R. Gandy, M. Hyland (Eds.}, LOGIC COLLOQUIUM 76
© North-Holland Publishing Company (1977)

Computable and recursively countable functions of higher type

By R.0. Gandy and J.M.E. Hyland

We present some results concerning Kleene’s generalisation of -i
ordinary recursion theory to objects of higher type. Kleene has |
given a number of equivalent formulations of his ideas (see Kleene
1959a, 1%62a 1962k, 1962c): we shall refer only to the original
formulation based on the schemes $1-9. The motive underlying our
work is the desire to establish connections between Kleene'sg
generalisation and the ideas of constructive mathematics. So we
investigate the continuity properties of ‘recursive’ functionals and
the way in which they are related to the ‘recursively countable’
functions introduced in Kleene 1959b, or, eguivalently, to the
‘recursively continuous' functions of Kreisel 1959. These two latter
notions were specifically introduced to embody ideas of constructivity.
To avoid confusion we shall always use ‘computable’ to describe the
objects introduced by S.1-9, reserving ‘recursive' for the construc-
tion notions. At type 2 both notions ccoincide with the concept of
recursive functional familiar in ordinary recursion theory. We
shall be concerned almost entirely with cbjects of type 3. We in-
clude expositions of the principal notions discussed; we hope that
the paper will be intelligible to any interested reader who is fam-
iliar with ordinary recursion theory.

Constructive mathematics considers functions as rules and so
as intentions, while the computable functions and the computations
by which their values are defined are wholly extensional. This
means that constructive functionals can make use of information
(e.g. a modulus of continuity) which is preovided by theix construc-
tively presented arguments but which is not available in Kleene's
computations. So it is not surprising that our meost important re-
sults consist of constructive operations which are not computable.
But we do not think that the moral to be drawn £rom these results
is that Kleene's notion of computability is without interest for
constructive mathematics., Hyland's work on limit spaces (see
Hyland 1975, 1977) and the theory in Scarpellini 1971 of L-spaces
show how a thoroughly extensional treatment can be given to objects
{continuous functionals) which had previously been handled inten-
sionally. The result is a considerable gain in clarity, intuitive
appeal and ease of manipulation. There may be extensional ways of
supplementing Kleene's schemes which correspond to the use of addi-
tional information provided by intensions. Indeed Feferman has
already suggested possible ways of doing this (see his paper in
this volume). But, we regard Kleene's schemes as likely to remain
significant because they provide a basic minimum which any theory
of extensional computation must include.

" 81 Type structures and computable functions

l.1. We find it convenient somewhat to modify the definitions of
Kleene 195%a. We give an informal sketch of Kleene's notion thus
modified, and of some facts about it. The reader who is familiar
with Kleene's paper should have no difficulty in filling in formal
details of our definitions and proofs. We hope that the reader who
is unfamiliar with it will nevertheless be able to grasp the ideas
and the lines of argument.

407

408 ‘ R.0. GANDY, J.M,E. HYLAND

Kleene works with the full structure {T_: n ¢ w} of pure

types, where Ty is w (the set of natural numbers) and Tn+l is the
set of all maps from Tn into w. But Kleene's theory makes perfectly
good sense if one hereditarily restricts the maps considered to

sets An‘ We shall be considering in particular the case where An
consists of continuous maps or of effective operations. Also, to
avoid tirescome details of coding, we will not confine ourselves to
pure types but shall allow, hereditarily, numerical valued functions

of several arguments.

l.2. Definition., (i) O is a tvpe symbol of level O,

{(1i} 4if Treess0y Are type symbols then (ol,...,ds + 0) is a
type symbol; its level is one greater than the maximum of the

levels of TireserTge

. > = .
We write o, T for TproeesOgr TrreserTy respectively. We
denote the unique pure type of level n by n: 0 =0 and n+i = (n=0).

1.3% Definition. A type structure is a collection of sets
{Ac : ¢ a type symbol}l such that (i) A_ is w, (ii) if o is (T » 0)

then A is a set of maps from A x A x,,..A into A_.
o T T T o)
1 2 t
We adopt the convention that 3, b stand respectively for
a 0 T T (e T
al ...a bl...,bCuwhereatchar (1sic<s),bdech
oy _ Tj

(L =3 = t).

1.4, Kleene's notion of computation for {Tns n ¢ wt and our modi-
fication of it are precisely delimited by the following principles,
all of which are familiar in the ordinary theory of recursive

functionals of level 5 2.

1.41, A computation is completely specified by giving a method of

computation (programme, algorithm) and a list 2 of arguments {the
inputs). The result (value, output) of the computation may be de-

fined or undefined; if it is defined it is a natural number,.

1.42. Methods of computation are coded by natural numbers which
are called indices. The index also codes the list ¢ of the types
of the arguments. We write {e} () both for the computation and for
its value (if defined); we write {e} (@) +, {e}@) = =, {e}(a)+ to
mean, respectively, that {e} () is defined, is defined and has the

value z, is undefined.

FUNCTIONS OF HIGHER TYPE 409

1.43 A function £ of type o+ 0 is cbmputable from parameters b

iff there is an index e such that

f(g) = {e}(g, %) for all a c A (L < i 3 s)

We require that the type structure be closed under computation: if
T,
3 .
b € ATj (1 £ j s t) then £ ¢ A(g > 0) e
1.44. The computations of ORT (ordinary recursion theory) are
computations of the generalised theory. More precisely: if
{p}(§, %) is a computation of ORT and the numbers % and the level 1
functions ¥ all occur in the list 3, then there is an index e such
that
{e}@) = {p}(x, B).

1.45 Computation is closed under the substitution of computed
values for numerical arguments. More precisely, if £ and g are
indices and if the objects in the lists 3, 3, d all occur in the

. > . . ‘
list a, then there is an index e such that

fe}(®) = (£} (B, {9} (@), d).

1.46 A computation can use an oracle to determine the value of
one of its arguments_ (of level > 2) for given computable arguments.
More precisely, if bT7° occurs in the list 3,-and if the functions

T,
£ J (1 £ 3 5 t) are computable from the parameters 2 with indices
fi’ then there is an index e such that

T
p--c'f

-+ T
(5.8 >) fe} @) = p™0 (£ 1 t

{12+0) V.

The special case of this when T > 0 is the pure type of level
n+2 is Kleene's S.8:

(5.8,) fe} @) = b**2 (£} 3, o).

If the level of T + O is 1, then the use of an oracle is already

provided for by 1.44, 1.45; the corresponding Kleene scheme is 5.7.

1.47 The result of a computation can be used as an index for a
further computation. More precisely, for any list 3.with, say

o; = 0 there is an index e such that

WO" _)_
fe} @) = {& ().

This corresponds to Kleene's §.9; in connection with 1l.45 it has the

stated effect.

410 R.O. GANDY, J.M.E. HYLAND

1.5, Numerous equivalent formulations, each with an attendant
system of indexing, have been given; we mention two. Gandy 1967
describes the methods of computation in terms of finite register
machines, working, so to speak, in infinitary time. This has the
advantage that indexing plays no part 1n the definition, and that
the significance of 8.8 is made clearer. But the definition is
unhandy for routine manipulations and proofs. Bergstra 1975 uses
four schemes (as opposed to Kleene's nine) corresponding to our
1.44~1,47,

It is an unfortunate fact that in most treatments, particu-
larly in Kleene 1959a the details of index manipulation often ob-
scure the general lines of constructions and arguments. That is
why in this paper we prefer not to specify any system of indexing.
But it is necessary, especially for applications of 1.47, that the
assignment of indices should be done in an orderly, computable
fashion., We therefore add to 1.44-1.47 the stipulation that e can
be readily computed from the other indices mentioned together with
the lists of types of the mentioned strings of arguments, and con-
versely that those indices and type-lists can be readily computed
from e. ('Readily computed® can be taken, for example, as
‘computed by a Czillig-Kalmar elementary functionf).

l.6. Once details of indexing have been fixed, 1.44-1.47(or what-
ever other schemes are taken as primitive) determine inductive

definitions of the sets {(e,a) : {e}(3)¢} and {e,3,2) s {e}(a) = z},
each scheme vielding a clause of the definitions. For 1.46 the
clause is infinitary, since it mggt require that the computations

{fi}(g) can be defined for all a * € AG (L 2 1 £ s8). Corresponding

to these definitions one uses a form of*induction for rroofs and
constructions. We shall refer to this as 'induction on the compu-
tation®. (Kleene calls it 'induction on {zl (=)', but this is
slightly misleading as it suppresses the arguments and these occur
as parameters in the induction). Since 1.46 is the single schemne
which distinguishes higher type computations from those of ORT we
shall usually only give the inductive step corresponding to this
case.,

§2, Sections and degrees

2,1. Let A = {AO : ¢ a type symbol} be a given type structure

closed under computation; the letters a,b,c range over A. If
a ¢ Ao and s is the level of ¢ we say s is the level of a. We

write 'a 5= b*, 'a s b Mod (¢) ' for 'a is computable from b', ‘a is
A p

conputable from b, I respectively. We define:

a =b iff a < b and b =< a.

This is an equivalence relation which partitions A into equivalence
classes called degrees which are partially ordered by the quotient
relation =/, which we also denote by <. We write 'a‘' for the degree
of a and for an arbitrary degree. {Similar definitions may be made

for 'degree mod (3)")° Besides the usual problems associated with
a degree structure there are problems about the interplay between
the degree. structure and the type structure.

FUNCTIONS OF HIGHER TYPE 411

2.2. Definitions The'c—degree of a ('o-deg(a)') is Ac_n a. A

degree a is represented in type o iff AO na¥ @

2.3. Proposition If a degree is represented in a type ¢ of level
s it is represented in all types of level = s,

This is an immediate consequence of the existence of inver-
tible functions which code a° in AT whenever level 1 =z s (see
Kleene 195%a or Gandy 1967).

2.4, Definition The level of a degree is the least level at which

it is represented. An object a’ is irreducible if its level and

the level of its degree coincide; i.e. if a® = p' implies level of

T 2 level of 0.

2,5, Definition The o-section of an object a, or of a degree a

is defined by
o-scfa) = o-sc(a) = LY : p° < al.

Because constant functions are computable the o-section of a
is never empty. We shall see in §5 that, for a particular g, dis—
tinct degrees may have coincident o-sections,

2.6. Definition An object a or a degree a is t-obtainable if

there is a bT of level t such that a s,bT.

By 2.3 if t 2 level of a, then a is t-obtainable, but the

converse may be false. For example if A is the type-structure of
continuous functionals then every type—2 object is l-obtainable,
since it can be computed from any of its associates. But (see
Hinman 1973) and §5 below) there are irreducible continuous type 2
objects, : '

§3., Countable functionals

3,1, Notations. We record here a number of more or less standard
notations which will be used extensively in the following sections.

Since we shall only be concerned with objects of level < 3 we
use different founts, rather than superscripts as follows:

Level O (numbers): i,3,k.,m,n,p,q,X,Y,2;

Level 1: o,B,Y,0;

Level 2: F,G,H;

Level 3: T,4A,%,Y.

Unless otherwise indicated a letter stands for an object of pure
type of the appropriate level.

412 R.0. GANDY, J.M.E. HYLAND

We suppose that any finite sequence (uo,ul,...,ur_l) of

natural numbers is coded by a number u = U rWyreeer 1> in one
of the standard ways. Seq is the set of such codes; Biseq the set
of codes of binary sequences. The letters u,v,w will always étand
for members of seqg. fh(u) is the length, u; ox (u)i is the i-th
member, of the sequence with code u. u*n is the code for the
sequence got by adding n at the end of the sequence coded by u,
ra(n)' stands for '<a (0}, a(l),eessa(n~1)>'. 1 c v means that the
sequence (coded by) v is an extension of the sequence u, and u < o
means that a(2h{u)) = u. v, = {o: ucal. We write 'a < ' to
mean that VYx a(x) < B(x).

The letters A,B will be used only for finite sets of pairs
(u,p}. Dom A = {u: dp(u,p) e A}, and the support of A is

U{Vu: u ¢ Dom Al.

If a and b are functions of the same type, then a = X]a

means that they agree on the subset X of their domain; in particular
= nB' stands for 'a(n) = B(n)'.

We often think-of the sequence numbers as being laid out on a
tree with < > at the top. (Although we are not from the antipodes,

nevertheless our trees grow downwards). Each o determines a path
through this_tree. If R(u) is such that R(a(n)) and
¥m < n - R(c(m)) then we say R secures o at a(n}). If R secures

every o, then the set of points at which R secures some o form a
bar; the points on and above the bar are the non~past-secured
points, and the relation u ¢ v is well founded on the set consisting
of them. Recursion on this well-founded relation is called bar
recursion (of type 0).

3.2. We denote hy C = {CU: 0 a type-symbol}! the type structure of
Kleene's 'countable' or Kreisel's 'continucus' functionals. PFor a
fairly exhaustive account of C and of the different ways in which
it may bhe defined see Hyland 1977. We discuss here just the cases
g = 5,3,5,3. We set CO = TO = w, and Cl = Tl‘ We topologise Cl by
taking {Vu: Seq u} ‘as a neighbourhood base.

The guiding principle of Kleene's definition is: a map
b Cn +~ w belongs to Cn+l if its value at b" « Cn is determined
by a finite amount of information about p". For n = 1 the obvious
interpretation of 'finite amount of information about R' is
finitely many values of R'. Then F ¢ C, can be expressed in the
following ways.

FUNCTIONS OF HIGHER TYPE 413

3.21 F is a continuous map from Cl into w.

3,22 The predicate 'F is constant on Vu' secures every Y
i.e. ¥Ya8 3In F is constant on vE(n)‘

3.23 There is a function O called an associate of F
which satisfies

(1) ¥g 3n ag(B(n)) >0
(11) (Yg,n)log(Em)) > 0 > ap(B(n)) = F(B)+11,

3.24 The advantage of 3.23 is that it suggests immediately what
should be meant by 'a finite amount of information about S
namely 'finitely many values of aF'. Observe that (i) and (ii) do

not specify o, uniquely. Indeed, given o there are 'finer' associ-

CF F
ates a% such that if aF(u) = 0 then u%(u) = O but not conversely.
We could make ap unique (the 'principal associate of F') by adding
(iii) ¥ is constant on V, (u) > 0,

But to do¢ so would ke disastrous. Flrstly because if F is a re-
cursive functional (in the sense of ORT) it will have a recursive
associate, but may not have a recursive associate satisfying (iii).
Secondly, F may be specified by any Up satisfying (i) and (ii), but
one cannot constructively determine whether On satisfies (iii) or
not, = So, "finite amount of information about F' is to mean

“fiﬁitely may values of any associate g satisfying (i) and (ii)'.

3.3, With this agreed, we can give the definition of Cy as follows:
A map T C2 + w belongs to C, iff it has an associate ar which
satisfies
(1) FeC, VB[R is an associate for F - dIn o (B(n)) > 01;
(ii) FeCy (V B,n)[B is an associate for F A o (B(n)) > 0
+ Op (B(n)) = T(F) + 113,

3.4, We note that = in accord with 3.24 - the following functionals

do NOT kelong to C3.

Pl(F) - 0O if ¥ is constant
1l otherwise

ro(F) = 0 if (a) =0
1 otherwise.

E

414 R.0, GANDY, J.M.E. HYLAND

3.5. The requirements of 3.3 can be expressed as a continuity
property in the following way. Let A be any finite set of ordered
pairs (u,p) where u is a sequence number. We set

v, = {F ¢ C,: if (u,p) ¢ A then F(v,) = {pl}.

For any o the collection

F& = {VA: A is a finite subset of {(u,p): a{u) = p+1}}

of subsets of 02 foﬁms a filter base which generates a filter [F%].
We say that F* and any filter including F% converge to F just in
case a is an associate for F. One may think of F% as giving a method
of approximating to F. Now [¢ Cq iff it is eventually constant on
every convergent filter; or, taking the only filter on w which con-
verges to n to be {X: n e X}, T ¢ C, iff whenever a filter converges
to F its image under T generates a filter which converges to T (F).
This is precisely the definition of continuity which is appropriate

for "limit spaces?,

3.6, If of is a finer associate than ap then [F®' 7 is strictly
included in [Fa],‘since some VA e F¥ is too small to belong to F* ,
Thus, by 3.24, there is no minimal filter converging to F, no most
rapid method of approximation., Hence the limit space structure of
C, is not associated with any topology; for the neighbourhood of a
peint generate a minimal filter converging to it. In particular
note that the topology generated by the VA'S is not appropriate to
Cyi for example, it makes I'y of 3.4 continuous. There is a topology
(the "induced' topology of Hyland 1977) whose continuous maps into
w constitute C3; but it is thoroughly eccentric - for example, it

does not have a countable base,

3.7. We have followed. Kleene in presupposing the existence of
higher type objects, and then narrowing down to the countable ones.
In the alternative approach of Kreisel 1959 one first characterises
the associates, and then introduces the higher type obijects as
equivalence classes of associates. Ershov (1972, 1974) and Hyland
(1975, 1977) have shown that the associates may be given an elegant
characterisation in terms of certain algebraic lattices,

3.8, Recursion theory. A countable functional is recursively

countable iff it has a recursive associate (in the sense of ORT).
One needs also a notion of relative recursion based on partial

recursive operations. The following was first proposed by Gandy;
Hyland 1975 gives equivalent definitions in terms of limit spaces

FUNCTIONS OF HIGHER TYPE 415

and cogent arguments that it is the correct definition for countable

functions. An object a ¢ C is recursively countable in b ¢ C if

there is an associate-invariant recursion from b to a: that is 1if
there is an index e (of ORT) such that A_. {e} (%, o) is an
associate for a whenever oy is an associate of b; we then write

a < cbu This gives rise to a partition of C into ‘countable’
degrees; a countable degree is a union of the degrees oﬁb§2, This
is a consequence of the following theorem, which also shows that C

is closed under computations (as required by 1.43).

3.91 fThecorem (Kleene 1959b}. There is a partial recursive function
$ such that if {e}(g) is a defined computation over C then ¢$(e) is
defined, and if % are associates for a then

(1) {e} (@) = {4()}@).

(Observe that, by l.44, it makes little difference whether one re-
gards the RHS as a computation by 81-9 or a computation of ORT}.
(1} shows that 4(e) is an index for an associate invariant recursion.

Hence one readily proves:

3.92 Corollary. For any a,b ¢ C;, if a = b then a scbu

In proving 3.91 when the arguments % are of level < 2 one
arrives at a stronger result which will be used in the next section,

We say that a% is a restricted associate of F if in 3,23 (i} is

changed to
(1)* ¥B [B e l-sc(F) » 3n af(B(n)) > 0]

Then in 3.91 'G are'associates' can be replaced by "% are restricted
assoclates’. We deal only with the case of a single argument of

type 2, and outline the proof of:

3,93, Lemma There 1s a partial recursive function y such that if

{e}(ﬁ,F)+, then x(e,<§3) is defined, and if af is any restricted

F
agsociate for T then

(2) {e}(p,F) = {x(e, <p>)1 (af),

The proof is by induction on the computation. When e is
defined by 1.47 the inductive clause in the definition of yx is
trivial; this is the reason for computing the index on the RHS of
{2) from e gﬁg the numerical arguments of the LHS. Once 3.93 is
established a function ¢ as in 3.91 is obtained by routine manipu-

lations of indices. Now we consider only the case where e is

416 R.0. GANDY, J.M.E. HYLAND

defined by 1.46 (S.8). So

{e}(E,F) = F{B) where B = Aq. {f}(ﬁ,F,q)
By induction hypothesis:
(3) B(@) = {x(f, <p,g>)} (af) for all q.

Then ¥ (e,g) is defined as an index for the following process:
compute B(0), B(l), ..., using the RHS of (3) until an n is reached
for which uﬁ(g(n)) > 0. Since B ¢ l-sc(F) and ap satisfies (1)
such an n will be reached. The required value is then aﬁ(ﬁ(n)) - 1.

This concludes our sketch of the proof of 3,93.

4. Non-computability of the fan-functional

The problem solved in this section was first posed in Kreilsel
1959. It was solved by Tait (unpublished} around 1962; the solution
presented here is a somewhat streamlined version of one which was
presented by Gandy at the 1965 Leicester Summer school and
colloquium,

4.1. Any v ¢ C, determines a compact subset K; of Cl defined by

1

-KY = {B: B = v};

every compact subset of Cy is included in some X . The fan func-
tional ¢ is defined by Y

(F,y) = (un) (Y B,6' e K)IB = 8" > F(B) = F(B) 1
it gives a uniform modulus of continuity for F on KY.

4,2, Proposition, ¢ is recursively countable.

Proof. Let‘aF be any associate for F. By K8nig's lemma there is a
finite subset, X say, of {u: aF(u) > 0} which secures every B in KY:
¥ can be computed from Opr Ye And then, for any u on the tree for
K above the bar X, ¥ is constant on Vu n KY iff Op takes the same
value on all those points of X which lie below u. Hence ¢(F,y) can

be computed from o Y. QED,

FE’
4.3. Let us modify the limit space structure introduced in 3.5 by
associlating with each F ¢ C2 the collection

A(F) ={[F*7: o is a restricted associate of F}

of filters. Then, by 3.93, if {el(F)4, then the functional
AG. {e}(G) 1s eventually defined and constant on every filter of
A{F}. Thus

FUNCTICONS OF HIGHER TYPE 417

4.31. Theorem Any computable functional of type 3 over C, is con-

tinuous on the limit space structure defined by A.

On the other hand we shall prove

4,4, Theorem For any y which is not even£ually zero, and any F
there is a restricted associate o of F such that AGP (G,y) is not

eventually constant én Fe,

Proof, Let 8 ¢ K., = l=-sc(F}. Let o be a restricted associate of
F such that a(B{(n)) = O for all n., Let VA e F%. We shall construct
G so that G e V, and 9(G,y) # ¢(F,y). Choose n so that

(i) n > &(F,v)

(ii) W e Dom A + Zh{u) < n.

The choice of o and condition (ii) on n mean that Vg(n) is
disjoint from the support of A, Hence if G differs from F only on

Vg(n) then G ¢ VA“ and if, for example, we set

il

F(§)+1 if B{n+l) < &
F{8) otherwise
then, by condition (i), 3(G,y) # ¢(F,¥y). QED,

G(8)

4,5. Corollary ¢ is not computable.

4.6, Remarks (1) The above proof shows what is sufficiently obvious,
that F% converges to F more rapidly than any filter of the structure
considered in 3.5.

(2) A very short proof of 4.5 is given in 5.3 below.

(3) Theorems 4,31, ‘4.4 remains true if we consider computations in

a parameter G e C, and understand by "restricted associate of F' cne
which secures every B ¢ l=sc(¥,G), Thus ¢ 4is irreducible,

(4} Another, particularly simple, example of a recursively continuous

non-computable functional of level 3 is:

H]

Y(F,G,y)

0 if ‘YR ¢ K- F(B) = G(B),

1 otherwise

t

§5, A revealing counter—example.,

We give a simple construction due to Hyland for an irreducible
type 2 continuous functional. The basis of the construction is the

following familiar lemma,

418 R.0. GANDY, J.M.E. HYLAND

5.1. There is a recursive predicate R which secures every recursive

element, but not every element, of 2¥, For example take:
R{u) iff (3 x < 2h(u))[T(x,x,2h{a)) A U{th(u)) = '(u)X]°
Let W, = {x: dy T(e,x,v}} be the e-th r.e. subset of w.
5.2, Theorem For each e there is an F_ ¢ C, suéh thats~
(1) Fo Is comnputable from Wi
(ii) W, is computable from F and 9;

(1ii) there is a partial recursive functional ¢ such that

di{d) = Fe(a) for all recursive o;
(iv) there is a partial recursive y such that if {z}(%, Fe) = n,
then {¢(z)}(X) = n for any listJ% of numerical arguments;

{v) l—sc(Fe) consists of the recursive functions.

Proof. For any X € 2w, any n € w set

p_(x,m = O FvlTlemy) (Vx s y) aRE@G))],
1 otherwise,

with R as in 5.1, Felcan of course be coded by an object in Cye

Then (i) and (iii) are obvious; (iv) follows from (iii} by an
argument similar to our proof of 3.93, and (v) is an immediate con-
“sequence of (iv). ' And to prove (ii) observe that if n ¢ W, then
kX.Fe(X,n)(= G,r say) i1s constantly 1, while if n e Wo then
Gn(X) = 0 if X is not secured by R; using 9 we can compute the values
taken by Gn on 2¥ and so decide whether n « We or not.

5,3, Corollaries 1l. C2 contains irreducible objects. For suppose

F
e

countable. But then, by 4.2 and (iii}, w, is recursive, which is

n

a; by (v) o is recursive, and so, by 3.91, Fe is recursively

false for suitable e.

2, @ is not computable., For if it were W, would be computable frem
Fo by (ii) and so recursive by (v).

5.4, Remarks (1) Hinman (1973) first proved corollary 1 by a rather
elaborate 'spoiling’ construction. We see that this is not necessary.
But Hinman's argument is not wasted since it can be used to construct

an F which does not have the same countable degree as a function.

(2} Unlike the proof in the previous section one cannot immediately

relativise the argument given here to prove that ¢ is not computable
from any G ¢ Cye

FUNCTIONS OF HIGHER TYPE 419

{3} For each e, Fo is an extension to Cl of an effective operation;
that is why (v) holds, Harrington has shown that there are objects
F e Cy which are not extensions of effective operations, but which
do satisfy (v).

(4) If one modifies the definition of F, to:

v+l if T(e,n,v}a ¥x < v [T (e,x,y)r R(X(x))1,
0 otherwise,

Fe(x,n)

and chooses an e with We not recursive, then the functionals Gn have
the following properties: (a) one can compute a modulus of continuity
of Gn at X (viz. Gn(X)): {b) one cannot compute, uniformly in n, a
bound for the wvalue of Gn. This shows that one can hardly hope to
find a constructive proof of the classical theorem that if a function

is pointwise continuous on a compact set K then it is bounded on K.

5.5. Bergstra 1975 gives a significant ektension of Hyland's con-
structicn. Let Ra be defined by

R, (u) iff (Ix < gh(w))[T(a,x,th{u)) a (W), < thuw)l,

so that if Wa is not recursive then R secures every recursive o «¢ Cl

but not every o e C;. We define Bg 2 Cqp > {0,1} by

Bb(a)

_ 0 if JylT(b,a(0),y) A (¥Vx = y) =R (al(x))1,
: .

1 otherwise,

We state without proof the fundamental properties of Bg.
5.51 Theorem Let a,b be chosen so that 9 < W, = W : then
(i) Bg is computable from W,

(ii) Wb is computable from W, and Wg,

(iii) l-sc(BZ, 9) consists of the recursive functions,

5.52 Remarks (1} By (ii}, use of Bg allows one to jump from W, up
to Wb; interesting results are obtained by constructing functionals
which allow a sequence of such jumps; see Bergstra 1976

Bergstra & Wainer 1976 and Norman 1976.

(2) We conjecture that only the recursive functions are recursively
countable in B - this would give a significant strengthening of
{(iii) of the theorem, A disproof of the conjecture would show that
countable recursion at type 3 is more powerful than computaticn

using &, We now turn to an entirely different proof of this fact.

420 R.0. GANDY, J.M.E. HYLAND

§6. The functional T

Gandy spent some time trying to prove the conjecture: every
recursively countable object of type 3 can be computed from ¢. He
then discovered the object T which made the conjecture implausible.
Hvland proved that it is false.

6.1, Definitions (A) Let n,u ¢ seq, o, F be given. We define

n*y, u o ¢ <y and F*n, P u ¢ C, as follows,

il

{n*ao) (0) = n, (u™a) (1)
fn*o) (i+1) = afi),
{F*n) (8) = F(n*g},
(F™u) (B) = F(u™B) for all B.

uy if 1 < f2h(u),

a(i=-gh(u)) otherwise;

This F™u mirrors on C, the behaviour of F on V.
(B) T ¢ C3 is defined by
(1) T(F) = (F*0) (An. T{F*(n+l)).,

6.2, Theorem [is uniquely specified by the above equation, and
is recursively countable,

Proof., If T satisfieé {1) then

[}

(z2) T(FP™u)

and an associate o

(F~u*0) {An. T(F™u*{(n+l})) for all u. Given B
B for F we can compute an n such that P38 (n) is
constant and so ‘

(3) T(F™uw) = F(B) if B(n) ¢ u.

Since every path # is secured at some point B(n) where (3} applies,
equation (2) defines T (¥ u) at all peints of the well-founded tree
of non-past-secured seguence numbers u, Further if we set

y{u) = I'(P™ u) then y satisfies

v{u) = (F™u*0} (An, y{u*(n+l)),
so that v is recursive in any associate Upo Finally T(F} = v{(< »).
QED

6.3, Remarks (1) The computation of T'(F) from ap is an instance of
bar-recursion. The determination of I'(F) from ¥ differs from bar-
recursion in that there is a single equation (2) which applies at all
points v, rathexr than afdivision into cases according as to whether
u is secured or merely securable.

{2) Another way of seeing that I' is well~defined is to regard it as
defined by recursion with respect to Brouwer's inductive definition

of C2:

FUNCTIONS OF HIGHER TYPE 421

(i) (Ao k} = k
(ii) If F(O‘,) = G(Y,(O) ()\ne O:(n'i'l)) 7

then . T(F) =G (rn. T (G Y) .

o] n+l
(3) The functionals ¢ and I can be combined into one functional, A
say, defined by
A(F) = @ (F*0, An. A(F*¥(n+l))).

(4) For a given assoéiate Op of F there will be an n such that the
computation of I'(F) does not require knowledge of F{a) for any o
with «(0) > n. But, by suitably choosing s We can make n arbi-
trarily large. Thus we cannot determine in an associate-invariant
way a compact set K such that I'(F) depends only on the behavious of

F on K. So it is implausible that we could compute I' from ¢.

6.3. Before we prove that I' cannot be computed from ¢ we introduce

a device due to Bergstra by which computations from ¢ can be replaced
by computations using only arguments of type 2. For any F let Hp be
defined by: '

{<u,p>: th(u) < ¢ (F,y) A (Vi< ghu)) (v, < y(i))
AFW, oK) = {p}}.

Thus HF(y) codes, in effect, the behaviour of F on the compact set
K, = {8 Vi, B(i) < y(i)}.

6,32 Theorem (Bergstra}

(i} H._ is computable from F, 9.

hiy

(ii) F(y) and ®(F,y) are computable from HF(Y).

(iii) There is a partial recursive ¢ such that if {e}(F,®) =y,
then {¢(e)}(HF) = ¥,

(i} and (ii) are obvious from the definitions. The proof of (iii)
is by a fairly tedious induction on the computation and can be found
in.Bergstra 1975,

We alsc need to connect the filters associated with HF with

those associated with F. Put

"

L(u) = {v: 2h(v) = th(u) » (Vi < 2h(u))(v; s u D)},
L, = UiV, v eLwl,

For any finite set A of ordered pairs (u,p) let

AF=-HV,FW”9H:(Jue Dom A) (Vv ¢ L{u))}

where 9‘= an.0.

422 R.0. GANDY, J.M.E. HYLAND

6.33 Lemma

(i) HF is constant on Vu iff (Y v ¢ L(u))(F is constant on Vv).

(ii) If G = LuF and HF(Vu) = {p}, then HG(Vu) = {pl.
(1ii) F « VAF iff HF € VAu
(iv) If G ¢ VAF then HG € VA'

All these facts are immediate consequences of the definitions in=-

volved. We may note in passing that although for simplicity we used
F to define AF, in fact it can be defined (so as to satisfy (iii)

~and (iv}) recursively from A. Now we are ready to prove the main o E
result of this section. :

6.4. Theorem (Hyland) T' cannot be computed from 9,

Given any defined computation {e}(F, ¢) we shall construct G
sc that '

{e}(G, @) = {e}(F, @) but T(G) # I'(F). 1
We consider the computation {¢(e)}(HF) of 6,32(iii) and choose a }]
restricted associate o for HF which is fine enough to ensure that if
W, e §* then WAF contgins a G satisfying T(G) # I'(F).
Choose & to satisfy:
(i) if 6° = & then 6§ ¢ l=sc(Hy); o
(1i) V x 8(x) > o. . '

Let YE = An, T(FT & (m)*({n+l)), and let f. 1

F_ iy % Y F.
Bm = (8 {m)*0) Yo! then
(1) T(F §(m)) = F(p]) for each m,
Let Vi T Ei(m + &§(m)), and let o be a restricted associate for HF

which satisfies: -}. %
(a) o(§*(m)) =0 for all m, all 8% = §;

(b} a(u) = 0 if ajn,u‘, ucou'oa Vi € Li{u'). }, %

By 4.31 there is an A such that VA ¢ 6% and AH. {¢(e)}(H) is con-
stant on VA; then, by 6,33,
(2) if G ¢ V Fr then {e} (G, 9) = {e}(F, ®)}.

A

By (a) we can find M such that if §° > § then Vg

(M) does not inter-

sect the support of A; therefore
Fyo oo
(3) VE‘(m)” support (A") = @,

FUNCTIONS OF HIGHER TYPE 423

For m < M define

P
m

1

max{ (u) u ¢ Dom A}

m+1+6 (m)

= 3
and W= v _* (p +1).

Now by (b) if v ¢ Dom{AF) then v ¢ v+ Hence

(4) V; 0 Support (AF) =g,
m

Finally let G agree with F except as required by:
G(Vwm) ={p _, + 1} for 0 <m <M,
GV,) = {T(F) + 1},

0
Then, by (3) and (4), G satisfies the premise of (2).
Also T(GTEM)) =Py, + L

Hence yﬁ_l(n) = Yi_l(n) if n < §(M~1) - 1

= Py +l if n = §(M-1) - 1,
G
Therefore BM—l € VWM—l and, by (1),
rGTT 1)) =P, + L.

Repeating this argument for m a M-2,...,0 we find that Bg € Vw and
0]

hence that T (G) = TI'(F)+1.

This concludes the proof.

Remark. Hyland's original proof proceeded directly by an induction

on the computation of {¢(e}}(HF). In the context of this paper it

seemed more appropriate to appeal to Theorem 4,31,

§7 Effective Operations
In a thoroughgoing constructivist theory of mathematics all

objects considered will be, in some way, recursively presented, 1In
this section we investigate the lower levels of the type structure

R = {R :0 a type symbol} of recursive objects. We set R, = u,

Ry = {a: o is recursive}. For higher types we require an object to
be presented by a recursive associate which defines a value when-
ever the arguments are recursively presented. Following the pattern
of the argument in 3.1-3.3 we define ‘o ¢ Rn‘ and 'a is a guasi-~
associate for a' (abbreviated to 'a ¢ QA{a})' by induction on n as

follows,

424 R.0. GANDY, J.M.E, HYLAND

7.1 Definition

(i) If a ¢ Rl’ then o ¢ QA{a) iff o = a.
(ii) I£f a:Rn+l + w then o ¢ QA(a) iff:
(a) (¥Yb ¢ R (Y8 ¢ QA(b)) [R is recursive
> Am.a(B(m)) # 01;
(b} (Vb e R 1) (VB ¢ OA(D)) (¥ m)
[a(B(m)) # 0 > a(B(m)) = a(b)+1].
iff Ja.[a ¢ OA(a)a o is recursivel.

n+l)

(iii) a € Rn+2

7.2 Remarks (1) R, consists of just those partial recursive func-
tionals from Rl into w which are defined on Rl and which are con-
tinuocus on R1 considered as a subspace of Cl'

(2) 1If ¥ ¢ C, is recursively countable, then FI\Rl € R2'

(3) But the converse of (2) is false. For example, if P secures
every recursive but not every sequence and F = M. (um}P{a (m)) then

F e R bhut F cannot be extended to an élement of C2. Thus

2#
R, £ {F Ryt F e C,ly

and R is not a sub-structure of C.

(4) The significance of the clause 'R is recursive will be clarified

below (see 8.3(2)).

(5) R can also be defined as a category of limit spaces. We discuss

the definition for Rz(cf.3.5). Let

v, = {F: F is a continuous map from R) into
A ¥ ou,p.l(u,pled » F(V,) = {p}ll.

Let <A> be a numerical code for A, We say that the filter ﬁx gene-
rated by {VA: <A> ¢ X} is recursive just in case X is r.e. It is
easy to see that if ﬁx coriverges to G then G has a recursive asso-
clate iff ﬁX is recursive. Thus R, consists of those points of the
limit space R, + v which can be approximated to by recursive filters;
and for the filters on R, we take precisely these., This construc-

tion is readily extended to all types.

7.3 Theorem (Kleene) There is a partial recursive function ¢ such
that if & ¢ R, {e}(a) = z and & are quasi-associates (not necessarily

recursive ones) for 3, then
{¢(e) }(a) = z.

The proof of the theorem is similar to the proof of 3.91 and we

omit it, and the proofs of the following.

Corollary 1 There is a partial recursive function y such that 1f

ii
i
|
I

FUNCTIONS OF HIGHER TYPE 425

% o .

are indices for recursive quasi-associates for a, and if
>

{e}(a) = z, then

{W(e)}(%) =z,

Corollary 2 The l-section of any a ¢ R consists exactly of the re-

cursive functions.

Corollary 3 If F e R,y {e}(F}) = z and o is any quasi-associate for
F, then AG.{e}(G) is eventually constant on the filter

& = {VA: A is a finite subset of
{{u,p): alu) = p+lil.

7.4 Remarks (1) Corollary 1 shows that R is closed under computa-
tion.

{2) Corollary 2 shows that for objects in R 'quasi-associate’ and

"restricted associate! are interchangeable.

(3) It was natural for us, in defining R, to presuppose the exis-

tence of higher type objects and to think in terms of extensions.

Corollary 2 suggests that one can also think entirely in terms

of intentions (indices) and recursive functions. . We now indicate

how R can be approached in this way.

7.5 We first define a type structure Q = {Qn: n ¢ wly and a relation
‘e ¢ I _(a}' (to be read as 'e is an index for the object a « Qn‘)
as follows:
(1) Q, = w; I (k) = {k}.
(1i) In+l(a) = {e: a maps Q, into u
A7 Db e Qn)(V f e In(b)}[{e}(f) = {a(b)}1},
where {e} is the partial function w + w with index e of ORT.

(111) Q 44 = {a: In+l(a) # B},

Thus Q = Ry and Il(a) = {e:a = {e}l,
One can also define the indices for members of Qn without ref-

erence to higher type objects as follows:

7.6 Definition (i) E_ = w; (ii) j =k <—> J = k.
(ii) E vl = {e: E, = Dom({e}) A
(V£,£° ¢ E))LE = £' > {e}(f) = {el(F'}1.
(1ii) e =_,,e' <—> (VE ¢ B)I{e}(f) = {e' ()],

From the definitions one easily proves:
B, = U I (a): a e Qpl.

One can, of course, define the members Qn in terms of the eguiva-
¥

lence classes of the relation =5 (See, for example, Kreisel 1959).

L
[
!

426 R.O. GANDY, J.M,E. HYLAND

We shall call the members of @ (rather than their indices) effective
operations. Observe that if e «¢ En+l then {e} is total on Enn A
weaker definition, due to Myhill and Shepherdson 1955, is concerned
with hereditarily partial functions.

7.7 Theorem (Kreisel-Lacombe-Shoenfield)

For each n, Qn = Rnu

The difficult part of the procof (which we omit) is to show that
Qn & R Details (at least for the crucial case n = 2) may be found
in Kreisel, Lacombe and Shoenfield 1959, Gandy 1962 (a very succint
proof)}, or Rogers 1967. The proof is effective in the sense that it
provides a primitive recursive function ¢ such that if e ¢ In(a)
then ¢ (e) is an index for a recursive quasi-associate for a, For
-1 and the
nwl® The

necessary proofs are sketched in Kreisel 1959 and given in detail in

n > 2 one needs an effectively indexed dense basis for Rn
decidability of various facts about the filter bases in R

Tait 1963 and in Hyland‘®s thesis. Hyland also gives the definition
of RG and QU for arbitrary type symbols ¢ and proves RU = Qo’ He
observes that a direct procf of RO = QU seems to require that ¢ has
the form t + O,

The proof that Rov1l € Qi
using ceorollary 2 of 7.4. Finally it should be observed that the

follows readily from Qn ¢ R, by
proof of 7.4 is not constructive - it requires, unavoidably an appli-
cation of Markov's principle, TFor an exact description of the situ~

ation see Beeson 1975,

58 An effective operation which is not computable

In this section we construct a A ¢ Rq which is not computable.
Let S5 be a recursive predicate of segquence numbers which does
not secure every sequence, but which does secure every secuence which

is dominated by some recursive sequence. E.q.
S(u) <—> (43 X<Eh(u))[T(xaxfﬂh(u))A(u)x < fLhw)].

(1) If o < B e Ry, then (Fm)S(a(m)).
Consider the continuous map of Baire space into Cantor space
(binary sequences) given by:

of = 0...010...0100000010...010...

a{0) al(l) a (n)

This also defines a map of seq onto BiSeq:

w® = 0...010...01......10...0,
u ul u

e} Ir

- FUNCTIONS OF HIGHER TYPE 427

(where u = <uo,ul,...,ur>). For u e Seq we define

’ B
B, (m) = Ul%nﬂ for m < ghiu™),
= 1 for m = 2h(u"),
= O otherwise,

Thus 8, is an eventually zero binary sequence which ccdes u.
Let T(= {u: ¥ v ¢ u. = 8(v)}) be the tree of all non-past-

secured sequences., Now we define
AR) = Max{F(Bu): ue T

8.1 Lemma A e Ry,
Let o be any recursive guasi-associate for some F ¢ Ry We

must show that A(F) is defined and can be computed from o. Set
¢ (@) = (um) (e (B (m)# 0) = (1 + 2h(u"));

¢ (u) is the number of 0's (if any) needed at the end of B, to en-
sure that it is secured by a. Thus
(A) ¢ is computable,
(B) if p = ¢(u) and v 2 u*p, then
F(Bv) - F(Bu*¢(u))f
Now let 3 he recuréively defined by:

Py (r) = Max{¢(u): fh{u) = r AV i< r) {u,< pi{i))lt.

So ¢ 1is computable. Let X be the tree of sequence numbers bounded

by ¢; i.e.
"X o= {ur (Vi< Lh(u))(ui s p{inl.

Now by (1) every path through X is secured by S. Hence by Kdnig's
lemma X n T is a finité set which can be computed from o.

Finally we show
(*) if v ¢ T, then for some u e X n T, F(B,) = F(B,) -

Let v ¢ T=X, 'Then there is u < v, with gh(u) = r say, such that
u ¢ X and u*p ¢ v for some p > ¥(r). But ¢(r) = ¢{(u), and so by
(B),

F(By) = FUB 0 ()

Now v is not past-secured by S, so u is not secured by S and thus
us¢p (u) ¢ T. And evidently ux¢{u) e¢ X. This proves (*).
So
A(F) = Max{F(g): u ¢ X n T}

and thus is defined and computable from a. QED.

.

428 R.0. GANDY, J.M.E. HYLAND

8.2 Lemma A is not computable.
The argument is similar to those used in 4.4 and 6.4. Suppose
{e} (r) is defined, where F ¢ R,. Let vy be not secured by S and let

o, be a restricted associate for F which does not secure YB. By

F
Corollary 3 to Theorem 7.3 there is an A such that:

(i) 6 e v, » {e}(G) = {e}(F);

A
(ii) YB ¢ Support (V,).

Hence there is a v < y such that

VVB n Support (VA) = @.

Define G «¢ R2 by:

It

G(8) A(F)+L if B e V

BJ’
v
= F{B) otherwise.

Then, by (i), {e}(G) = {e}(F). But v ¢ T, and év eV B° So

A(G) > A(F). Thus & # AG.{e}(G). v QED.

Remarks. (1) This counter-example is due to Gandy; it was first pre-
sented at the Logic Summer School, Leicester 1965,

(2) The example emphasises the significance of the clause 'f is re-
cursive' in 7.1{iia). A is eventually constant on any recursive
filter converging to some F e R,, while AG.{e} (@) is eventually con-
stant on any filter (determined) by a restricted associate which
need not be recursive) converging ﬁo some F € Rzu

(3) Does the continuity condition of 7.3 Corollary 3 characterise
the computable functionals at type 3? More precisely suppose

Iz R2
condition: is I' computable?

+ u has a recursive associate and satisfies the continuity

§9 Partial Objects

Many of the objects and constructicns which occur in construc-
tive mathematics are required to be total; for example, both Bishop
and Brouwer treat a real number Jenerator as a function whose domain
is w. That is\bne of the reasons why we have so far only considered
functions which are total over the chosen domains. Another reason
is that if total objects are to he treated only as extensions, then
functions with partial arguments will appear as intentions,

However, one‘s understanding of the continucus functionals is
a certainly enriched by a knowledge of the partial ones; and, since

recursion naturally produces partial functions it is not surprising

FUNGTIONS OF MIGHER TYPE 429

that it is easier to produce a satisfactory recursion theory for

partial than for total objects of higher type. This was first rea-

e AT

lised and exploited by Platek; it is discussed by Feferman in his
paper in this volume. In this section we discuss the relation bhe=
tween the type structure C and the type structure ¢! of hereditarily
partial continucus functions which was first explicitly introduced
by Ershov (1972), [We say ‘explicitly' because c” consists of the
lower parts of the lattices defined by Scott (1970). Despite the
great elegance of the lattice?theoretio approach, we thinﬁﬁthat the

connections with C are made clearer if one rules out Scott’'s ‘over

defined' elements right from the start. The interested reader should
consult Scott (1976) and Hyland (1975)1. This section and the next
are intended not so much as an exposition but as a comment on the
work of Ershov and Feferman. (We have had the advantage - not re-
ciprocated -~ of reading Feferman's paper before writing this section).
First we describe Ershov's semi-lattice of ﬁartial continuous
functions for types 1 and 2. We differ slightly from the account

given in Feferman's paper in that we allow an undefined elements at

type 0. We maintain the conventions of 3.1 and use dotted letters .
(%, a, #, ', etc.) to range over éo, Cyv Chs Coe

9.0. éO =wu {£}; %X ¢ g <—> X = 1V X= V.

9.1 'él consists of all the partial functions.&: Co —> w. It is
partially ordered by the relation of extension:

& c B < ¥ Xy.d&® =y~ px)=y.

A formal neighbourhocod d is a finite (possibly empty) set of

the form {(ki,yi):ri < k}. We say it is consistent (and write
'd e FCNl }y if

yi=yj+(xi=vaj=.vai=xj) (1,3 < k)
It is irreduntant if ii < kj + 1 =1 (i,3 < ki.
Each d « FCNl determines a unique finite (or, in the termi-
nology of lattice theory, compact) element a by
d(x) = y; if ii c x for some i < k, is undefined otherwise.

Conversely each finite element determines a unique irredundant neigh-
bourhood.

Each d € FCN also determines a 'neighbourhood':

1
Ug = {a: d < a}.

The set of neighbourhoods {Uﬂ: d e FCNl} generates a T, topology

. 0
on Cl'

430 _ R.0. GANDY, J.M,E. HYLAND
9.2. C,
with respect to this topology. C2 is partially ordered by the re-
lation of extension. A formal consistent neighbourhood A is a fine-

ite set {d;,y;): d; « oM, o, 1< k} such that

consists of all partial ﬁ:él —> w which are continuocus

Yi =Yj lv

It is irredundant iff each &i is irredundant and if, further,

+ (di u dj) € FCN

4 = aj +i=3 (1,3 < k).

If A ¢ FCN2 then we set

A(&) =Y if ai c o for some i,
_ is undefined otherwise,
and UA = {F:A < F}. As before each A (or UA) determines a unique

irredundant neighbourhood. The neighbourhocods generate a TO topo-

logy on C2.

9.3. It will now be obvious how to extend these definitions to all
pure types (and, indeed, to arbitrary types). Further the following
facts are readily verified.

(1) An & « én+l is completely specified by its values on the finite
elements of én' '

(2) The predicates 'is a consistent formal neighbourhocod® and ‘is
an irredundant consistent formal neighbourhood' and the relation ¢

between finite elements are all decidable.

9.4. We now turn to the connection between ¢ and C. We start by
making some definitions and stating some simple propositions which
follow from them. Then we shall discuss their significance and the

significance of C itself.

9,5. We are primarily interested in those én € én which correspond
to (hereditarily} total objects: following Ershov (1974) we call
them everywhere defined (’EDA'), For a recursion theory we shall

" also be interested in partial functions of total objects, so we de-
fine C; to be the set of partial maps from Ch into w.

: &
We set EDO = w. We define a map tl:C1 + pl by

(1) tl(&)(x) = a(x).

Then we set EDl = t;l(Cl). Ohserve that ty is not one-to-~one. For
t;l(kx,k) has two members; namely the finite element Aﬁ,k, and the

function Ax.k {(which is undefined at Lt} which is extended by Aix.k.

We shall think of tzl(a) as an equivalence class, denoted by [ol,

for the equivalence relation:

FUNCTIONS OF HIGHER TYPE 431

o~ B <—>os &,é‘e ED; A tl(&) = tl(é)-

. *
We wish now to define a t,:C, > Gy which will satisfy

(2) t,(F) (t;(a)) = F(4) for all & e ED,.
We accomplish this by the definition: ’
(3) to(F) (@) =y if Va e [al.F(a) =y,

is undefined otherwise.
Then we define ED, = t;l(cz), or, equivalently
(4) | ED, = {F: Y & e ED|.F(a)+].

As before we think of ED2 as being partitional }nto equivalence
classes [F] = t;l(F). Roughly speaking, different members of [F]
correspond to different associates of F; the consideration of 3.24
show that [F] has the cardinality of the continuum, has no minimal
elements (w.r.t. <) kut does have a greatest element (corresponding
to the principal associate for F}. In fact, ([F],) is a complete
lattice without least element, If we define
(5) m, (F) = SuplF]J,
then m, is the embedding of C, in C, mentioned by Feferman; it is a
right inverse of tye

The extension of these definitions to higher pure types is

immediate:

(6) £ q¢ én+l > C;+1 is defined by t n+1 (@ n+l)(b) = (uy) (¥ B elb 1)
(3,1 (b)) = ¥);

(7) EDn+l = t;il(cn+l) n+l V b € EDn‘én+l(£n)+};

(8) fa 41 = tn+l[an+l]; (9) mn(an) = supla_].

9.6, Hyland in .{1975) stresses, in effect, that to get a true view
of the relation between C and C one must fix one's attention on the
map t and the equivalence classes of its inverse, rather than on
the embedding m., Ershov (1374) provides a number of examples which
emphasise the naturalness of t and the artificiality of m, We
state here some of the relevant facts, d

(1} The topology of, say, C2 makes C, a limit space:; with each F
is associated With.the filter {X: 3 A < F. U, £ X} generated by the
neighbourhoods of F. If we apply t, then the filter associated with
each ¥ ¢ [F] is taken to a filter; the set of all these filters for
a given F ¢ C2 is precisely the limitwspace structure described in

-3,5. This structure is thus the finest which makes t2 continuous.,

432 R.0. GANDY, J.M.E. HYLAND

(2) To make t, continuous in the topological sense we may define a
t0pology T on C, by taking as the open sets those X ¢ C, such that

(X) is open in C2 This is the 'induced topclogy'! mentioned in
3.6.
(3) Neither m,, nor any other embedding of C, in éz is continuous
in the sense of limit spaces. Even my is not continuous since it
takes Ax.k into the isolated point ix.k of Cj.
(4) Ershov shows (1974 Example 3) that m does not preserve composi-
tion, nor (for appropriate, not pure, types) application. For ex-
ample

My (e (%.0) (Fa)) # Ademy (Ax.0) (myF) (a)) -

9.7, In 53 and in this section we have given a number of reasons
for adopting C as the correct definition of ‘hereditarily total con-
tinuous object of finite type'. We are now in a position to argue
that the correctneés of the definition follows from the following
two premises.

(A). Hereditarily total objects are extensions.

(B) They can be approximated by finitely presented hereditarily

partial objects.

(B) means that the degree of approximation wiil be judged by the
topology of C. As we have seen already at type 1 and certainly at
type 2 there will be many different processes of approximation to a
given object, F say; the course of such a process of approximation
is described by an object (f') of éz, Since there are many of these,
they must be thought of as different intensions corresponding to
the single extension F. ©Since we are positing extensions, the pas-
sage from an intension to an extension is a fundamental and naturai
one, while the choice of a particular intension to correspond to a
given extension must be, at least to some extent, artificial., Fur-
ther, if we have some continuous operation on extensions, then we
must be able to approximate to its value at a given extension F by
using any of the processes Wthh approximate to F. And this is all
we require of a continuous operation, Thus the map t: C »~ C is the
'fundamental one, and the structure for defining continuity on C
must be the finest which makes t continuous. But, as indicated in
9,6, these facts completely determine C and its limit-space or to-
pological structure. ‘

An argument is never so good as when it is against something.
The first thought of several investigators in this field has beén

to topoloéise Cy > w bv taking as a basis the sets

FUNCTIONS OF HIGHER TYPE 433

v, = {t,(F): A = Fl = £,(0,), (A ¢ FON,) ..
We therefore call it the naive topology. ([See, for example, the
definitions at the bottom of pages 223 and 228 of Ershov (1972).
This led him to claim (page 241), erroneously, that the class thus
obtained coincided with the Kleene-Xreisel continuous functions. In
(1974) he corrects - without acknowledging - his error]. The naive
topology is easy to handle, and makes m continucus., We have already
seen in 3.6 that it is incompatible with the ideas which motivated
Kleene's work, Our argument shows exactly what is wrong with it -
the topology is not extensional. One may be able to recognise from
a particular definition of F that it is constantly zerc (and so be-
longs to V(Q,O))’ but this recognition is not extensional and does
not apply to total objects. And, finally, if one is not interested
in total objects as extensions then there is no reascn to construct

C at all - everything can be done inside C.

9.8. We close this section with two remarks

(1) The effective operations are adequately represented in C. One
can mimic the definitions of 9.5 so as to get a subset REDn (recur-
sively everywhere defined) of Ch and a many-~one map ¥ from RED |

onto R_.
n

(2) One might suppose (indeed both Kreisel in (1958) and Hyland in
(1975) do seem to suppose) that a formal consistent neighbourhood
such as A would appear as one of many possible intensions for the

set V. of total functions. But this is so only trivially. For, at

Iy
any tvpe, we have:
if VA = VB then A = B and UA = UB

so that a given V C, determines a unique irredundant A’ ¢ FCN

A
with VA' = VA.

The proof is an immediate consequence of the conditions given
in the literature (Tait (1963), Hyland {(1975)) for deciding whether
VA = VB' Tt is also stated, in effect but without comment, by
Ershov (1974) Remark 3, page 218).

-

In

§10. Recursion on é and C
' In this section we discuss the work described by Feferman in
his paper in our own terms,

Because every function én+l is determined by its values on the
finite elements of Cn’ there can be no doubt about which elements

are to be regarded as recursive,

434 R.0. GANDY, J.M,E. HYLAND

10.1. Definition A member é of én+l is partial recursive
(* ¢« PRO') iff there is a partial recursive function ¢:w —=> w such
that

A e FON_ A() = ¢(<h>),

where <A> is the numerical code for A.

Because 'A ¢ FCNn' and 'A < B' are decidable there are a number
of different natural definitions, all of which are equivalent to the
above.

Tt should be observed that the usual Post-Smullyan type induc-
tive definitions for the graphs of partial recursive functions do not
provide a monotonic inductive definition of PRC; for they proceed via
auxillary relations (e.g. {(e,x,y): T(e,x,v)}). Hence the interest
of definitions by schemata as discussed by Feferman.

The obvious way to set up a definition of ‘partial recursive'

in C is to use the maps t of 9.5(6).

10.2. Definition We say that a partial function a:C, —> w is

N . . a N B a o
partial recursive a?d write 'a e PRCn+l iff there is an a « PRCn+1
such that a = t (a).

n+l
"It is easy to see that this definition coincides with the defi-~

nition given by Feferman (his section 7) and, when a is total, with
Kleene's definition of recursively countable (cf£. 3.8). It is also
equivalent to an extension of our notion of associate-invariant re-

cursion. ¥or a ¢ PRCn+l iff there is an index e such that
a(bn) =y iff Y B.[B is an associate for b ~» {e}(BR) = vyI.

All the stated equivalences follow readily from the fact that there
is a natural map from the associates of b onto the equivalence class
(b1 = t " (b). '

10.3, Because of the universal quantifier over ED_, the definition
of PRCn+l is very strong, TFor example, there is a partial recursive
b: Coxw ——> w such that, for any F, e RC,, {x: A(F,x)+} is a com~
plete H% predicate, Unlike . PR® or RC, PRC is thus not closed under
substitution for higher type arguments. In this it resembles the
computable functionals and the example used in Kleene 1963 also ap-
plies to PRC. Let

(1) &m(x)

1

(uz) (z=0 A= 3 y < xT(m,m,y)).

Let A(F,m) = F(a). Then A ¢ PRCy, since A = £, (AFAMLF (S)) . But
the domain of Am.A{F,m} is {m: ¥ y.-T(m,m,y)} and so, for any given
F e RC,, Mm.A(F,m) ¢ PRC;.

FUNCTIONS OF HIGHER TYPE 435

10,4, Feferman states that PRCq is not closed under S.8. We shall
disprove this statement, but will first point out why the matter is
problematic,

Let &3 C_xC, “—> w belong to PRC and let & = t,(8) (with the
obvious modification required by the presence of the numerical ar-
gument) . |

Let I' = AF.F(Ax.2(x,5)),

and T = AF.F(Ax.%(x,F)).

Suppose that Ax.?(x,F) is not total; it could nevertheless be the
case that '
lx.é(x,f) ¢ Dom F for all F e [F]

(although we have not constructed an example for this). And then
I'({F)+ but t3(f)(F)+, so that T # tB(f). But cone cannot conclude
from this that I' { PRC.

10.5. Theorem PRC3 is closed under S5.8.
W shall show that there is V¥ « PRC; such that

(1) VF e [FI.U(F) = 1 iff Ax.2(x,F) is total.
Then Ir = t3(ﬁ), where

AF) = $(F). FOxX.2(x,F))
and this estahlishes the theorem.

Let 6m be defined by: 6m(x) = 0 if x < m, undefined otherwise.
We will construct ¥ e PR('J3 such that, for any F e ED,

(2} @(ﬁ) = 1 <—> Y x[ﬁ(éx)+ v é(x,§)+] (wher? 'V'.is’t?e strong
16r'). Evidently if Ax.d(x,F) is total then VY F e [F].¥(F) = l.
Conversely suppose that é(x,ﬁ)+ for some F e [F] and least possible
x. If F(O)4 then @(%)+. 1£ #(0,)¢, let F' be defined by

P(q) ~ F(a) if 3 Ko a(x) # Q,
or if o o +1,
is undefined otherwise,
Evidently P < ﬁ, so‘é(x,ﬁ’)+; ?lso ﬁ'(éx)+.
Thus, by (2), ¥(F')+, and F' ¢ [F]l. We have shown that (1)
follows from (2). '

To show that there is a partial recursive @ satisfying (2), set
¥ (&) = 14 Y[R,)¥ A A0t AV x <y 0,

undef ined otherwise.
Since A(d)¢ is decidable for any A, d T (A) is a partial recursive
function of <A>; and since if W (A) =1 and A < B then W (B) = 1, we

[N

R

436 R.0. GANDY, J.M.E., HYLAND

see that @l € PRé3. And if %l(i) = l‘and A < F then F satisfies
the RHS of (2). Finally if F e ED2 an? satisfies the RHS of (2}
let v be the least number suc? th?t F(Oy+l)+o ?hen for each x £ ¥y
there must be a B, such that 2(x,B)+ and éx < F. Pick one such By

for each x £ v and take
A = {(Oy+l,F(Oy+l))}u L){BX: X £ vle

Then qu(fa) =1, so qfl(ﬁ) =1,

Thus ¥. satisfies (2) and the theorem is proved.

1
Corollary PRC3 is c¢losed under S1-89. {(Closure under the other

schemes is easily verified).

10.6. Throughout this paper we have emphasised our interest in
total objects. It therefore seems appropriate to end with a ques-

tion that differs from that asked by Feferman.

Question Does there exist a natural monotonic inductive process
which generates RC ({(instead of PRC)?

Such a process would be interesting for at least two reasons.
Firstly it should enable one to prove things about RC without de-
tours through PRC or PR&. Secondly one would expect to get a
method of generating the continuous functionals by relativising the
process to arbitrary functions. The problematic type is 3. The
answer to the question at type 1 is, roughly, negative. The answer
at type 2 {(where one can use RCl) is positive.and given by
Brouwer's definition of the constructive functionals. The rather
strong properties of PRC exhibited in this section suggest that it

may be easier to answer our question than Feferman's,

References: _

M.J. Beeson 1975, The underivability in intuitionistic formal sys-
tens of theorems on the continuity of effective operations,
J.8.L. 40 321-346, '

J.A. Bergstra 1976, Computability and confinuity in finite types,
Dissertation, Utrecht.

J.A. Bergstra and S.8. Wainexr 1976, The "real" ordinal cf the 1-
section of a continuous functional, paper presented at the
Oxford Logic Ceolloguium,

Yu.L. Ershov 1972, Computable functionals of finite type, Algebra
and Logic 11 203-242 (367-437 in Russian). '

Yu.L, Ersho# 1974, Maximal and everywhere defined functionals.
Algebra and Logic 13 210-225 (374-397 in Russian).

FUNCTIONS OF HIGHER TYPE 437

R.0. Gandy 1962, Effective operations and recursive functionals
(abstract), J.S.L. 27 378-379.

R.0. Gandy 1967, Computable functionals of finite type I, in: Sets,
Models and Recursion Theory, North-Holland, Amsterdam 1967.

P.G. Hinman 1973, Degrees of continuous functionals, J.S5.L. 38
393-395,

J.M.E. Hyland 1975, Recursion theory on the countable functionals,
D.Phil. Thesis, Oxford

J.M.,BE. Hyland 1977, Filter spaces and contlnuous functionals, to
appear.

S.C. Kleene 195%a, Recursive functionals and quantifiers of finite
types I, T.A.M.S. 91 1-52.

S.C. Kleene 1959b, Countable functionals, in: Consfructivity in
Mathematics, North-Holland, Amsterdam 1959.

5.C. Kleene 1962a, Turing machine computable functionals of finite
types 1, in: Logic, Methodology and Philosophy of Science,
Stanford Univ. Press, Stanford 1962,

S.C. Kleene 13962b, Lambda'definable functionals of finite types,
Fund. Math. 50 281-303.

5.C. Kleene 1962c, Herbrand-Godel style recursive functionals of
finite types, Proc. Symp. Pure Math. veol.V 49-75,

S.C. Kleene 1963, Recursive functionals and quantifiers of finite
types II, T.A.M.S. 108 106-142. .

G. Kreisel 1959, Interpretation of Analysis by means of functionals
of finite type, in: Constructivity in Mathematics, North=-
Holland, Amsterdam 1959.

G. Kreisel, D. Lacombe and J.R. Shoenfield 1959, Partial recursive
functionals and, effective operations, in: Constructivity in
Mathematics, North-Holland, Amsterdam\1959,

J. Myhill and J.C. Shepherdson 1955, Effective operations on partial
recursive functions, %Ziet. Math. Log. Grund. Math. 1 310-317.

D. Norman 1976, On a problem of 5. Wainer, Oslo preprint.

E, Rogers Jr. 1967, Theory of Recursive Functions and Effective
Computability, McGraw-Hill, Wew York 1967.

B. Scarpellini 1971, A model for bar recursion of higher types,
Comp. Math., 23 123-153.

D. Scott 1970, Outline of a mathematical theory of computation,
Proc. 4th Annfial Princeton Conference on Information Science
and Systems, 169-176.

D. Scott 1976, Data types as lattices, SIAM Journal on Computing 5
522=587.,

438 R.0. GANDY, J.M.E. HYLAND

W.W. Tait 1963, A second order theory of functionals of higher type,
Stanford Seminar con the foundations of Analysis,

