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ABSTRACT 

Huet has conjectured that the interpretations of a class of types (the "alge- 
braic types") in the PER model on the natural numbers for the second-order 
lambda calculus are in a certain sense the initial algebras. In this paper we 
examine several different PER, models, and show that Huet's conjecture holds 
in each. 

Introduction 

If you are given a model of the polymorphic lambda calculus (or of anything else 
for that matter), the first question you are likely to ask is "how good is it?" For 
many programming languages this might translate straight into a technical question 
about whether the model is fully abstract with respect to some operational semantics. 
For the strongly normalizing second-order lambda calculus, this particular question 
degenerates, and becomes simply the problem of characterizing the equational theory 
of the model. Seen from a slightly different point of view, it is also a question about 
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how close the model you are given is to the term model for the theory. Specifically, 
how close it is to the term model for the bare theory, with no additional types, and 
no extra equations between terms. In this case there is, however, another important 
question that we can ask (even if we cannot yet precisely formulate it): "Are all the 
polymorphic values parametric?" (cf. [Ray83, Fre89b]). 

One rather crude way of measuring this is by examining the interpretations of the 
polymorphic natural numbers 

nx. [x x] --, IX x] 

and the polymorphic booleans 

f ix .  [ x  - ,  IX x]]. 

In a model close to the term model or in a parametric model, one might expect that 
these interpretations would contain, in some suitable sense, only the closed terms 
of given type in the calculus. (Indeed Freyd, following Reynolds, has proposed this 
as part of a series of tests for the inherent parametricity of a model [Fre89b]). It 
is a straightforward consequence of normalization (cf. [Gir72, Gir71]), that the only 
closed terms of these types are the polymorphic Church numerals 

AX. Afx. i f ( x )  

in the first case, and the two elements 

AX. £xy. x, AX. .kxy. y 

in the second. In the first case the result goes back to [Gir72], but the second seems 
to be folklore, and the earliest explicit reference to it that we can find is in [BB85]! 
A few remarks seem to be in order: 

1) This little syntactic result is irrelevant to the major proof-theoretic concerns of 
[Gir72]. Even the results on representability of functions (which have been reworked 
recently by [StaB1], [SFO83], and [Lei83]) do not require one to show explicitly that 
there are no "non-standard" terms of type IIX. [X --+ X] -+ [X -+ X] (in much the 
same way that results on the representability of numeric functions in the untyped 
lambda calculus are not invalidated by the existence of lambda terms other than 
numerals). 

2) In so far as these results are relevant to the implementation of programming lan- 
guages (cf. e.g. [Fai86]), it is the syntactic result which matters and not the semantic 
ones we present here. However, as we will explain in section 2, we can give a seman- 
tic proof of the syntactic result, by considering the special case of the PER-model 
generated by an open term algebra. 

3) We do not in this paper explicitly consider the other obvious way of comparing a 
model with the term model; we do not consider the theory generated by the model. 
It is however worth noting that the results in this area are somewhat ambivalent. 
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Results such as those presented in this paper show that certain types contain only 
elements corresponding to closed terms, and that no closed terms of these types are 
unnecessarily identified. However, the types involved are all of rather a low level, and 
at higher levels certain non-trivial equations hold in all PER models. An example is 
given at the end of the paper. 

The syntactic result of [BB85] is considerably more general than the two results 
mentioned above. If we rewrite the polymorphic natural numbers and booleans in the 
extended calculus with product, then the connection between the two types becomes 
clearer. The natural numbers become IIX. [X x [X --~ X] -~ X], and the booleans 
HX. [X × X -~ X]. We can see that they both fall into the same pattern: given 
certain operations concerning the parametric type X we have to produce a value of 
type X. In the first case the data we have are a value of type X and a unary function 
X -+ X, and in the second two values of type X. 

BShm and Berarducci extend the syntactic characterization above to types derived 
from a general many-sorted algebraic signature (and, though this will not concern us, 
slightly beyond). Let ~ be a signature in the sense of many-sorted algebra. Thus 
is given by a collection of basic sorts A1, . . . ,  Am, and a collection of basic operations 
f l , . . . ,  fro, corresponding to functions 

f ~ : A a  × . . .  × AiN(i) ~ Ar (o .  

We assume that constants are given by nullary operations. Closed terms of each type 
are built up inductively in the usual way: if a l , . . . ,  aN(0 are closed terms of types 
A1, . . .  ,AN(i) respectively, then f i ( a l , . . .  ,aN(i)) is a closed term of type AT(i). We 
recall that the closed terms form the initial algebra for the signature. 

Corresponding to each basic sort Ai we define types A x and ,A~ in the extended 
and the pure second-order lambda calculus respectively: 

A~' = H A 1 . . .  Am. ( Z×(A1, . . . ,  Am) ~ Ai ), 

(we have overloaded the sort symbols, using them also as type variables). 
Here E×(A1, . . . ,  Am) is a type which encodes the signature ~,: 

(All x . . .  x A1N(1) --r A~(1)) 
x (A21 × . . .  × A2N(2) --+ A~(~)) 

× ( A m l  × . . .  × AmN(m)  -+ Ar(m) ) 

Ai is the curried version of A~ ( 

HA1. . .  Am. [ (All --+ . . .  ~ A1N(1) -+ A~(1)) 
--* (A21 ~ . . .  -~ A2N(2) --+ AK2)) 

(Am1 ---, . . .  ~ AmN(m)  -'~ A~(,~)) 
A~ ]. 
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Note that there are terms in the extended calculus which define isomorphisms between 
the types .A~ and the types A x, and hence that ~4i is isomorphic to A x in any 
model. Note also that a value of type A x is a function which takes a E-algebra 
B = (B1,. .o,  B~, e l , . . . ,  e,~) as parameter, and returns a value of type Bi. Thus we 
shall refer to these types as algebraic types. In this paper, we use the types Ai of the 
pure calculus rather than the types .,l x . The only reason for taking this option is that 
the use of this representation rather than the other seems to make our calculations 
slightly simpler. 

Bghm-Berarducci show that any closed term of type Ai is reducible to one of the 
form A A t , . . . , A ~  Al l , .  °.,f ,~. ~r, where cr is a closed E-term of type Ai (this time 
overloading function symbols as value variables). 

In particular we obtain the results above about IIX. [X --~ X] --~ [X --+ X] and 
IIX. [X ~ [X -* X]] as special cases. Both correspond to one-sorted theories. The 
polymorphic natural numbers arise from the theory with one constant 0, and one 
unary operation s, and the polymorphic booleans arise from a signature with no 
operations but with two constants, 0 and 1. We can also see that there are no closed 
terms of type HX. X, and that the only closed term of type IIX. X -* X is the 
polymorphic identity. 

In this paper we shall look at two different "PER" models for the second-order 
calculus, and show that for any signature E the algebraic types Ai are interpreted 
by the carriers for the initiM E-algebra in PER. In particular, the elements of the 
algebraic types correspond to the closed terms of the free calculus. Our major result 
is for the standard PER model on the natural numbers, thus proving a conjecture of 
Huet, as well as showing that the PER model satisfies at least this portion of Freyd's 
criteria for inherent parametricity. 

As is by now well-known, a PER model can be viewed as a small complete category 
of sets inside a realizability topos (@ [Hy1871, [HRR89]). From this point of view, 
the polymorphic types are interpreted as a product in the topos. In the case of 
the algebraic types this product is quite simply the product of all E-algebras in the 
category of types. 

1 A r e c a p  o n  P E R  m o d e l s  

Let A be a partial combinatory algebra (also called a partial SchSnfinkel algebra). 
Thus A is given by a set A, together with a partial binary operation. ,  representing 
functional application, together with two elements S and K. (As usual, we shall adopt 
the convention that application associates to the left, and drop the use of the symbol 
• . Thus instead of ((S- X) -  Y)-  Z, we shall simply write $ X Y Z . )  In order to have a 
partial combinatory algebra, we require Mso that for all X,  Y in A, both K X Y  and 
S X Y  are always defined, and that for all X, Y, Z 

K X Y  = X 
and s x r z  = ( X Z ) ( r z )  
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where the equality means that if one side is defined, then so is the other, and they 
are equal. 

The instances with which we shall be particularly concerned are the partial com- 
binatory algebra N of integers with Kleene application, aa~d the total combinatory 
algebra A of fl-equivalence classes of open untyped lambda terms (the "free" lambda 
algebra on countably many generators). However, there are many other interesting 
Sch5nfinkel algebras around. These include algebras of closed lambda terms, and 
algebras of functions recursive with respect to some oracle, as well as the algebras 
arising from domain-theoretic models of the untyped lambda calculus, such as Doo or 
Pw. 

Since A contains combinators S and K it enjoys a form of combinatory complete- 
ness, and in particular has a notion of pairing. Specifically, there is an element Pair 
of A such that PairXY, for which we shall write (X, Y), is always defined. Moreover 
there are elements P0 and Pl such that P0(X, Y} = X and Pl(Z,  Y) = Y. 

Given such an A we can construct a model PER( A ) of the second-order lambda 
calculus. The types of the model are the partial equivalence relations (or per's) on 
A. That is to say they are symmetric and transitive, but not necessarily reflexive, 
relations. Given a per R, we shall refer to the set of x such that for some y, xRy  as 
the domain of R. 

In the course of the paper we shall make considerable use of per's P with the 
property that x P  y iff x is in the domain of P and x = y. We shall call such per's 
canonically projective (cf. [RR88]). In particular if U _C A, then we shall refer to the 
canonically projective per on domain U. 

Given two pet's R and S, a map from R to S is given by an element ¢ of A, such 
that 

1. ¢x is defined for all x in the domain of R, 

2. for all x,y in A, i f x R y  then ¢xS¢y .  

The intuition is that ¢ induces a map between the quotients of A by R and S. 
Accordingly, we specify that two elements ¢ and ¢ induce the same map from R to 
S if (they both induce maps from R to S and) for all x, y such that xRy,  ¢x ,9 Cy. 

Given types (per's) R and S we can now interpret the product type R x S as the 
per whose domain is the set of pairs (x, y) where x is in the domain of R and y is in 
the domain of S, and where 

(x, x') R x S (y, y') xR y and xSy' 

The function space type [R --* S] is interpreted as the per whose domain is the set of 
¢ inducing a :function from R to S, and where 

¢[R ~ S]¢ iff ¢ and ¢ induce the same map from R to S. 
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These definitions give the cartesian closed category structure on PER( A ), and hence 
we have an interpretation of the first-order typed lambda calculus. Given a type 
expression F[X], we interpret it as the family of types F[R] as R varies through 
PER( A ), and similarly for type expressions with more than one free variable. Finally, 
the polymorphic types are interpreted by intersection: 

x {FIX. F[X]} y iff for an R in PER( A ), x F[R] y. 

There is more than one way to handle the presentation of the interpretation of terms 
in this model, and we leave it to the reader to pick his or her favourite approach. 

It is by now well-known that a PER model constructed in this way can also be 
viewed as a small complete category of sets inside the realizability topos A generated 
from h (cf. [HyI87], [HRR89]). From this point of view, the polymorphic types are 
interpreted by a product in the topos. The results we shall present below can also be 
read in this topos-theoretic setting. We shall show that for the toposes £ (constructed 
from A) and ~ ,  algebraic types form the carriers of the appropriate initial algebra 
in the topos. 

2 psa(A) 

Let A be the combinatory algebra of open untyped lambda terms (with respect to 
/~r/-equivalence). Let us suppose that the algebraic type Ai is interpreted in PER( A ) 
by the per [Ai~. The characterization of these types is due to Eugenio Moggi. 

2.1 PROPOSITION (Moggi, cf. [BC88]) 
(cf. section 1) whose domain is 

~Ai] is the canonically projective per 

{All . . .  f,~. ~ [ ~ is a closed Z-term of type Ai }. 

Pro@ Given r in the domain of [Ai~, choose distinct variables X l . - ,  Xm not free in 
T, and for i = 1 . . .  n define the per Xi to be the canonically projective per on 

{c~[~/f] t c~ is a closed Z-term of type Ai }. 

These types carry a E-algebra structure in which, when we follow through the impli- 
cations of currying all our functions, the interpretation of fi is induced by xi. 

If we specialize T at X1, . . . ,X, , ,  and then apply_, the resulting function to the 
variables x l , . . . ,  x,,, we must get some element a[cZ/f] of Xi. Thus 

and hence 

In particular r is closed. 
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We have thus established that the per [Ai] is on the correct domain. It remains 
to show that it is canonically projective. Suppose r ~Ai]] r' ,  then 

r x l . . . x , ~  = a[1 / f ]  
= 

Since 32/is canonically separated, a = a ~, and thus by the q rule r = rq [] 

2.2 COROLLARY The algebra [A(Z)] is the initial N-algebra in the realizability 
topos associated to A, and hence is also the initial N-algebra in PER( A ). 

The proof of this is left to the reader. Those not interested in topos theory may 
wish to note that the second statement admits of a simple direct proof. 

If, instead of PER( A ), we take the per model on the algebra A z of/~-equivalence 
classes of open untyped terms, then we can still obtain a result analogous to propo- 
sition 2.1. 

2.3 PROPOSITION If the algebraic type .Ai is interpreted in PER( A z ) by the per 
[[.dl]¢, then [[.Ai]o is isomorphic to the canonically projective per on 

{,k f l . . .  fro. cr I cr is a closed N-term of type Ai }. 

Proof. The proof is much as before, except for a slight difficulty introduced by the 
fact that we can no longer use 

to conclude that 

r x l . . . x , ~  = a[~ / f ]  

 =aI1...fm. ¢.  

Note, however, that if r x l . . ,  xm = T IX l . . .  X,n, then T~,Ai]flr l, and hence that 

Ax. All . . .  f,~. x f l . . ,  f,~ 

induces an isomorphism from [Ai]~ to the per required. [] 

To conclude the section we give an alternative proof of the result of BShm- 
Berarducci. 

2.4 PROPOSITION (BShm-Berarducci) Anyclosed term of type Ai is fly-equivalent 
to one of the form 

AX1 . . .X~. Afl . . .  fro. 

where ¢r is a closed F,-term of type Ai. 
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Proof. Let T be a closed term of type ,4~, and r the lambda term obtained from it by 
erasing the type information. Consider the interpretation of T in PER( A ) at the alge- 
bra on types X1 . . .  X~ defined as above. This is r x l . . ,  x,~. Hence TXl. . .  x,~ reduces 
to a[g/f]. But any reduction of rx~ . . .  x,~ lifts to a reduction of T [ X , . . .  X~]x~.. .  x,~ 
(where the X~ are type variables). Thus we conclude that 

and hence that 

TEx,...x4xl...x  reducesto 

T = A X e . . . X , , .  A A . . . f , , .  o- 

as required. 

It is interesting to compare the proof given by Bbhm and Berarducci with this one. 
Bbhm and Berarducci use the strong normalization of polymorphic lambda terms, and 
then a simple argument as to the structure of a normal form of the required type. 
Strong normalization is itself proved by a kind of realizability argument (essentially 
realizability using the combinatory algebra of strongly normalizable untyped terms), 
as was pointed out by Tait ([Tai75]). Here, we use a less sophisticated realizability 
to show normalizability, and to characterize normal forms, for a very restricted class 
of types. 

3 A s imple  case  

We now try to prove results analogous to those in the previous section for PER models 
over more general partial combinatory algebras. Such an algebra does not necessarily 
contain anything that we can use as a variable, and so we have to attempt a different 
line of proof. 

We shall begin by considering the simplest non-trivial case--the polymorphic 
booleans, FiX. [X --* IX ~ X]]. We recall that this corresponds to a one-sorted 
signature with no basic operations but two constants 0 and 1. 

Let 0 be an element of our algebra A contained in the interpretation of the type 
A~, and let us suppose that we are given a per B, together with two elements b0 and 
hi. We want to examine the interpretation of O[B]bobi. The first stage of the proof 
is to realize that this has to be either b0 or bl. Indeed, since the interpretation of 
O[B]bobl is given by the value of Obobt, we can look at the per B '  whose only elements 
are bo and hi, and in which elements are related iff they are equal. We now use the 
fact that Obobl = O[B']bobt must be an element of B'. Hence it is either b0 or else bl. 

We shall see later that this stage of the proof generalizes nicely to arbitrary alge- 
braic types. The next stage is however more problematic. We have to show that 0 is 
uniformly defined. If O[F]fof~ is f0, for one (suitable) per F and elements f0 and f l ,  
then O[B]bobl is bo for all per's B and elements b0 and bl. 

To do this, we first fix our reference per F to have only the elements 0 and 1, 
0 # 1, and in which 0 is not related to 1. We shall suppose, with no real loss of 
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generality, that 0[F]01 = 0. Now let's turn our attention back to B, bo and bl. In 
order to show that 0 is uniform we have to show that Obobl = bo. The easy case is 
when the sets {bo, b,} and {0,1} are disjoint. 

In this case, we glue the pet's B' and F together, to get a per B "  in which 0 
is related to b0, and 1 is related hi. Now, as far as B "  is concerned, 0 is the same 
element as bo, and 1 is the same element as bl. It follows that Obobl = O[B'qbobl is 
the same element of B "  as 801 = 8[B"]01 = 0. So Obobl = bo, as required. 

Now, if {b0,bl} and {0, 1} are not disjoint, we simply pick b~ ~ b~ disjoint from 
both, and apply the argument above twice. 

This shows that in any PER model the interpretation of the polymorphic booleans 
contains only the two polymorphic projections. (The result of course generalizes to 
all algebraic signatures which contain only constants). 

To recap, the first stage of the proof was to cut down a large per (or in gen- 
eral, algebra) B to a small algebra B' which still contained all the elements we were 
interested in (in .general this is the subalgebra of reachable elements). This stage gen- 
eralizes, as we shall see in the next section. The second stage was to show that as well 
as behaving as expected on each individual algebra, our function behaved uniformly 
on all algebras. We managed this via a gluing construction involving disjoint per's. 
This construction does not generalize well. There seem to be two separate problems. 
One is getting the algebra operations on the glued per's, and the other is finding a 
disjoint algebra to glue with in the first place. 

4 S o m e  g e n e r a l  r e m a r k s  

This section contains an account of that fragment of the theory for arbitrary algebraic 
types that holds in general. 

As before, let P, be a signature, and (AOi~{1...~} its associated family of algebraic 
types. Note that if M is any model of the second-order lambda calculus whatever, 
then the interpretations [[Jtl]] in M of the types .Ai form in a canonical way the 
carriers for a P,-algebra structure. In this structure the operation ¢i is given by the 
interpretation in M of the term 

)~ x l  :g t i l  . . .  XN(O : .AIN(O. A 131. . .  B,~. Yl . . . Y,~. 

Yi (xl[B1 . . .  B=] y , . . .  Y m ) . . .  ( X N ( o [ B I . . .  Bn] Y l . . .  Ym).  

Let us call this algebra A(P,). Now, if B is any other E-algebra in 2-4 (with carriers 
B1, . . . ,  B~ and operations ¢1 , . . . ,  ~bm say), then there is a canonical ;E-algebra homo- 
morphism from .A(P,) to B. In general, this is given by the functions 01: [.A~]] --+ Bi, 
where Oi is the interpretation in A/t of 

Aa: ,Ai. a[B~ . . . B,~] ¢ 1 .  . . ¢ ~ .  
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In other words 0i(a) is the interpretation of a at the E-algebra B. In the case of a PER 
model, where we know that ~4(E) is the product of alI E-algebras, this homomorphism 
is just the projection at B. 

If 34 should happen to contain an initial E-algebra (~" say), then we have also 
a map ~" ~ A(E), exhibiting iT as a retract of A(E). We want to show that this 
retraction is an isomorphism. For this we use the following lamina. 

4.1 LEMMA Suppose 34 = PER(A)  is an arbitrary PER model for the second- 
order lambda calculus, and that E is a signature in the sense of many-sorted logic. 
Then 

(i) Ad contains an initial E-algebra 9K (Moreover, .T is also the initial E-algebra 
in the associated reMizability topos.) 

(ii) fit(E) is canonically isomorphic to Y iff tbr any a C A~ there is a E-term ~r of 
type Ai such that 

a = AA1.. .An. A¢l . . .¢m.  c~. 

Pro@ To prove the first assertion, take some suitable GSdel encoding of the syntax of 
E into the Church numerals of the partial combinatory algebra, and take the carriers 
of Y to be (the canonically projective pet's whose underlying sets are) the images 
of the closed terms of the appropriate sort under this encoding. The operations of 
the algebra are now given by the functions which construct compound terms out of 
their components, and are therefore recursive. Given any other E-algebra B in the 
topos, there is a homomorphism from ~" to B, given by decoding the elements of ~" as 
closed E-terms, and then giving the interpretation of the term in B. This operation is 
recursive in codes for the operations on B, and hence is an internal homomorphism. 
It is the unique homomorphism from .T to B since the carriers of .T" are canonically 
separated, and their underlying sets give the free algebra in Sets. 

To prove the second assertion, note that if a is any element of Ai, then if there is a 
closed E-term c~ such that a = AA1 . . .  A,~. A¢1 . . .  ¢,~. a, then since the intepretation 
of a[ j  c] is essentially ~, such a a is necessarily unique. We thus have 9 v as a retract 
of Ai, where the inclusion sends cr to AA1.. .  AN. A¢l . . .  ¢,~. ~r, and the retraction 
sends a to a[~']. The second assertion of the lemma now says that this retraction is 
an isomorphism if and only if it is surjective. [] 

To sum up, if 3d is a PER model, PER( A ), then we have the following situation 
(treating the model as an internal category of sets in the realizability topos): 

1. The product of all E-algebras in PER( A ), is itself a E-algebra in PER( A ), and 
is given by taking the canonical E-algebra structure on the interpretations of 
the algebraic types associated to E. 

2. PER( A ) also contains an initial E-algebra. 
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3. There is thus a canonical map from the initial algebra to the product algebra. 

4. There is also a canonical map from the product algebra to the initial algebra 
(the projection). 

We want to show that these two maps are inverse isomorphisms. 

We recall that in any model 34, a value of type [Ai] can be regarded as a function 
taking a E-algebra B as parameter, and producing a value of type Bi. An important 
feature of PER models is that the value produced does not depend on the carriers 
B1 . . .  B~, but only on the names of the operations of B. More formally, we have 

4.2 LEMMA Suppose B and C are E-algebras in a PER model 34 = PER(A) ,  
w h e r e B  = (B~ , . . . ,B~ ,e l , . . . , e ,~ )  and C = (C1, . . . ,C~,e~, . . . ,e ,~) .  Then i r a  • 
1,4,1, 

a[B1...B,~]e~...e,~ = a[C1...C,~]e,...em 

----- a e l , . . . , e m .  

Recall that we want to show that a is AA1...  A~. A(¢t , . . . ,  ¢~). a, where a is 
a closed E-term of type Ai. The lemma above allows us to restrict the class of 
E-algebras at which we have to look. 

Suppose M = PER( A ) is the PER model on a partial combinatory algebra 
A. Given elements e l , . . . ,  e,~ of A which induce the operations on some E-algebra 
B = (b~,. . . ,  b,~, e~, . . . ,  era) in 34, we define the E-algebra O ( e l , . . . ,  e~n) (the orbit 
of e l . . .  era), with carriers Oi (e l , . . . ,  era), where Oi is the subset of the carrier of Bi 
consisting of the interpretations of closed E-terms, and in which the operations are 
given by e l , . . . ,  e,~. If e l . . .  em do not induce the operations on any E-Mgebra, then 
O ( e l , . . . ,  era) is undefined. 

It is easy to see that the definition of O ( e l , . . . ,  e,~) does not depend on the algebra 
B; Oi consists of the elements (A¢1 . . .  ¢,~. ~r) e l . . .  e,~ such that a is a E-term of type 
Ai. Moreover O is defined iff all such elements are defined. It is also clear that 
O is in some sense a minimal E-algebra. This intuition can be made precise using 
the notion of inclusion ([CFS87]). We recall that an inclusion is a map of per's 
induced by the iclentity function on A. The category of E-Mgebras in PER( A ) with 
homomorphisms given by inclusions is a poset, and the minimal elements are the 
algebras O ( e l , . . . ,  era). 

4.3 LEMMA If B = (B1, . . . ,  B~, e~, . . . ,  era) is a E-algebra in PER(A) ,  and a E 
~Ai], then 

a [ B l  , . , B n ]  e l  . . . e m  .~- g [ O 1 . . . O n ]  e l . . .  e r a ,  

and in particular a[B1... B~] el . . .  em E Oi. 

As a direct consequence we have: 
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4.4 COROLLARY Given an element a of [Ai]], then for any E-algebra B, where 
B = ( B 1 , . . . ,  B,~, el, o. . ,  e,~) there is a closed E-term (r of type Ai (possibly depending 
on e l , . . . ,  e,~, but certainly independent of B 1 , . . . ,  B~), such that  

a[BI,..Bn] e l . . . e m  = ( , ' ~¢1 . . . ¢m.  0") e l . . o e m .  

This corollary is the analogue of showing that  if 0 is a polymorphic boolean, then 
O[B]bobl has to be either b0 or bl. It is the local version of the result we really want. 
So, it now remains to show that  the a whose existence is guaranteed by this corollary 
can be chosen independently of el . . .  e,~. Note that  in order to do this we need only 
look at the N-algebras O ( x l , . . . ,  xm). The crucial technical result we shall need is, 
however best expressed for more general algebras. We first make a definition. 

Definit ion Suppose A is a partial combinatory algebra, and U and V are subsets of 
A, then we say that  U and V are recursiveIy disjoint if there is some element ¢ of A 
such that  for all u E U, Cu = [0], and for all v E V, Cv = [1]. 

4.5 LEMMA Suppose that  0 : B  --+ C is a homomorphism of E-algebras, where 
B = ( B 1 , . . . , B ~ , e l , . . . , e , ~ ) ,  and that  C = ( C ~ , . . . , C ~ , d ~ , . . . , d m ) ,  and for each i 
the domains of the per's Bi and C / a r e  recursively disjoint. Then for any a E [[Ai] 

{ a [ C I . . . C n  l d l . . . d m }  Ci { O i ( a [ B 1 . . . B ~  l e l . . . e m ) } ,  

i.e. a evaluated at C is the image under 0 of a evaluated at B. 

Proof  We define for each i, a per B~ ® Ci, whose domain is Bi U Ci, and where 
n B~ ® Ci m iff either 

(i) n B ~ m o r e l s e n C i m  
or (ii) (Oin) Ci m or eise n Ci (Oim). 

(We are gluing B~ to Ci along 0~.) Since B~ and C~ are recursively disjoint for each 
i, the types Bi @ Ci carry a natural  E-algebra structure. We can define this in 
two different ways, either by means of functions e'l . . .  e'm, which restrict to e l . . .  em 
on B, or else via d q . . .  d',~, which restrict to d l . . . d , ~  on C. We cannot do both 
simultaneously, since any constants must come either from B or from C. 

Since e'l • .. e',~ and d ' , . . ,  d',~ both define the same algebra structure on B @ C 
we h a v e  

a[BI Q C l . o . B n ® C n ]  e ' l . . . e ' m  =B,®C, a[Bi Q C l . . . B n Q C n ]  d ' l . . . d ' m .  

Since e{ restricts to ei on B, we have 

a[B1...  B~] e l . . .  e.~ 

and similarly 

=Bi a[B1. . . Bn] e ' l . . ,  e'm, 

a[Cl . . . Cn] dl . . . dm =c,  a[C1. . . Cn] d'l o . . d'm. 
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Now apply lemma 4.2, and we obtain 

=s,®c, 

from which the result follows. [3 

This lemma is only useful if we can find an algebra disjoint from the one which 
we wish to study. However, for the case A = N it is easy to find algebras which fill 
up the whole space available. Consider the polymorphic integers, corresponding to a 
one-sorted algebra with one constant and a single unary function. If for our constant 
we take 0, and for our function the successor function, then we obtain an algebra 
which takes up the whole of IN. To get round this we use a continuity argument 
which will allow us to compress our algebra so that it takes up only a finite amount 
of space, thus allowing us easily to find algebras disjoint from it. Unfortunately our 
argument does not work for general combinatory algebras, and so fails for general 
PER models. 

5 PER(N) 

We can express the continuity argument we need in very simple, though slightly ab- 
stract terms. For readers unhappy with this, a direct proof of the central proposition 
is given in an appendix. Again, let ~,, be any many-sorted algebraic signature, and 
A any partial combinatory algebra. Then the E-algebras in PER( A ) form a metric 
space (~,,-AIg) in which 

d(B, C) _< 

if and only if the interpretation of a in B is the same as the interpretation of a 
in C for all ~,-terms a of size not greater than n. This is true also in the internal 
topos-theoretic sense, with a slight delicacy--the metric function 

d : E-Alg x ~,,-Alg --+ Q 

is not represented internally. However, the predicate 

d(B, C) < q 

on E-Alg x E-A~7 x Q is, and this will suffice for our purposes. 

It is easy to see that E-Alg is complete with respect to this "metric", and that 
it is the completion of its subspace of finite E-algebras. Indeed, suppose that B = 
(B1 , . . . ,  B,~, b l , . . . ,  b,~) is an arbitrary E-algebra, then for each i such that the orbit 
O~(b~,..., bin) is non-empty we can pick a "canonical" element c~ of O~(bl,..., b,.,,). 
Now, given an integer l, we can find elements b~i of A, such that 

b t l  z l  • • • Z N ( i )  

I bi z l . . .  

I a i  

ZN(O if each z~ is [crib(where [a]b = 
fro. bl . . .  for 

some closed term a of size less 
than 1 
otherwise 
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Moreover, we can find the bli recursively in I. Note that if for some i the orbit 
O i ( b t , . . . ,  bin) is empty, then no closed term of any type can depend on a term of 
type Ai, and hence that empty orbits cause no problems. Clearly, for each l, the orbits 
O ~ ( b ~ , . . . ,  b~,~) are defined, and are finite subsets of the O~(b~, . . . ,  b,~). Furthermore, 
the E-algebras O ( b l l , . . . ,  btm) form a Cauchy sequence (even an internal Cauchy 
sequence) whose limit is B. 

In the case A = N, this means that E - A t  9 is a complete separable metric space. 

We can also represent the collection of closed terms of sort Ai internally in the 
topos, via GSdel enumeration. Abusing notation, let Ai be the canonically projective 
per whose domain is the set of codes for closed E-terms of type Ai. We regard Ai as 
a discrete metric space. Whatever partial combinatory algebra A we use, it is always 
separable, and has a linear order (for example that inherited from the order on iN). 

Now let a be a value of type JAil. We can use a to define a map 

Ca : E - A f t  --~ A~. 

¢~(B) is the least a in Ai such that a evaluated on B gives the intepretation of a 
(cf. corollary 4.4). For a suitable choice of the linear order on Ai, the function ¢~ is 
represented internally in the topos. 

In the case of the effective topos (A = N), we can use a well-known theorem due 
to Ceitin and independently Moschovakis ([Ce62], cf. [Bee85]) on the continuity of 
effective operations in the presence of Markov's principle. Expressed in somewhat 
more topos-theoretic terms than usual, this states 

5.1 THEOREM If in the effective topos ~)~, f is a function from a complete sepa- 
rable metric space X to a separable metric space Y, then f is pointwise continuous, 
i.e. given a fixed x E X, the formula 

Ve > 0. B6 > 0. d x ( x ,  x') < 8 ---* d y ( f ( x ) ,  f ( x ' ) )  < e 

is satisfied. 

The continuity result we need is an immediate corollary of this theorem: 

5.2 PROPOSITION Suppose a is in the domain of [Ai~, and O ( x l , . . . ,  x,~) is de- 
fined. Then there is a number h, such that for all l _> h we have a x l l . . . x l , ,  = 
a x l  • • • Xm. 

(Here, we are using juxtaposition to denote Kleene application, and associating 
to the left as usual; thus a x l . . ,  x,~ means {.. .  {{a} x l} . . . }  x , , )  

In the appendix we shall give a proof of this proposition which does not depend 
on Ceitin's theorem. Unfortunately, both this more concrete proof, and the proof 
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of Ceitin's theorem itself, seem to depend on properties of the partial combinatory 
algebra 51 which are not completely general. 

We now conclude our proof that the algebraic types are interpreted as initial 
E-algebras in the case A = N. 

We first note that 151 is recursively isomorphic to {n E IN ] n = k rood m} for any 
m, and k, and hence that we can find a copy of the initial E-algebra disjoint from 
any finite set. 

Let ~" = (F I , . . . ,  F~, y l , . . . ,  y,~) be our designated initial algebra, and suppose 
that 

a [ F ~  . . . F n ]  y~ . . . Y m  = [ a ] ~ .  

Then, given a E-algebra B = ( B i , . . . ,  B n ,  b ~ , . . . ,  bin)  (without loss of generality we 
can suppose thai; B = O ( b l , . . . ,  b ~ ) ) ,  we can find an h such that 

a [ F 1 .  . . F,~] Y h l  . . . Y h m  = a [ F 1 .  . . F,~] Y i  . . . y m  

and also 
a [ B l  . . . B n ]  b h l  . . . b h  m = a [ B 1 .  . . B , ~ ]  b l  . . . b m .  

Now pick a copy ~ '  of the initial algebra avoiding both the finite sets O ( Y h l , . . . ,  Y h m )  

and O(bhl , . . . ,  b,~,~),  and apply lemma 4.5 twice to show that 

a [ B 1 .  . . B = ]  b l  . . . b,~ = [ a ] b .  

Thus we haw~ shown: 

5.3 THEOREM When A = 51, the algebra .A(E) is the initial E-algebra in ~b T, and 
hence A(E) is also the initial E-algebra in PER( N ). 

6 Conclus ion 

We have achieved our purpose in proving the theorem above. However, some con- 
cluding remarks appear to be in order. The proof we have given seems to use rather 
a lot of machinery, for a fairly small result. In particular, it is disturbing that it will 
only work for a relatively small class of Schhnfinkel algebras. It is possible, however, 
that these results do inevitably depend on the algebra chosen. The small amount 
of experimental ,evidence available would tend to support this view. Apart from the 
proof for the algebra of open lambda terms, due to Moggi and outlined above, we 
have a proof due to Peter Freyd of the result for the polymorphic natural numbers. 
This proof avoids the explicit use of a general continuity principle by using an elegant 
combinatorial trick. However, it also works only for the PER model on the natural 
numbers. More recently, Freyd has also been able to show that the interpretation of 
the types H X . [ [ A  - ~  X ]  ---* X ]  for an arbitrary per A, is isomorphic to A. The proof 
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he has given here also works only for PER models based on a relatively restricted class 
of algebras (again including the Kleene algebra, on the natural numbers) [Fre89a]. 

Finally, we should return to the relationship between PER models and the free 
term model. We stated above that any PER model satisfies equations which are not 
provable in the calculus, and which therefore do not hold in the free term model. We 
can now give an example. If we let P be the type H X . X  -+ X,  Q = P ~ P be the 
type of endomorphisms of P,  and S be the "double negation" IIX.[[Q -* X] -* X] of 
Q, then it is well-known that there is a closed term of type S which is not formally 
evaluation at any closed term of type Q (the term AX: )~f : Q --~ X.  I(Aa : P. (a[X --~ 
P](Ax : X. AY. ),y: Y. y) ( f (Ap:  P.p)))) wilt do). It follows that in any extensional 
model, either we violate parametricity, in that S is not isomorphic to Q, or there is 
a non-standard element of Q, or else some equation holds in the model which does 
not hold in the term model. In the particular case of PER models, we know that P 
contains only the polymorphic identity. It follows that Q and S are also singletons, 
and that the term we have given is equated in the model to evaluation at the identity 
map on P.  

Appendix 

In this appendix we give a direct proof of the crucial continuity result proposition 
5.2. We have chosen to use a proof style modelled on Gandy's proof of the Kreisel- 
Lacombe-Shoenfield theorem. This gives a very slick proof in which we use the second 
recursion theorem to pull assorted useful integers out of a definition whose construc- 
tion is about as obvious as a magician's hat. There is always an alternative to using 
the recursion theorem in this way. Most often, it is a longer and equally unintuitive 
combinatorial proof. Readers are referred to the proof of Ceitin's theorem in [Bee85] 
for an example. 

The structure of this proof is such that it is more convenient to use the interpreta- 
tions of the type ,4 x of the extended calculus, rather than the types Jti. Recall that 
if B = (B~, . . . ,  B~, b l , . . . ,  b,~) is a E-algebra, then a value a of type [¢Ix] interpreted 
at B I , . . . ,  B~ takes the tuple (b l , . . . ,  b,~) as parameter, and produces a value of type 
Bi as result. (We contrast a [B1.. .  Bn] (b~,. . . ,  bin} with a[B1...  B,~] b l . . .  b,~). As 
before, we can define a series of finite approximants O×(bh, . . . ,  blm) to B, and our 
proposition becomes: 

5.2 PROPOSITION Suppose a is in the domain of [Ax], and O×(xl , . . . , x ,~)  is 
defined. Then there is a number h, such that for all l >_ h we have 

a ( x . , . . . , x , m )  = a 

Proof. Let q?(g, y, y', m) be the formula 

3w,  w' < y, A T ( a ,  y', A = 
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where T is Kleene's T-predicate, and U its output function. Use the recursion theorem 
to find an integer ej such that 

{ e j } ( Z 1 , .  . . ,ZN( j ) )  = / { ~ ) ( z , , . . . ,  z~(~)) 

if some zi = [a]~ for some cr of 
size r, where 
(~(a, (Xl , . . .  , Xrn), ( e l , . . . ,  era), r) 

if for some r, some z~ is of the 
form [[a]=, where a is a term 
of size r, but where any such r 
satisfies 
(I)(a , (xl , . . .  ,xm) , ( e l , . . .  , e m ) , r )  
and where k is the least integer 
such that 
¢(a, (~,..., ~) ,  ( e l , . . . ,  era), k) 
and { a } ( ~ , . . . , ~ m ) #  
{a}(Xkl,...,Xkm) 

First note that there must be an r such that ~(a, (x l , . . . ,xm) ,  ( e l , . . . ,  era), r). If 
we suppose that there is not, then {ei} = {x~} on O. This however implies that 
{a}(xl, . . . ,  x,n) = {a}(el , . . .  ,e~), using the functionality of a on the E-algebra O. 
Thus there is an r such that ¢(a,  (x~ , . . . ,x ,0 ,  (e~, . . . ,  e,0, r), a contradiction. We 
can now let h be the least integer such that 
¢(a,  (x~, . . . ,  x~), (e~, . . . ,  era), h). 

To conclude the proof, let n be the least integer greater than or equal to h such 
that {a}{x,~a,... , x,~m) ~ {a}(x~,. . . ,  xm), if such exists. For such an n we have that 
for each i, {xni} = {e,} on O(x,~i,...,x,m). This implies that {a}(x,1, . . .  ,x~m) = 
{a}(e~,. . . ,  era), again using the functionality of a. But since we know that the for- 
mula O(a, ( x l , . . . ,  x,~), ( e l , . . . ,  era), h) actually holds, we also have {a}{el , . . . ,  e,~) = 
{a}(x~,...  ,xm), which thus leads to a further contradiction. We conclude that for 
all n >__ h, we have {a} (=~ , . . . ,=~m)  = { a } ( ~ , , . . . , x ~ ) ,  as required. [] 
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