Note on the papers of J.M.E. Hyland and J.-J. Lévy.

(Corrections and clarifications.)

J.M.E.Hyland (Christ Church, Oxford).

Some confusion is apparent in the reference in my paper to that of J.-J.Lévy, and in the conclusion of his to my own and to that of Welch. Since this is largely the fault of a careless abstract of my paper which appeared before the conference, it seems right that I should set the matter straight.

The facts are as follows.

- 1) Lévy's relationship "A(M) \subset A(N)" is not the same as my " ω (M) \subset ω (N)". My relation is clearly identical with the semantics (E_{∞}, N) of Welch. Indeed Lévy's relation is neither a continuous semantics in Welch's sense, nor is it sensible in mine. But it is interesting enough for all that.
- 2) Lévy's relation can be characterized along the lines of (2.3) of my paper, thus: $A(M) \subset A(N)$ iff both (i) whenever C[M] β -reduces to a h.n.f. then C[N] β -reduces to a similar h.n.f., and (ii) whenever C[M] β -reduces to a term with

n λ 's at the front , then so does C[N].

Conversely, Lévy's work suffices to show that both " $\omega(M) \subset \omega(N)$ " and " $\omega\eta(M) \subset \omega\eta(N)$ " are substitutive.

3) It is the equality relation " $\omega(M) = \omega(N)$ " which is identical with the equality relation " $\omega(M) = \omega(N)$ ". The corresponding p.o.r.'s differ. One can get a similar result for Lévy's relation by tampering with the coding in P ω . It suffices to start the enumeration of finite sets with e_1 , and conventionally interpret m ε $\tau(e_0)$ in the definition of lambda abstraction, as always true. The equality in the resulting model is the same as the equality in Lévy's model. Again the p.o.r.'s differ.