Cubulating spaces and groups; example sheet 3

Macarena Arenas

February 26, 2024

1. Let S_{g} be a closed orientable surface of genus $g \geq 2$. Prove that $\pi_{1} S_{g}$ can be cocompactly cubulated (in infinitely-many ways!) by proving the following
(a) Let L be a transverse collection of n lines in the hyperbolic plane, with $n>1$. Then, there exists a number $R=R(L)>0$ such any line intersecting all the lines in L, intersects the ball of radius R about the origin.
(b) For each $k>0$, there are finitely many $\pi_{1} S_{g}$-orbits of transverse collections of k lines in L
(c) There is a bound on the size of a transverse collection of lines in L.

By choosing a suitable collection α of closed curves in S_{g}, and defining a wallspace structure in the hyperbolic plane using the lifts of these curves, conclude that $\pi_{1} S_{g}$ acts cocompactly on the dual C. Show that if the collection α is filling in the sense that $S_{g}-\alpha$ is a collection of discs, then the action is also proper.
What is the dimension of such a cubulation?
2. Let S_{g} be as in the previous question. Using your favourite non-positively curved square tessellation of S_{g}, prove that said surface is homeomorphic to a virtually special cube complex. What is the least genus needed for a surface to be homeomorphic to a special cube complex?
3. Give an example of a 2-dimensional special cube complex X that is not a surface or the Salvetti complex of a raag.
4. Determine the least number of cubes needed to construct a 3-dimensional special cube complex that is not a square complex.
5. Prove, amend if possible, or ${ }^{1}$ find a counterexample for the following statements:
(a) if X_{1}, \ldots, X_{n} are special, then every subcomplex of $X_{1} \times \cdots \times X_{n}$ is special,
(b) if X is a special cube complex, then every cubical subdivision of X is special,
(c) if X is a virtually special cube complex, then every hyperplane of X is special.

[^0]6. For the cube complexes X_{i} shown below, determine if they are special or not. For the ones that are special, construct explicitly a Salvetti complex R and a local isometry $X_{i} \rightarrow R$.

7. Find (i.e., draw) a special covering for the cube complex in Figure 7.

8. Let X be a non-positively curved cube complex. Can one detect from the action of $\pi_{1} X$ on \widetilde{X} whether X is special or not?
9. Prove that the following conditions are equivalent for a group G
(a) For any $g \in G-\{1\}$, there is a subgroup of finite index not containing g,
(b) for any $g \in G-\{1\}$, there is a homomorphism from G to a finite group K where the image of g is non-trivial,
(c) the intersection of subgroups of finite index in G trivial,
(d) the intersection of normal subgroups of finite index in G trivial.
10. Consider the free group $F_{4}=\langle a, b, c, d\rangle$. Show that the subgroups $H_{1}=\left\langle a^{2} b c d^{-2} b d\right\rangle$ and $H_{2}=\left\langle d^{3}, a b c, c b^{4}\right\rangle$ are separable.

[^0]: ${ }^{1}$ the "or" need not be exclusive.

