essential curve.
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Introduction

In this talk, we show that the minimum degree of a covering to
which a curve lifts to a closed embedding is bounded above linearly
by the self-intersection number of the curve.
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Introduction: measures of complexity

Let α be a curve in Σ and let [α] be its free homotopy class,
consider:

i(α): the minimum self-intersection number of a curve in [α].

d(α): the minimum degree of a covering of Σ to which α lifts
as a closed embedding.
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A (corollary of a) theorem of Scott

Scott, 1978

Let Σ be a surface and α a curve with minimal self-intersections in
Σ, then there is a covering of finite degree where α lifts as a closed
embedding.
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Question

Is the degree of such a covering of Σ bounded in some reasonable
way?
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Related results

Theorem (Patel, 2014)

There is a hyperbolic metric on Σ and a constant C for which
every closed geodesic α of length k lifts as an embedding in a
covering of degree ≤ Ck.

Theorem (Aougab-Gaster-Patel-Sapir, 2017)

d(α) is bounded above by a function that depends only on the
topology of Σ and on i(α).



Measuring complexity of curves on surfaces

Question:

Is it possible to bound the minimum degree d(α) by a function of
the self-intersection number only?

Yes - in our Main Theorem, we show this by explicitly constructing
coverings with this property.
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Presenting π1(Σ) via cutting graphs

A way of cutting Σ into a disc corresponds to a presentation
for π1(Σ).

l(α) = minimum word-length of α in a presentation with a
single vertex.
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A possible way forward

Lemma (Scott, 1978)

Let α be an immersed curve in a surface with non-empty boundary,
then d(α) ≤ l(α). Let α be an immersed arc, then d(α) ≤ l(α) + 1.

Can we bound l(α) effectively?
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No!

There are curves with a single self-intersection and whose
word-length in a standard presentation grows with the genus of the
surface:
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Presenting π1(Σ) via cutting graphs pt 2

A graph with several vertices yields a geometric presentation
with fundamental polygon P .

n(α) = minimum |α ∩ ∂P | among all such P .
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Results

Theorem (A.-Neumann-Coto, 2020)

Let α be a curve or an arc in a compact surface Σ, then
n(α) ≤ i(α) + 1.

Proof sketch for closed surfaces and filling curves:
Let i(α) = s. We need to find a graph G with

|G ∩ α| ≤ s+ 1

Σ−G is homeomorphic to a disc.
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Results

Theorem (A.-Neumann-Coto, 2020)

Let α be a curve or an arc in a compact surface Σ, then
n(α) ≤ i(α) + 1.

Proof sketch for closed surfaces and filling curves:
Let i(α) = s. We need to find a graph G with

|G ∩ α| ≤ s+ 1

Σ−G is homeomorphic to a disc.
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Results

Let G′ be the dual graph to α:
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Results

- G′ intersects α once at each edge.
- G′ cuts Σ into quadrilaterals C1, C2, ..., Cs.
- Glue C1, C2, ..., Cs along s− 1 sides to get a polygonal disc P
that is a fundamental domain for Σ.
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Results

- ∂P has 2(s+ 1) sides:

-Define G to be the image of ∂P in Σ. Then G is the desired
graph.
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Results

Main theorem (A.-Neumann-Coto, 2020)

Let α be a curve with minimal self-intersections in Σ, then

1. d(α) ≤ i(α) + 1, if Σ is planar.

2. d(α) < 5(i(α) + 1).
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Comments

To prove the main theorem we combine several ingredients:

-Use a version of Scott’s Lemma relating d(α) and l(α), but
modified to work instead with n(α).

-For closed surfaces more work is needed: cut Σ to obtain a surface
with boundary Σ′ as in the figure.
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Comments

-The curve becomes a set of arcs, each of which has to be lifted
separately to a “partial covering”.

-Glue these partial coverings to a covering of Σ where the curve
lifts.

-One has to be careful when doing this, since in each partial
covering, boundary circles might cover with distinct degrees.
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Related question

A theorem due to Hempel states that all surface groups are
residually finite, i.e., that for each g ∈ π1(Σ) there is a a finite
index subgroup that does not contain g.

Is there a good bound for the minimum index of such a subgroup?

Equivalently:

Is there a good bound for the minimum degree of a covering of Σ
where a lift of α does not close?

Our results imply that this degree is ≤ 5(i(α) + 1), but this does
not seem sharp.


