The Mathematical Revolution Inspired by Computing. J H Johnson & M J Loomes (eds)
©199) The Institute of Mathematics and its Applicatione. Oxford Univereity Press

Computing and Foundatious

: J. M. E. Hyland 7
Department of Pure Mathematics, University of Cambridge
16 Mill Lane, Cambridge, CB2 1SB

Abstract

The types and functions which are used in computing are very different
from traditional mathematical sets and functions; and yet in practice they are
treated as much the same. Doing 8o in a systematic way raises foundational
issues, as it is not clear why the traditional mathematical objects should be
given privileged ontological or epistemological status in any such treatment.
This paper sketches the mathematical contexts (based on categories known as
toposes) in which types and functions in functional programming languages -
can be treated on a par with ordinary mathematical sets and functions. It
argues that the existence of such a perspective undermines the commonly ac-
cepted view of foundations based on the primacy of that notion of set analysed
in modern set theory. :

1 Kntroductian

1.1 Mathematical Logic

How can there be any connection between the engineering science of computing and
the esoteric world of the foundations of mathematics? The suggestion seems like
a conscious paradox. The link is provided by mathematical logic. Mathematical
or formal logic is concerned with the precise mathematical properties of syntax
both in itself and in relation to appropriate semantics. The historical roots of
the discipline lie in philosophical enquiry, in particular in questions relating to the
philosophy of mathematics. However as computing also requires a precise formal
syntax, mathematical logic is in principle and (as it turns out) in practice one of
the theoretical bases for the new engineering science.

Now the informed reader may well consider that mathematical logic provides a
rather superficial connection between computing and foundations. There is after
all nothing unusual in areas of pure mathematics later becoming applicable to a
new science. Certainly, if there were nothing more to the story, then we would not
be justified in talking of the ‘mathematical revolution inspired by computing’ in
relation to the foundations of mathematics. In this paper I try to describe some
of the ways in which conceptual problems raised by computing are rousing us from
our dogmatic slumbers about foundations.




270 J. M. E. Hyland

1.2 The Foundations of Mathematics

One can distinguish two aspects to the foundations of mathematics: questions of
ontology (of what there is or can be) and matters of conceptual organisation (theo-
ries of natural kinds). Most mathematicians have lost interest in what they regard
as ontological questions. To the extent that they consider the matter, they are
generally satisfied with some form of set theory as the foundation for mathematics.
However even when the cumulative hierarchy of sets is presented in the best possible
light, it must seem philosophically problematic. Itz main justification is pragmatic:
it does the job. (But what job?) On the other hand mathematicians continue to
develop the conceptual foundations of their subject without making any fuss about
it. The creation of powerful new notions, which serve both to unify strands of math-
ematical thought and to solve outstanding problems, is part of the natural activity
of the mathematician. '

Now there is a considerable tension between (these attitudes to) ontological and
conceptual foundations. What seem natural mathematical constructions are ‘imple-
mented’ in current set theory in an apparently arbitrary fashion. For example the
fundamental notion of an ordered pair 1s standardly ‘implemented’ by Kuratowski’s

definition:
| (z,9) = {{z}, {=,y}}-

But there is nothing canonical about this definition. On the other hand there
seems to be something behind the idea of conceptual or epistemological priority.
Some mathematical notions can naturally be explained in terms of others, but not
vice-versa. But- what has this to do with ontological priority?

This tension between ontological and conceptual foundations suggests that at
bottom the issues involved in them may be two sides of the same coin. The idea
that some components of our conceptual equipment are ontologically primary is
problematic: but also we feel embarrassed if what is for us conceptually primary is
taken in any serious sense to be ontologically secondary.

Now at a trivial level any mathematical discipline must have an effect on the
conceptual apparatus of mathematics: it introduces its own basic concepts. But
theoretical computer science goes further than that. It can claim an effect on
conceptual foundations because it challenges the accepted fundamental notions of
set and function. This is most clear in the problems associated with the rational
design of programming languages, some of which are described below.

1.3 Functions in Computer Science

Many branches of pure and applied mathematics share the feature that some math-
ematical notion of a function is central; but the notions realised in programming
languages are peculiarly problematic. One such notion, which seems to be fun-
damental, is encapsulated in the pure lambda calculus. This is the calculus which
underlies LISP and other modern functional programming languages. In accounting
for it, one has to account for quite arbitrary definitions-by recursion; and hence, in
some sense, for the existence of fixed points for arbitrary functions. This is quite at




Computing and Foundations 271

odds with the classical set theoretic conception of a function. In section 2, I explain
a modern view of models of the lambda calculus, and describe the rnathernatms
that is needed to make sense of it.

1.4 Types in Computer Science

The practice of programming generally requires one to distinguish between different
types of entity: between the data types of Booleans and Lists for example. Simi-
larly in mathematics one distinguishes, for example, real numbers from continuous
functions. It is of the essence of type theory to make these distinctions; this results
in a more rigidly structured universe than the set-theoretic one. For example, there
is no primitive meaning to be attached to the intersection of two types; and one has
to provide a function (coercion) to map a natural number to the corresponding real
number. However, in this paper I will not stick to any firm distinction between sets
and types: the distinction has no effect on the semantics which I discuss in Section
3.

Both ‘in programming and in mathematics, types can seem more important
conceptually than sets. However there are problematic issues connected with types
in programming languages, in particular with such full blown polymorphic types as
occur in the calculus of constructions (this calculus forms the basis for the LEGO
proof system described in this volume by Burstall {5]). The most important of these
1ssues are those of the modularity and genericity of programs.

1.5 Modularity and Genericity
Modularity

Large pieces of code must be written by many people collaboratively. Thus one
wants to be able to write programs in small pieces, each of which does something
identifiable, and then slot the components or modules together to form larger pro-
grams; and then one wants to iterate the process. This old philosophical idea,
that the meaning of the parts should determine the meaning of the whole, is also
the ideal of structured programming. At its simplest it suggests writing programs
which define extensional operators (without side effects). The most developed form
of this is functional programming, where modularity is most effectively controlled
by explicit type systems.

Genericity

The idea is to avoid unnecessary work. One should exploit similarity of structure
between routines, by writing very general routines which may be used over and over
again in different contexts. A traditional example is that of sorting lists. In principle
any of the basic sorting algorithms acts on data consisting of a list of elements (of
given type) together with a (decidable) total order (on the type). So they act
generically on ordered types. Systema.tlsmg this idea is the task of polymorphic
type systems (a. sketch of one such system is given in this volume by Burstall [5)).



272 J. M. E. Hylend

The ideas of modularity and genericity are clearly related: in practical terms
each makes the other more useful. However there is also a tension: crude modularity
suggests making as many distinctions between kinds of code as possible; on the other
hand genericity suggests identifying pieces of code in so far as they do easentially
the same thing. For this reason, the type systems which organise programming
languages in which it is feasible to write general purpose programs in a modular
fashion raise difficult technical questions.

1.6 Overview

The rational design of programming languages is now an area of very intense re-
search, but the basic issues are quite accessible. In this paper I attempt to make

them clear by focusing on two novel forms of abstract mathematics which have

resulted from the needs of computing. These are

1. the problem of describing in a civilised fashion what is a model of Church’s
lambda calculus;

2. the problem of giving an account of polymorphic functions.

Section 2 is devoted to the pure lambda calculus and section 3 to typed ver-
sions. In each case I have tried to indicate how the ideas bring pressure to bear on
traditional views of foundations.

Though I have attempted to keep references to category theory to a minimum,
this paper makes propaganda for a view of foundations informed by that subject.
Category theory is an essential organising principle in modern computer science, and
the effect of computing on foundations is best seen in the light of that experience.

2 The Pure Theory of Functions
2.1 The General Notion of a Function

What is a function? With the questionable benefit of hindsight we can see that this
question played a significant role in the development of modern mathematics. We
associate with Dirichlet the example of the function of a real variable taking the
value 1 on rational and O on irrational numbers, It seems but a short step from
this to the general idea of a function being determined by its graph: that is to
the modern set-theoretic notion of function. Probably this is an entirely superficial
history of ideas; the example predates serious set theory. However it seems clear that
mathematicians in the past did not work with the idea of a function sanctioned by
current ideology. We can well imagine that they expected functions to be defined
by formulae. (One might liken this to the notion of propositional function as it
 appears in Principia M athematica.)
In teaching, we are inclined to present the various kinds of function which arise
in branches of mathematics as parasitic on the set-theoretic notion of a function as a




Computing ond Foundations ' 273

graph. In analysis we have functions, continuous functions, differentiable functions,
analytic functions. In algebra, we have homomorphisms between different kinds
of algebraic structure. There is nothing wrong with this set-theoretically based
mathematics. Indeed I teach it with pleasure. However we should not suppose that
the set-theoretic notion is the only possible basic notion of function. Where we see
it under strain {e.g. rational mappings in algebraic geometry, random sequences in
probability) we should detect the need for other foundations.

2.2 Computable Functions

Since the advent of computing, we all think that we know what computable func-
tions are: functions which ‘in principle’ can be computed on a digital computer. {Of
course ‘in principle’ covers a multitude of sins. The computer must be possessed
of unlimited memory and be capable of running for an unlimited time.) Unfor-
tunately our intuitive understanding does not readily give rise to a useful theory
of computable functions. Classical recursion theory [18] treats the subject, but its
alms are limited; in particular attention is largely restricted to the data type of
the Natural Numbers. Furthermore most generalised recursion theory equally fails
to address issues which are significant to the practice of computing. Among these
issues are those of Intentionality, Non-termination, Fized points and Effectivity. (I
am unable to provide a comprehensive treatment of these, but I list them to give
an impression of the range of the conceptual problems in just one aspect of theoret-
ical computer science.) It seems best therefore to treat computable functions via a
theory of functions stripped to its bare bones, that is, via the pure lambda calculus.

2.3 The Syntax of the Lambda Calculus

This formal system was constructed around 1930 by Alonzo Church. He intended
it to be a foundation for mathematics based on a universal theory of functions.
Church’s original system incorporated a system of logic at the same level as the
functions, and turned out to be inconsistent {11]. The fundamental observation is
that functions in the lambda calculus have fixed points; a fixed point for negation
is & proposition equivalent to its own negation, and so is a contradiction. However
the part of the theory which deals only with function application and abstraction
is (in a suitable sense) consistent. This theory is called the pure lambda calculus; it
encapsulates a pure theory of functions.

The lambda calculus is a theory of ferms. We suppose that we are given a
(countably infinite) set of variables z,y, 2, ... . The set of terms of the pure lambda
calculus is then defined recursively by the following clauses: :

(Base clause) - a variable is o term;
(Application) if s and t are terms then (st) is a term,
(Abstraction) if r is a term and 2 o variable then (Az.r) is a term.




274 : J. M. E. Hyland

In the application cla}uSe, we think of s as a function, ¢ as its argument (input) and
then (st) is the value of s at ¢ (the output). In the abstraction clause, we imagine
that for each possible input z, we have a corresponding output r(z), so that

z — ()

is a function from inputs to outputs; then (Az.r) denotes this function-as-object.
It is a feature of this theory that functions of many arguments can be reduced to
functions of one. For example ‘

(z,y) — f(=,9)

reduces to

z— (y — f(z,9))

and so is represented by the term

(Az.(Ay.f))-

This motivates the standard bracketing convention in the lambda calculus:

stita...t, stands for (...((st1)t2)...tn).

(Implicitly here s is a function of n arguments so that we think of stifs...t, as
s(t1,%2, ..., tn).) There is a corresponding convention for iterated abstractions:

Az zg...2,.7 stands for (Azi(Azz(...(Aza.7).0)))

(We think of Az;zz...xn.7 as an n-argument function abstracted from r.) We use
these conventions and also drop brackets where they do not add anything in the
rest of this paper.

2.4 Computing with the Lambda Calculus

The main computation rule for the lambda calculus is the following rule of S-equality

(Am.sl)t =s[t/m]

Here s[t/x] is the result of substituting term t for all free occurrences of z in s, with
stipulations which prevent ‘dynamic binding’ of the variables free in ¢. So A acts
as a variable binding operator. (There is also a rule of n-equality, which makes for
cleaner semantics; but it is not computationally essential, so I will not discuss it.)
The computation process which results is called f-reduction. A term u reduces in
one step to a term v just when v is the result of replacing a subterm of form (Az.s)t
by the corresponding one of form s{t/z] in the term u. We write © > v when v is
obtained from u by a sequence of one step reductions; in particular (Az.s)t > s[t/z].




Computing and Foundations 275

We illustrate the computation process using the traditional Church numerals. We
define inductively terms f™(2) of the lambda calculus for n a natural number by

Fz) = e )
) = f((E).

We can associate with each natural number n the term
Af e fr(x)

which encapsulates the notion of n-fold iteration. This term is called the Church
numeral for n. We write # for the Church numeral Af.Az.f?(2).

One can compute with Church numerals as codes. We give a formal statement:
of this result. (The notion of partial recursive function is explained in the classic
text book by Rogers [18], and in miany more recent books on logic. Simpson’s paper
in this volume also discusses recursive functions {21}).

Theorem 2.1 For any partial recursive function f there is a term iy of the lambda
celculus such thai

t;h reduces to  if and only if f(n) = m.
And conversely, if t is o term of the lambda calculus, then the function f defined by

f(n) = m if and only if t7 reduces to %
is partial recursive.

This was essentially first proved (but for a definition of recursive function in
terms of primitive recursion and minimalization) by Kleene, but the most natural
proof procedure is that given by Turing [22]. By way of an example, we write down
one of the simplest codes for an arithmetical function in the lambda calculus, and
perform a computation with it. We define

mult = Aabf.a(bf),

and compute mult33 as follows. (Here we adopt the convention that a reduction is
denoted by >.) :

((Aabf.a(bf))2)3
(Abf.2(b1))3
Af2(3f)
Af2((Ah.Az.R3(2)) )
Af2(Az.f3(z))
Af(Ag.dz.g?(2))(Az.f2(2))

Af Xz (A f2(2))% (e ))

Mz (hz.f2(2))((Az. £2(2))(2))

(multﬁ)s

v v i iviv it




276 : J. M. E. Hyland

AfAde.(Az. f2(2))(f3(z))
Af Az f3(f3(z))

Az f5(a)

6. '

v iIv

Il

-

(I do not expect the reader to be very impressed by this computation.)

2.5 Models for the Lambda Calculus

The good answer to the question ‘what is a model of the lambda calculus?’ is sug-
gested by our basic intuition: the lambda calculus is a theory of all functions. Thus
everything must be both a potential argument (input), a potential value (output)
and a function from arguments to values; what is more all functions are assumed
to occur. Thus a model for the lambda calculus should be a set D which is equal
to the set DP of all functions from D to D. (In fact to model S-equality alone,
a retraction from D to DP will do.) Unfortunately unless the set D has just one
element DP can never be even a retract of D; the cardinality of DP is too great
(this is essentially Cantor’s Theorem). Thus there are no non-trivial models of the
lambda calculus in the intuitive sense.

For this reason, a bad answer to the question ‘what is a model for the lambda
calculus?’ is used in much of the literature. Typically this amounts to the following:
a set D and subset F C DP together with maps

ap: Dx D — D and rep: F — D

such that the equations of the lambda calculus are satisfied when ap is used to
model application and rep to model lambda abstraction. Saying this in any precise
form is clumsy and conceptually unilluminating; for we have lost the basic intuition
of a theory of all functions. There is a discussion of the various primitive definitions
of a model for the lambda calculus in Chapter 5 of Barendregt’s book[1).

These conceptual problems are a partial explanation for the fact that during
the early history of the lambda calculus the focus of interest was on the purely
syntactic properties of the computation rules. Of course the pioneers understood
the problems, and implicitlyxresponded to them with the thought that the lambda
calculus must be a theory of a countable world of intensional functions. This is
a very interesting idea, which in principle should have had a profound effect .on
foundational questions. However the lack of a traditional semantics for the lambda
calculus meant that few took the idea seriously.

What counts as serious semantics for some syntax is not an absolute mathe-
matical question; it is very much a matter of tacit agreement by the mathematical
community. Any answer reflects the view of the community as to the natural kinds
of structures available in mathematics. Even our picture of the relation between
syntax and semantics changes: there is no longer such a clear distinction between
them. Indeed for the lambda calculus the computation rule of S-reduction provides
what computer scientists (unfortunately) call an ‘operational semantics’.




Computing and Foundations 277

The first mathematical model for the lambda calculus was discovered by Dana
Scott [19]. (For more on the background see 2.2 of Johnson’s paper in this volume
[9]). Scott’s approach was typical of modern conceptual pure mathematics; he first
found an appropriate category in which to work. In these categories continuity
is used as an analogue of effectivity, and this keeps control of the structure of
function spaces. Other kinds of structure have since been used for this purpose,
and most of the ‘categories of domains’ that provide ‘denotational semantics’ for
functional programming languages contain objects D with categorical function space
DP? isomorphic to D.

2.6 Topos Theoretic Models

There is a sense in which the semantics initiated by Scott is unsatisfactory. We have
to be conscious of types as ‘sets with structure’. The necessary structure is not itself
represented in the programming language, but rather (at best) is a reflection of some
intuition about how computations are carried out. This conflicts with our original
intuition of types-as-gets.

The right response seems to be to adopt the more flexible notion of set inherent
in the “universes of constructive mathematics’ called toposes. A category consists of
‘objects’ and ‘maps’ (or ‘morphisms’ or ‘arrows’) from one object to another; there
are ‘identity maps’ for a notion of ‘composition’ with obvious axioms but no further
structure. {Mac Lane’s book [14] remains the best introduction to category theory
for the mathematically educated.) Intuitively a topos is a category equipped with
such structure as to make it an abstract category of sets and functions. Formally
a topos may be defined to be a category equipped with (i) all finite limits, and (ii)
power objects. One can think of the objects of a topos as (constructive) sets and

the morphisms (or maps or arrows) as {constructive) functions between sets. The

epithet constructive is in order as the internal logic of the topos is intuitionistic
logic; the lattices of subobjects of an object may be Heyting algebras. The finite
limits provide some finitary constructions on sets, while the power objects provide
a full power set (set of all subsets) with associated membership relation. This gives
a very rich essentially set-theoretic or (perhaps better) type theoretic siructure.
The standard reference to topos theory is still Johnstone’s book {10], but see Bell’s
book [2] for a good account of the logician’s perception of a topos as a world of
constructive mathematics (model of type theory or local set theory).

Now, if we are prepared to take an undogmatic approach to foundations, we
can readily recapture our basic intuitions about the lambda calculus. For the car-
dinality problems associated with Cantor’s Theorem do not bite in constructive
mathematics. There it is perfectly consistent that there be sets I which.are equal
to (or better, isomorphic to) the set DP. In such models we have the technical
and conceptual advantage of being able to argue (albeit constructively) as if we
were dealing W%th arbitrary sets and functions. A description of the simplest kind
of topos, in which one can find objects (that is constructive types) D with DP
isomorphic to D is given in [20]. (They are ‘toposes of presheaves’: they capture a
very primitive notion of ‘variable set’.)




278 | I8 J. M. E. Hyland

Now topos theory does more than make.our mathematical models run more
smoothly. For once we can conceive of a world of sets in which there exist non-
trivial models of the the pure lambda calculus, we come naturally to regard it as a
defect of the classical universe of sets that it contains no such model. Considerations
of this kind may lead to quite radical forms of relativism. (See the preface of the
book by Lambek & Scott [13] for a hint of such a position.) But we need not go
that far. Once we have an interest in alternative formal systems which can serve
as a foundation for mathematics, the absolute status of the classical set-theoretic
foundations must come into question.

3 The Theory of Types

3.1 Typed Programming Languages

The value of types in a programming language is that they provide a basic guide to
the programmer who needs to structure complex programs. In particular in many
typed languages it is possible to detect syntax errors at compile time, that is effec-
tively as the program is being constructed. The usual analogy is with dimensional
analysis in physics. We can write

L

LT-1
M
MLT?

o 3 e ow
m M M Mm

(3.1)

to signify that @ is a length, v a velocity, m a mass and F' a force. Then we can
deduce that

%mvz e ML2T?

and that
Fz e ML?*T2
so that
1
— - F
2m"u -
makes sense, while
-1
§mv2 =F

does not.




Compuiing and Foundations 279

3.2 The Simple Typed Lambda Calculus

For our purposes we only need consider the type structure of this theory, and not
the associated computation rules which give it meaning, (These are in fact just the
rules of the pure lambda calculus restricted to typed terms.)

We start with some basic types and their associated constants and functions.
For the simplest kind of programming, these might be the types Nat and Bool of
Natural Numbers and Booleans, together with some basic constants and functions
and with definition by cases (if...then..., else...). But the details are not important.
The collection of all Simple Typesis then generated by the single rule:

if A and B are types then so is (A — B).

The idea is that (4 — B) is the type of all functions from elements of type A to
elements of type B. Corresponding to this are the rules

(—-elimination) if s € (4 — B), and ¢ € A then (st) € B;
(—-introduction) if » € B given ¢ € A, then Az.r € (4 — B).

Now we are forced to distinguish f & (N at — Bool) from g € (Nat ~ Nat) and
can apply neither to ¢t € Bool.

The reader may find it useful to check that in this calculus each of the Church
numerals of 2.4 can be given the type

(A= A)—> (A— A)

independently of what A may be.- This is a hint of genericity which cannot be
explicitly handled by the simple typed lambda calculus.

The mathematical structure needed to model this calculus with full Bn-equality
is that of a cartesian closed category. The connection is explained in full detail in
the book by Lambek and Scott [13]. There is a plentiful supply of cartesian closed
categories, including the familiar category of sets. Thus the semantics of the simple
typed lambda calculus is unproblematic. (Of course, it is not so straightforward to
find models useful in computer science.)

3.3 The Syﬂtax of the Second Order Lambda Calculus

It is altogether more problematic to describe the semantics of a system in which the
genericity of functions in the simple typed lambda calculus is made explicit. Here
is a brief sketch of the sxmplest such extension of the simple typed lambda calculus
described above.

To the rules for Simple Types we add type variables X, 7, Z, ...,and a further rule
of type formation: :

if A is a type and X is o type variable, then IIX.A is a iype

-~
.




- 280 ‘ J. M. E. Hylend

This gives us the collection of Second Order Types. The idea of the new rule of
type formation is as follows. Call types with no free type variables constant types,
and suppose for simplicity that A has at most the variable X free. Then for each
constant type B there is a (constant) type A[B/X] where B has been substituted
for X in A. Then T1X.A is the type of all (choice) functions from the collection of
all constant types B which pick an element of the corresponding type A[B/X]. (So
of course X is bound in ILX.A). '

We simultaneously add further operations on terms:

(2nd order application) if s is o term and B o type then (sB) is a term;
(2nd order abstraction) if r is a term and X a type variable then (AX.r) is a term.

Then there are the typing rules:

(I-elimination) if s € (IIX.A), and B is a type then (sB) € A{B/X];
(I-introduction) if r € A with X o type variable, then AX.r € (IIX.4).

The intended meaning of the term-forming operations should be clear enough from
the typing rules. The meaning of second order application is that s € (IIX.A4)
denotes a function from types X to elements of A(X), and then (sB) € A[B/X] de-
notes its value at B. To understand second order abstraction, we imagine that
as X varies over types, r takes values in the corresponding types A(X); then
AX.r € (ILX.A) denotes the corresponding function-as-object. (The new notions
of abstraction over types and of application of terms to types give rise to new
computational rules of fn-equality, but we do not go into these here.)

The extended system of types and terms which we have just described is the
second order lambda calculus. It was first considered by Girard in the course of
proof theoretic investigations [6] and rediscovered by Reynolds in the context of
computer science [16].

3.4 Computations in the Second Order Lambda Calculus

In the second order lambda calculus we explicitly have generic types. For example,
for every natural number n, we have

AX.A € ILX(X — X) = (X — X),

using the notation of 2.4. In fact we can regard IIX.(X — X) — (X — X) as an
implementation of the natural numbers, and so write N for this type. And we write
7 for AX .7,

Theorem 3.1 Up to Gn-equality the only terms of type N are of the form 7.




Computing and Foundations 281

This result says in effect that there are no non-standard natural numbers. The
first explicit statement and proof that I know is rather late [3]. However the great
expressive power of the second order lambda calculus was known to Girard [6] which
includes (amongst many other things) a characterisation of the computations which
can be coded as terms of type (N — N ).

Theorem 3.2 For any function f, provably recursive in analysis, there 1s o ferm
t; € (N—N) of the second order lambda calculus such that |

;7 reduces to 7 if and only if f(n) =m.

And conversely, ift € (N—N) is « term of the second order lambda calculus, then
the function f defined by

f(n) = m if and only if t#i reduces o M

is provably recursive in analysis.

Here, as usual in logic, ‘analysis’ refers to any formalisation of second order arith-
metic with full comprehension. The provably recursive functions of analysis form
a large class of functions containing all those total recursive functions which seem
likely to arise in practice (and many many more).

3.5 Models of the ‘Second Order Lambda Calcuius

The question of what is a good notion of model for the second order lambda calculus
is quite different in detail from the corresponding question for the pure lambda cal-
culus, which we considered in section 2. However it is similar in impact and causes
the same kind of heartache. There is an answer in accord with our intuitions: essen-
tially we must have a collection of sets and (all) functions closed under sufficiently
Jarge products. (For the natural interpretation of (IIX.A) is as the product of all
sets A(X).) But there turn out to be straightforward cardinality problems with
this idea within the world of classical set theory. (A more general problem with
models of the second order lambda calculus emerges from the analysis in a paper
by Reynold [17].) As with the pure lambda calculus, the result is that many people
work with a conceptually unilluminating answer. (The details are too awful to be
worth sketching here; they can be found in the paper by Bruce & Meyer [4].) But
again this is a situation in which constructive mathematics comes to the rescue.
As first suggested by Eugenio Moggi, sufficiently complete collections of sets and
functions do exist in suitable constructive universes. (For a general construction of
such toposes see Pitts’ paper [15].)

One particular kind of constructive mathematics (based on ‘realizability’) in
which we can model the second order lambda calculus is very attractive. One of
the least appealing features of traditional category theory (as developed in Mac
Lane [14] for example) is the need for size restrictions (the solution set condition)
in the fundamental Adjoint Functor Theorems. But these are not necessary for

il




282 J. M. E. Hyland

small categories. The problem for traditional category theory is that the only small
complete categories are preordered sets. However, there are toposes containing
very rich small complete categories and for these, the Adjoint Functor (and related)
Theorems can be exploited in the very simple form appropriate to small categories.
I give a sketch of this perspective is in [8].

Overall, the effect of the constructive view of models of the second order lambda
calculus is much the same as that of the constructive view of the pure lambda
calculus. We are driven emotionally frontany view which gives the less conceptually
rich world of classical set theory any primary status.

4 Conclusions

4.1 Universes of Constructive Mathematics

In this paper I have described how the ideas in a particular area of computer science
make non-standard constructive worlds of mathematics seem very attractive. I am
myself struck by how closely some of these mirror views about foundations sketched
long ago by Kolmogorov in 1932 [12]. |

It is worth emphasising that the way we usually present toposes presupposes a
definite classical set theory. However this is in no way essential and cannot be used
to give any primacy to classical set theory. (Equally, I believe there are no strong
arguments for any other kind of foundations.)

Quite generally, the concepts of classical set theory are inappropriate as organ-
ising principles for much modern mathematics and dramatically so for computer
science. The basic concepts of category theory are very flexible and prove more

satisfactory in many instances. As rightly stressed in 2.3 of Johnson’s paper in

this volume [9] much category theory is essentially computational and this makes
it particularly appropriate to the conceptual demands made by computer science.

It is true that category theorists (in particular topos theorists) have for the last
twenty years been engaged in activities that are antipathetic to traditional founda-
tions. However since in most cases these activities have involved the exploitation
of nothing more subtle than the possibility of doing algebra in a topos, the effect
on our thinking about foundations has been-small. The honourable exception is
the study of Synthetic Differential Geometry initiated by Lawvere, where spaces
of functions are exploited in a natural and elegant fashion. Regretably this sub-
ject remains a minority interest. By comparison, the radical conceptual demands
made by the concrete practice of computing have given the process of rethinking
foundational questions a quite definite focus.

The emerging view does not make set theory redundant; it may remain a crucial
component of the foundations of mathematics. But its place in the scheme of things
looks radically different. In particular, the idea that there should be some definite
foundation for mathematics in the fraditional sense looks less secure.



Computing and Foundaiions 283

4.2 Other Aspects of a Revolution?

I should emphasise that the story that I tell here is both partial and far from over.
In the first place I have had to omit serious discussion of a number of areas of
mathematical logic which have recently been transformed by questions arising in
computer science. (In particular I regret not being able to discuss Girard’s linear
logic, which has recently challenged our view of what logic is. The curious reader
might like to compare Girard’s paper [7] with traditional books on logic.) And
secondly we are in the midst of very exciting times in the development of an abstract
mathematical view of logic. Mathematicians may still refer to category theory as
abstract nonsense, but the IT revolution has transformed this abstract nonsense
into a serious form of applicable mathematics. In so doing, it has revitalized logic
and foundations. The old complacent security is gone. Does all this deserve to be
called a revolution in the foundations of mathematics? If not maybe it is something
altogether more politically desirable: a radical reform. ‘

References

[1] Barendregt, H. P., (1981). The Lambda Calculus, its Syniaz and Semantics.
North-Holland, Amsterdam.

[2] Bell, 3. L. (1988). Toposes and Local Set Theories. Clarendon Press, Oxford.

[3] Bdhm, C. and Berarducci, A. (1985). ‘Automatic synthesis of Typed A- -

Programs on Term Algebras’ Theoretical Computer Science 39, 135-154.

[4] Bruce, K. B. and Meyer, A. R. (1984). ‘The semantics of second order poly-
morphic lambda calculus.” In: G Kahn et al (eds), Semantics of Data Types,
Lecture Notes in Compuier Science 173, (Sp_ringer-Verlag, Berlin), 131-144.

[5] Burstall, R., (1991) ‘Computer assisted proof for mathematics: an introduc-
tion using the LEGO Proof System’, in The M sthematical Revolution Inspired
by Computing, J.H. Johnson & M.J. Loomes (eds), Oxford University Press,
(Oxford)

[6] Girard, J.-Y. (1972). ‘Interprétation Fonctionelle et Elimination des
Coupures dans l’Arithmétique d’Ordre Supérieur.’ Thése de Doctorat
d'Etat, (Paris). ' :

[7] Girard, JI-Y. (1987). Linear Logic. Theoretical Computer Science 50, 1-102.

[8] Hyland, J. M. E. (1988). ‘A small complete category.’ Annals of Pure and
Applied Logic, 40, 135-165. :

[9] Johnson, J. H., (1991) ‘An introduction to the mathematical revolution inspired
by computing’, in The Mathematical Revolution Inspired by Computing, J.H.
Johnson & M.J. Loomes {eds), Oxford University Press, (Oxford)

C‘\




284 J M. E. Hyland

[10] Johnstone, P. T. (1977). Topos Theory Academic Press, {London).

[11] Kleene, S. C. and Rosser, J. B. (1935). ‘The inconsistency of certain formal
logics’. Annals of Mathematics (2) 36, 630-636. '

[12] Kolmogorov, A. N. (1932). ‘Zur Deutung der intuitionistischen Logik’. Mathe-
matische Zeitschrift 35, 58-85.

[13] Lambek, J. and Scott, P. J. (1986). Introduction to higher order categorical
logic. Cambridge University Press, (Cambridge)

[14] Mac Lane, S. (1971). Categories for the Working Mathematician. Springer-
Verlag, (Berlin)

[15] Pitts, A. M. (1987). ‘Polymorphism is Set Theoretic, Constructively’. In: D.
H. Pitt et al (eds), Category Theory and Computer Science, Leclure Notes in
Computer Science 283, Springer-Verlag, (Berlin), 12-39.

[16] Reynolds, J. C. (1974). “Towards a Theory of Type Structure.” In: Program-
ming Symposium, Lecture Notes in Computer Science 19, Springer-Verlag,
(Berlin), 408-425. '

[17] Reynolds, J. C. (1984). ‘Polymorphism is not set-theoretic.” In: G. Kahn et
al (eds), Semantics of Data Types, Lecture Notes in Computer Science 173,
Springer-Verlag, (Berlin), 145-156.

[18] Rogers, H. (1967). Theory of Recursive Funclions and Effective Operaiions.
McGraw Hill, (New York)

[19] Scott, D. S. (1972). ‘Continuous Lattices.’ In: F. W. Lawvere (ed), Toposes,
Algebraic Geometry and Logic, Lecture Notes in Mathematics 274, Springer-
Verlag, (Berlin), 97-136.

[20] Scott, D.S. (1980). ‘Relating theories of the lambda calculus.’ In: J. R. Hindley
& 1. P. Seldin (eds), To H. B. Curry: essays on combinatory logic, lambda
calculus and formalism (Academic Press, London), 403-450.

[21] Simpson, D. (1991) ‘A Euclidean Basis for Computation’, in The Mathematical
Revolution Inspired by Computing, J. K. Johnson & M.J. Loomes (eds), Oxford
University Press, (Oxford)

[22] Turing, A. M. (1937). ‘Computability and A-definability.” Journal of Symbolic
Logic, 2, 153-163.



