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0. Introduction and preliminaries 

The aim of this paper is to provide a mathematically civilized introduction to 
the continuous functionals. The continuous functionals are a finite type structure 
over the natural members and were first discussed in the papers of Kreisel [173 
and of Klccne [lS] (whcrc they were called countable functionals). These original 
treatments were very concrete and well-suited to immediate applications (see 
Kreisel [ 17, 1 Xl). But the far more abstract approach of the present paper is not 
simply of interest in its own right. It admits of useful applications in topos theory 
(for which see Hyland [ 121) and provides the conceptual background for much 
recent work in recursion theory (Norman [22], Wainer [29]). 

The first five sections provide the basic theory of the continuous functionals, 
This covers properties of the bases (finite bits of information) and concludes with 
a discussion of closure properties of the continuous functionals. 

The remainder of the paper proper deals with two other approaches to the 
continuous functionals. The first is the original one of Kleene’s via associates. This 
concrete equivalent of our abstract approach is useful because associates at type 2 
are very easy to visualize. We use them to provide information about the induced 
topology introduced in Section 2. The second approach we consider is via 
sequence convergence. It first appeared as a model for Bar Recursion in Scarpel- 
lini [24]. We make use of sequence convergence to provide information about 
topologies on the spaces of continuous functionals. In particular it emerges that in 
order to reflect the continuity of maps successfully, one must resort to topologies 
which are not 1st countable. This shows the need for something like our approach 
via filter spaces in order to express the constructive kind of recursion theory we 
discuss in Appendix A. 

Fundamental results for the study of recursion theory on the continuous 
functionals are organized in three appendices. Appendix A considers recursion on 
filter spaces from a general point of view and gives a formulation of (what I 
believe is) the fundamental notion of “recursive in” for coded filter spaces. 
Appendix El shows what simpler formulations of the recursion theory can be made 
for the special case of the continuous functionals, (A degree structure on the 



contindous functionals arises out of our definition of “recursive in”. WC do not 

discuss its properties here, but note that it differs from the degree structure arising 

from the notion of computable by SI-S9 (far -vhich see Gandy. Hyland [lO]).J 

Appendix C proves the recursive density theorem; this involves an effectivization 

of material from Section 1. 

Two approaches arc not wvcrd by this paper: Kreisel’s original formulation 

and its mathematically civilized version using equivalence classes in lattices. These 

have been studied in some detail by Ershov (see in particular Ershov [.S]). The 

cquivaience of the lattice theoretic approach to that of the present paper will be 

discussed in full generality in a further paper which I am preparing. The main 

abstract result is quoted in Hyland [12]. 

The main non-logical prerequisite for an understanding of this paper is an 

appreciation of basic category theory. The reader should know what adjoint 

functors are and what a cartesian closed category (often hereafter, c.c.c.) is. A 

good i-eference is MacLane [21]. In addition the following concept plays a 

fundamental role in many definitions. Assume that in a c.c.c., we have a definite 

choice of terminal objects. products and function spaces (that is, the catceory 

comes equipped with the appropriate ad joint functors). A sub-C.C.C. of a given 

C.C.C. is then just a full subcategory containing the terminal object and closed 

under the raking of products and function spaces. A sub-C.C.C. of a C.C.C. is 

automatically Cartesian closed itself. Of particular importance is the sub-c.c.c. 

~eneruretl bv an object of a c.c.c.: namely the least sub-c.c.c. of the C.C.C. 

containing the object. This has a description of a kind familiar to logicians, We 

define type syrnhnls as follows: 

ci) 0 is a type symbol: 

.ii) if u and T are type symbols, so are (u XT) and (U-T). 

L,r*t A be an object in a c.c.c.; we define objects A,, for each type symbol in 

inrluctively: 

(i) A,, is A; 

(ii) A,,,, is A,, x A,. the product of A,, and A,; 

<iii) A,,_,, is [A,,, A,], the function space from A,, to A,. 

Then the sub-c.c.c. generated by A is the full sub-category with objects the A,,‘s 

together with the terminal object, 

The structure of a C.C.C. induces various isomorphisms between the objects of 

the sub-C.C.C. generated by A. In particular it is easy to see that for any u there is 

a T SLI :h that A,, is isomorphic to A, and such that ‘c is the product of type 

symbo!s of the form (p+O) or 0. But we only need to cor34der such special types 

al one point in this paper (the i roof of Theorem 3 of Appendix B). 

The significance of the notion of a C.C.C. is that it is the categorical formulation 

of “closure under explicit definit :OR and A -abstraction”. Generally one value of a 

categorical formulation is that it makes explicit the importance of closure condi- 

tions on the maps one is interested in. Another value it has in this paper, is that it 

makes sense of tI e choice of definitions needed in proofs, in particular in Section 



4; the strategy of Section 4 involves exploiting a pair of adjoint functors and this 
is wh?t motivates the definitions. 

This paper concentrates on the continuous functionals and the corresponding 
C.C.C. FIL of filter spaces. However other finite type structures (most notably the 
eflective operations) may be obtained by considering other c.c.c.‘s involving filter 
spaces (but restricting the maps). The form of these generalizations is sketched in 
the discussion at the end of Section I ; the material of the paper (apart from that 
on sequence convergence) applies equally well to the generalizations. 

Some of the material in this paper appeared in my thesis (Hyland [I I]). but its 
formulation is radically different. 

1. Filter spzlces 

A jilrcr (0 on a set X is a non-empty collection of non-empty subs& of X, 
satisfying, 

ii) if X I> A 2 B and BE CD_ then A E 4, and 
(ii) if A E @ and B E @, then A n B E @. 
A filler bcrse Cp on a set X is a non-empty collection of non-empty subsets of X. 

such that if A E @ and B E Cp, then for some Cc A n B, CE @. tn particular if a 
non-empty collection of non-empty subsets of X is closed under finite intersec- 
tion, it is a filter base. The filter bases with which we deal will usually be of this 
simple sort. 

A filter base @ on X, generates a unique filter, \vhich we write [@I. on X, 
defined by 

[@]={AcX(forsome BE@,BGA]. 

A filrer space (X, F) is a set X ,together with filter srrucrure, which is an 
operation F which associates to each point x E X, a collection F(x) of filters on X, 
such that, 

(i) if @ 2 W and Wf F(X), then 4’~ F(x), and 
(ii) the principal ultrafilter [{x}] at x is in I;(x). 
The idea behind the definition of a filter space is that the CD in F(x) converge to 

x; that is, they are ways of approaching, or approximating to x. In terms of this 
idea, conditions (i) and (ii) have very natural interpretations. Tt has been custom- 
ary to put additional conditions on a notion of filter convergence: in particular 
those for a limit space (Binz and Keller [I]) and those for a convergence space 
(Choquet 121). But we will not need to consider these conditions, though the 
spaces which we consider will all satisfy them. 

For a given filter space (X, F) we write “@J, x” (read “@ converges to x”) for 
“[@]E F(x)“, where @J is a filter base on X. Much of the theory of filter 
convergence can be written most elegantly in terms of filter bases. Rut it is more 
usual not to give the definition in these terms, and we have adhered to this 
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practice to avoid confusion with the “canonical filter bases*’ which we shall 

introduce later. 
A map f : (X, F)-+(Y, G) from one filter space to another (i.e. a map between 

the underlying sets) is co~~#in~o~s iff whenever @ix in X, then fl@)Jf(x) in Y. 

(f(@} naturally consists of those subsets of Y which are images under f of 
elements of @). This definition is equivalent to the more usual one that whenever 
Q, E F(x), Ilf(@)] E G(f(x)j. The collection of filter spaces with the continuous maps 

as morphisms. forms the category FIL of filter spaces. 
There is a natural injection of the category TOP of topological spaces into FIL. 

To each point of a topological space we can associate the collection of ail filters 
which include the neighbourhuod filter at the point: this gives rise to a corres- 
ponding filter space (in fact, a convergence space). A map between topological 

spaces is continuous iff the map between the corresponding filter spaces is 

continuous (in the sense defined above). Thus the image of TOP under the 

injection (i.e. faithful functor, which is (l-1) on objects) is a full subcategory of 
FPL. We consider the left adjoint to this injection in Section 2. 

Given filter spaces (X, Ff and (Y, G). there is a natural filter structure (Fx G) 
on (XX Y); we define it by stipulating that 0 $(x, y) in X x Y ifi p(O)J x in X and 

q(SJJy in Y, where p and q a-e the projections from (XX Y) to X and Y 

respecti\ Jy; this notion of filter base convergence determines the operation 

(Fx G). Clearly (Fx G) is a filter structure and is the coarsest such that the 
projections are continuous. Thus it gives rise to a product (the cavtor~ical product), 

in the category FIL. 

We let [X, Y] denote the set of continuous maps from (X, F) to (Y, G). (Note 

that the dependence on F and G is overlooked by our notation; this should cause 

no confusion.) We define a filter structure [F, G] on [X, Y] by stipulating that 
@Jf in [X, Y] iff whenever @Lx in X, O(@).J.f(x) in Y. (Here O(@) consists of 

all W(U) with W t 6 and U E @; W(U) is the union of ail images of U under 

elements of W.) Again the notion of filter base convergence determines the 

operation [F. C;], which is a filter structure. We call ([X, k’), [F, G]) the canor~ical 

fltnction qx~ce (from (X F) to (Y, G 1) in the category FIL. This terminology is 

juslificd by the following proposition. 

Proposition Lt. FII. is cclrrssiart closed; and the right adjoinf to rhe product is 
provided by the canonical function qacr. 

Proof. The proof is trivial, and is in effect in Binz and Keller [1] (for the car;e of 
limit spaces). So we restrict ourselves to observing that there is just one place in 

the proof where we use a condition on the filter structure. We use condition ii) in 

the definition of filter space, to show that the evaluation map (the co-unit of the 

adjunction between product and function space) is continuous. 

Remnrk. (1) The categories of timit spaces and of convergence spaces are full 

sub-c.c.c.‘s of FEL. 
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(2) If we drop condition (ii) in the definition of filter space, we get an even 

larger Cartesian closed category. But we have no USC for it here; we need the fact 
that constant maps (i.e. maps ayhbse range is a singleton) are continuous for which 
we need (ii). 

(3) Of course FIL is much more than Cartesian closed. It is a closed span 
category (cf. Day [4]) and even a quasi-topos (cf. Wyler [30]). But this further 
structure is not much use to us. 

We recall from Section 0, the notion of the sub-c.c.c. generated by an object OF 
a Cartesian closed category. The category of rhe continuous funcrionals Ce, is the 
sub-c,c.c. of the C.C.C. FIL generated by the space of natural numbers (with the 
filter structure corresponding to the usual discrete topology). For each type 
symbol cr, we have an object C, of %, where C,, is the natural numbers as above, 
C,,,., is the product C,, x C,, and C,,, is the function space EC,,, C,]. Cc, is the 
space of currtinunus junction& of type o, and the elements of the Ccr’s are the 
continuous functiortals. (We abuse notation by letting C, denote both the object 
of c4: and the corresponding underlying set.) The objects of %? consist of the C,,‘s 
together with the terminal object of FIL (the one point space); the presence of the 
latter is of no great significance. 

Remark. Since %’ is a c.c.c., there are many isomorphisms among the C,,‘s; and 
since C,, is isomorphic with Cr,Xo, there are some additional isomorphisms. As far 
as I know. no complete characterization of the isomorphisms amongst the Q’s is 
known (see Hyland [ 131 and Norman [22]). 

Discussion of other type sfructures 

From any C.C.C. with natural number object, we can obtain a type structure 
(collection of spaces of finite type) over the natural numbers. The category of all 
sets and mappings gives rise to the maximal type structure. The continuous 
functionals can be obtained from a variety of Cartesian closed coreflective sub- 
categories of TOP (see Sections 8 and 9). 

Further examples can be obtained as follows. Take as objects the coded filter 
spaces but as naps only those recursive in some restricted collection of functions 
(see Appendix A for definitions). We always obtain a c.c.c.. and thence a type 
structure over the natural numbers. In the case that we only consider recursive 
maps, we obtain the effective operations (see the discussion in Gandy, Hytand 
[lo].) Apart from the material on sequence convergence, the results of this paper 
go through readily for this family of generalizations of the continuous functionals: 
we refer to them as the Kreisel generalizations of the continuous functionaIs. 
Further important generalizations along these lines are involved in Wainer’s work 
on the l-sections of non-normal type 2 objects (Wainer [29]), but we do not try to 
describe them here. 

It is worth remarking that though the above generalizations were first consi- 
dcrcd in Kreisel [ 173, what he in fact considers is too general. !1ne can’t allow the 



complexity considered to vary between the levels and still have a C.C.C. (closure 

under explicit definition and h-abstraction). After all, suitable type-changing 

maps are elementary. 

There are of course many other important Cartesian closed type structures over 

the natural numbers (Giidel’s primitive recursive functional% Kreisel’s intensional 

continuous function&). but no attempt is made here to give a general theory for 

them. 

2. The induced tapuhgy 

Let (X, F) he a filter space. A subset 0 of X is open (with respect to F) ifl: 

whenever x E 0 and ~0 E F(s). then 0 E @. It is easy to see that the collection of 

open sets is a lopology on X. the topokqy imfuced hy f? When there is n:r chance 

of confusion, we simply say ‘*the ind~cced tap&gy”, and “0 is q~cn irk (A’, 1-I”. 

Ta.king the induced topology gives rise to an obvious functor T: FII..+TQP. 

Let F:TOP-+FIL denote the injection described in Section 1. Then the following 

proposition belongs to folklore. 

Proposition 2.1. T is I+ ud$i~r to F. 

Proof. The proof is triviai. 

Rernclrk. Since F is a full injection, we may identify TOP with its image in FIL. 

l’hen Proposition 2.1 says that ‘i’0P is a refilecti\3c subcategory of FIL. WC can 

express this most suggestively by saying that a map from a filter space to a 

topological space is continuo:;cc iff it is continuous with respect to the induced 

topology. WC use this simple idea to considerabie effect in Section 4. 

The identity map is continuous from a filter space to its induced topological 

space. So there are more filters and hence lcsi; structure in the induced topology. 

Thus knowing the induced topology on tX, F) and ( Y, G) tells us rather little 

about the induced topology on the product fX x Y. Fx G) or function space 

(LX. I’], [F, Cl). But what little can he said is sufficient for our purposes. 

Proof. The proof of the proposition is trivial. For the corollary we argue as 



follows. The evaluation map, ev: [X, Y] x X-9 Y is continuous (by Proposition 

1.1). Since constant maps are continuous (cf. Remark (2) followirlg Proposition 

1. I), evaluation at x, ev ( - , x) : [X, Y] --3 Y; f --3 f(x), is continuous with respect 

to the filter structures, and hence with respect to the induced topologies. 

if 1 f~ [X9 I’] and f(x) E 3) is the inverse image of an open set under a continuous 

map and is therefore itself open. 

Proposition 22 and Corollary 2.3 give us some information about separation 

conditions on the induced topology. 

Prmf. Take f. R distinct elements of TX. Y1. There is x E X such thai f(x) and 

(c(x) arc distinct clcmcnts of Y. tct 0, and 0, be open sets in \1’ separating f(x) 

and g(s). Then (II 1 h E [X. Yj and II(x.)E 0,) separate f’ and g, for i = I, 2 and arc 

open by Corollary 2.3. 

Proof. Closure under product by Proposition 2.2(a). and under funcrion space by 

Proposition 2.4. 

In particular. the qaces of continuous functionals defined in Section I, all have 

l-iausdorfl induced topologies. 

The rext of this section if; designed to give the reader a more complete picture 

of Ihe induced topology on function spaces. We do not use the results in the rest 

of ihe paper (though WC do use the notation introduccdj. However the results are 

interesting in themselves. and are connected with important questions about the 

intrinsic recursion theory on the continuous functionais (see Appendix B). 

We first considf:r the definition of compactness for filter spaces. Let 2’ be a set 

o: subsets of X, and I‘ a collection of filters on X: we s:ry that tiy covers r iff for 

every cfi E I’ thcrc is A E 2 with A f @. (Of course. we also have the usual notion 

of a collection of sets covering another.) 

Proof. Suppose (a), and let I’ be the collection of ultrafilters. If E covers K 

consider the finite intersections of the complements of elements of E. The 

collection of these cannot form a filter base, as if it did, it would be inciuded in 

some ultrafbltcr &; since :2’ covers 1: there would be A E 2’ with A E @,; but by 
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stipulation (X - A) E Qr, a contrac4 L ion. Hence there is some finite intersection of 
the complements of elements of :r ’ \,(hich is empty: that is some finite ‘??J c Z? with 
$9 covering X. Thus the collecticr -’ of all ultrafilters satisfies (b). Conversely, 

suppose (b) holds. suppose that g 5 an ultrafilter which fails to converge. No 

element of r can be included in @, r: that {X- C 1 E @l covers r. But by (b), this 
means that some finite intersectioc oi’ elements of CD is empty, a contradiction. 
Thus every ultrafilter must convergr. 2nd (a) holds. 

We say that a filter space which satisiies the equivalent conditions of Proposi- 
lion 2.6 is compact. 

Remarks. (I) The definition coincides for topological spaces with the usual one. 
(2) The conditions of Proposition 2.6 are also equivalent to a strengthened 

form of (b) where one demands that the finite 5 covers r as well as X. 
(3) A compact convergence space whose induced topology is Hausdorff is 

necessarily topological. (A convergence space is a filter space where @J x iff for 
all ultrafilters q with ‘I’? @, @J x.) This remark has relevance for the countable 
functionals (cf. Remark (1) following Proposition 1.1); all the compact subspaces 
(‘in the sense to be defined) of the spaces of countable functionals. are topological. 
(In fact, they look like the closed subspaces of Cantor space.) 

If A is a subset of a filter space (X, F). there is a natural filter structure F,, on 
A. For x-EA,@EF,(x) iff for some *EF(x), 4={UflA / UE!P] (i.e. @ is the 
~YUCO of p on A). (Note that one pays no attention to those *E F(x) whose trace 
on A is not a filter.) (A, FA) is the subspace of (X, F) determined by A. 

suppose A is a subset of a filter space (X, F). A is compact (in (X, F)) ifI the 
subspace (A, F,) is a compact filter space. We now show that “compact-open” 
sets are always open in the induced topology. 

First we introduce a notation for subsets of function spaces. Let (X, F) and 
( Y, G ) be filter spaces, and let U & X and V E Y. We define [U, V] by, 

[U. V]:.{flf~[X, Y] and f(U)_c V}. 

This notation will recur throughout this paper. 

proposition 2.7. Ler A he cot~tpacr itt (X, F) and 0 open in (Y, Gb Then CA 01 
is cpen irt ([X, Y], [F, G-j). 

Peoof. By the definition of compactness, we may take a collection of filters 
Tc U(F(x-) ( x E A), such that if Z? covers r then some finite subset 9 of ZE covers 
A. Now let ~E[A, 0] and let 0 be a filter converging to f. For each (pi in r (i 
from some suitable index set I), there is x, E A with Q+ Lx,. Then O(c@)Jf(xi) and 
.f(xi) is in 0; so there exist W, E 0 and Ui E @i such that W,(U,)C 0. {Vi 1 iE Il, 
coversr,soforsomefiniteJc_I,{(I/,IiEJ}zrA.If W=n{Wi]i~J},then WE@ 
and W(A)s 0. Hence [A, 0] is in 0. Since this occurs for an arbitrary 0 
converging to an arbitrary f in [A, 01, [A, O] is open in the induced topology. 



The induced topology on a pair of spaces bears no simple relation to that on 
their product or function space. (It does not even determine them.) The induced 
topology on a product may contain more open sets than lhe product of the 
induced topologies, and similarly, the induced topology on a function space may 
properly include the compact-open topology. This is only to bP expected a: TOP 
is not Cartesian closed: explicit examples are given in Sectio:a 7. The si&uation is 
not improved by considering coreflective subcategories of T.OP (e.g+ making use 
of compactly generated topologies) but a full discussion is beyond the scope of 
this paper. 

3. Bases for filter spaces 

The idea of a basis for a filter space is that it should be a collection of subsets of 
rhc space, in terms of which we can completely determine the filter structure. 

Let (X, F) be a filter space and % a collection of subsets of X. % is a hasis for 
(X, F) iff whenever @ E F(x), then %! n ‘P is a filter base and %! n @J x. (The bases 
with which we shail deal, will be closed Lnder finite intersection; so 021 fl@ will 
automatically be a filter base.) In the context of a given basis Q for (X, F), we will 
write @’ for Q n Cp (where @E F(x), some x E X). Such a @’ is a car~onical filter 

base introduced by 0%. The canonical filter bases determine th: filter structure in 
the following sense. A filter @ is in F(x) iff it includes some canonical filter base 
converging .to x; that is to say, the canonical filter bases generate the filter 
structure F on X. 

Remark. The notion of a basis used here, is more general, for topological filter 
spaces, than the usual notion of a basis for a topological space. For example the 
power set of a space is always a basis. 

d 
It is important for what we do later that we can readily describe how to 

construct bases for the products and function spaces of filter spaces for which we 
already have bases. The case of products is easy. 

Proposition 3.1. Let ?!.l be a basis fur (X, F) am’ ‘Ir a basis for (Y. G); then 
{UxVJUE% and VET) isa buTis for (XxY.FXG). 

Proof. The proof is straightforward. 

The case of Qnction spaces is more interesting. Let % be a basis for (X, F) and 
$‘” a basis for (Y, G). Let W consist of all finite intersections of sets of the form 
[U, V] where U E 011 and V E “v: (The notation [LJ. V] was introduced;jn Section 
2.j 

Proposition 3.2. In the nbouc situatiovt, W is a basis fur ([X, Y], [F, G]). 



Proof. Let ~E[X, Y] and 8 E[E G](f). We wish to show that O’= ?rn 8 con- 

verges to f. For this it is sufficient to show for any canonical filter base @’ with 

@‘Js in X. that B’(@)Jf(,x ). But O(@‘)L f(x) so [@(@‘j-j’= 3rf7[@(@‘~]~f~x~; if 

V E [O(Q)‘)]‘, there is WE 61 and U E (I,’ such that W( U)c V, i.e. there is UE ctr’ 

with [U, VIE @: if I:L! V]E 8. 1 U, V]r 69’ and SO if V E [@(@‘I]‘. then V c 

[tiI’(@‘,]‘. This shows that @‘(@‘I 1 f’(s). and co~mplclc‘s the proof. 

The bases of Propositions 3.1 and 3.2 arc the car~~ticnl bases for a product and 

a function space, respectively. 

We next consider a natural topological condition on the basis % for a filter 

space ix’. I;). This condition is needed in many proofs in Section 3, and also has a 

computational significance (for which see Appcndis RI. 

A lusis satisfying the equivalent conditions of Proposition 3.7 will bc called a 

~cg~lur ~~~i.s. This is a sensibk terminology a< the limit space analogue of 

;egulatit~,l (as considered kg Cook and Fisher f.-ij) is quiv*aler-rt to admitting a basis 

of closed sets. Of course most bases in the origina ttqx~lopical bcnsc arc not 

regular- bases in our scnhc: and many spaces do not admit regular bases at all. 

The constructions we hare given for bases for products and function spaces, 

preserve the notion of a regular basis. 

!&oaf. For the product, the proposition fo!it)ws from Proposition 2.2 (a) and the 

fact that the product of closed sets is closed in the product topology. For the 

function space note that [X, Yf,[U. VI= lJ{[(x]. Y, V] 1 s E U} which by Corol- 

lary 3.3 is a union of open sets and so is open. 

Proof. C’, the space of natural numbers clearly has a regular basis. 



We discuss the natural bases for the spaces of countable functionals in detail in 

the next section. 

4. EnumeraCed bases and the decidability theorem 

Since Cc,, the space of continuous functionals of type 0. clearly has a’countable 

basis, it follows from Propositions 3.1 and 3.2 that all spaces C,, of continuous 

function& have countable bases. In order to be able to talk in recursion theoretic 

terms about the canonical filter bases introduced by these bases, we need an 

explicit enumeration of the bases. An enumerated basis is a map from the natural 

numbers to a basis. W&et N denote the set of natural numbers, and adapting the 

notation for ordinary bases. write o%l = { Ui ( i $‘N) for an enumerated hasis, 

Before turning to the main business of this c,rctitm. we give specific t‘numerated 

bases for the spaces of continuous functionals. Of course, we never use the details 

of this coding but it SCCMS best that the readers have something specific in mind. 

L_st {v,, ( II (IN] hc the sequence of finite sets of natural nilmbcrs, where c,, is 

determined hy the I’s in the binary notation for FI; Jet ( , ) be a standard (I-l), 

onto pairing function from N XN to N. with projections 1~1 1 and qf 1. Then we can 

define inductively, 

Then %” = (U:: 1 II EN) is an enumerated basis for C,,. It is easy to see that it 1% 

regular by Proposition 3.3. 

The final result of this section is a decidability theorem for the bases ‘%I’ for the 

hpaccs C,,. This is a consequence of a number of “structural properties” of the 

bases %2”. This section is mainly taken up with establishing these in great 

generality. In Appendix ES, we use the decidability theorem to show the eyuival- 

encc of a number of different formulations of the notions of “recursive” and 

“recursive in” for the countable functionals; in particular we can show that it 

makes no ditierence whether we use “partial” or “total”’ codes for function&. 

Further signiticant results about the continuous functionals use the tiecidability 

theorem in conjunction with results obtained by effectivizing part of its proof. WC 

consider this effectivization in Appendix C. 

Definition (provisional). The ijasis Q = (U, 1 i EN) for the filter space ix, F; is 

decidable iti 

(i) the set {i 1 Ul = 9) is recursive. and 

(ii) all sets of the form 

Hi,, . . . . i,,, k 1, . . . , k,, 1 1 U,, fl * - * n Ui,,, G C-J,, ll * . . U U,,,), 

are recursive (uniformly in nz and II). 
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Cievnark. As a consequence of (ii), the inclusion between any two positive 
Boolean combinations of elements of % can be decided. This is a very strong 
property, and may not be easy to establish for many bases. But for want of 
evidence on this point. we Ict the definition stand for the moment. 

Assumption. In order to simplify the proofs which we shall give, we make the 
assumption that each basis is closed under finite intersection and contains the 
empty set. These conditions do not in any way affect the theorems we prove. 

The reason why we can prove something as strong as condition (ii) above, for 
the bases %“, is that they satisfy a disjunction property for a basis: 

(I)P if Uit 17 * - - 1’3 CL,& c Ukl U + - - U U,,,, then for some r, 

1 s r S 11, U,, n . . - fl Q,, c l-l,,. 

(This condition reads more simply when a basis is closed under finite intersection.) 
Bearing (DP) in mind, we proceed to discuss the probiem of showing the %‘r’s to 
be decidable. 

Clearly the basis 3” for C,, is decidable. We wish to establish decidabifity of all 
the %“‘s by induction over the types. Products give no trouble (once we have 
(DP)), so we concentrate on function spaces. First we introduce some notation for 
the general situation, which we will use in both this and the next section. 

Let % = ( Ui 1 i E N} and -r/’ = { ~/; 1 i EN) be the bases for the filter spaces (X, F) 
and (Y, G) respectively. Let “W= { W, [ A is a finite subset of NxN} be the 
canonical basis for ([X, Y], [F, G]); W, is the intersection of the [Ui, Vi] such that 
(i, j I is in A. We use A, B, C, D, . . . to range over finite subsets of N x N. For A a 
finire subset of N x N, we define, 

W” has a recursive function coding intersection; for W, n W, = W,,,. Thus if we 
have (DP) for W, it suffices in order to establish condition (ii) for -W to show that 
inclusion is decidable. To do this, we consider a finitary condition on % and W 
equivalent to “W, c W,, “. The simplest likely condirion is, 

W,., E W,, iff either for some CGA, U,.f f4 and V,.. = @, or 

whenever D E B and UC, f $3, then there is (u*) 

C s A with U, c U, and VD 2 V,. 

Of course this condition only makes good sense if (DP) holds for ‘3% Related to 
(**I iin fact a consequence of it if “Y contains the empty set) is, 

W, # g iff whenever B c_ A and I/,, # $I, then V,, f $9. (+) 
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Proof. Trivial by the above discussion. 

Next we use (DP) to help us to reduce condition (* *) to condition (*). Fil ,t 
however let us notice a useful consequence of regularity. 

Lemma 4.2. Let “u be a regular basis for (X, F). Suppose the finite collection 
{ Ui 1 i f I} of elements of % does not couer U E (IL Then there is U’ .E 021, U’ f-l Uf $4, 

but for di i E I, U’ fl Vi = $I (In apylication we will be assuming 9.4 closed under finite 
intersection and then we can take U’ # 8, U’ E U). 

Proof. If { Ui 1 i E I} does not cover U, then n{X. Ui ( i E I} is an open set (by 
regularity) which intersects U. But by the definitions of induced topology and 
basis, any open set is a il:lion of sets from a basis, whence the result. 

Prop&ion 4.3. If % and ?f are regular, % sutisfies (DP) and qY_ satisfies ( :i: ), 
then -W satisfies (* *). 

Broof. The non-trivial part of (* *:) is to derive the right-hand side from the left. 
Suppose then that the right-hand side does not hold. Then if C G A and U,# @, 
then V, f p, and there is D E B with U, # @ such that for all C c A, if U, c_ UC7 
then V, $ V,. Pick CC A maximal such that U, c U,. Let I= {i 1 U,$ U, for 
some j, (i, j) E A). By (DP) for 011, (Ui ( i E I} does not cover U,,. So by Lemma 4.2 
we can pick a non-empty U in % with UG U, and U fl U, = $I for all i in I. 
Similarly since V,-g V,, by Lemma 4.2 we can pick a non-empty V in “Ir with 
VE V, Vn V, = 9. Let W,, = W, n[U, V]. W,, has been constructed so that 
by applying (*) we can conclude WA. # 8. But clearly W,. n W, = $3 and W,, E 
W,. Thus W, is not included in W,. and the Ieft-hand side of (* *;) fails. 

We have made considerable use of (DP) above, so it is convenient that we can 
now show that it can be established by induction through the types. Of course the 
basis %” satisfies (DP). Also it is easy to check that if bases %!l and -Ir satisfy (DP\ 
then so does their canonical product. Finally for function spaces we have the 
following corollary to Proposition 4.3. 

hOpCrSitiOn 4.4. If % and 5” are regular and satisfy (DP), and ‘u’ satisfies ($2’). 
then W satisfies (PP). 

Proof. If W,$ W,, the proof of Proposition 4.3 constructs for us a non-empty 
WAJc W, with WASrl W, =$3. Of course we know this must be possible by the 
regularity of %f (see Proposition 3.4 and Lemma 4.2.) If Y satisfies (DP), we can 
take the V defined in the proof of Proposition 4.3 so that for any E c I3 either 
V, 1 V, or Vn V, = $9. But then the W,, defined has the further property that if 
W, $ W,, for some B’, then W,.$ W,,,. By this device we can easily prove by 
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induction that if W, is not included in any of M’r3i, . . , W,,,,, then thcrc is a 

non-empty W,,, c W,, with W,,. 17 W,, = fl for all 1 f i s II. This is (DP) for 3’. 

In view of Propositions 3.1.1.3 and 4.4 we have reduced the problem of the 

dccidability of the bases for the countable functionals to that of establishing 

condition ( :I:). Our proof will hc a generalization of the trivial proof that t *) holds 

when % and -1” are bases of clopcn sets for zero-dimensional Hausdorff spaces. 

The basis % for the filter space (X. F) is separateil iff for any finite collection 

{U, j i E I) of members of Q, there is a collection (Oi 1 i E 1) of clopen sets (in the 

induced topology) with Ui s 0, such that for all J c I, if fl(U, 1 i E J} = $3, then 

/(--){O* / iEJ]==j/). 

Rernurk. The above condition can be derived from the fact that any two disjoint 

members of % can be separated by a set clopen in the induced topology. Rather 

than give the niggling argument to show this, we work directly with the more 

general formulation. 

Proposition 4.5. If the basis % for (X, F) is separatcci. then -I&” satisfies condition 

t 3:). 

Proof. We coxider the non-trivial implication. Suppose the right-hand side of 

( :i:) holds. Let I = {i 1 for some j, (i, j) E A} and let {Oi 1 i E I) be the collection of 

clopen sets guxantecd by oil’s being separated. For each B c A such that V,, J: fl, 

we pick a canonical element \I’~ E V,,. 6Jow we define a function f: X4 Y as 

follows: 

For SEX let J={i 1 SE O,}. and let B ={Ci,jj 1 (i.j)~A and ~EJ), then f(x)= 

‘JR. 
f is continuous from X with the induced topology 10 Y with the discrete 

topology, and hence using adjointness [i.e. Proposition 2. I ] from (X, F) to ( Y, Gf. 

By construction f is in WA. so WA # $Fi_ 

It remains to consider when the canonical bases for product and function spaces 

are separated. 

Proof. 0 x 0 is open by Proposition 2.2(a) and closed since (XX Y-0 X 0’) is 

the union of the open sets [by proposition 2.2(a)] X x (Y. 0’) and (X . 0) x Y. 

Corollary 4.7. 7%~ cxmorhd product of separated bases is separated. 



Lemma 4.8. If ?c is a poi?rr rrf (X, F) artd 0 is &pen in (Y, G), then f(x), O] is 

ck~pen in ([X, Y], [F. G 1,. 

PPOO~. [{I}. O] is open by Corollary 2.3 and closed as [X, Y].. [(x}, O] is 
[{x). Y. 01. again l-q! Corollary 2.3. 

Proposition 4.9. If “v’ is separuted and .W su~isfiies (:!: ) then IK is sepnrated. 

Proof. Let { W,, 1 i E 1) be a finite collection of elements of “19: Consider J E I sucL 
that 0 {W,, 1 i~J)=fl; i.e. such that WAcJ,=fl where A(J) =; l_j {Ai 1 iE.7}. B! 

( *) for W, there is C E A(J) such that U,. # P, while V,. = fl: pick C maximal with 
this property. Let C, = C fl Ai. n ( Vrl 1 i E J) = @, so pick (as ‘Ir is separated), a 
collection (0, 1 i E J} of clopen sets with V<-, sz 0, and 0 { 0, 1 i E Jj = $4. Pick x E U. 
For i E.\, W,, is included in the clopen set (by Lemma 4.X) [ix), O,]. If we take aI1 
such sets for a given i as .J varies, their intersection forms a suitable clopen set 
P, z W,,. {P, 1 i E I) satisfies the conditions to show -3K is separated. 

‘I’hc work of this section can be summarized in terms of the Cartesian closedness 
of various categories of filter spaces with bases or enumerated bases. (These are 
covering categories of various categories of filter spaces as the morphisms are just 
the filter space ones.) 

Theorem 4.10. The,joIlowing categories are cartesian closed: 
(i) rhe category o,f filter spaces wirh separated bases (irz this the bases for futzction 

spaces satisfy t * 1): 

(ii) rk category of ;ilteer spaces with bases which ure separated. regular arrd 
satisfy DP iirt this the bases for fL4ncfiorz spaces satisfy (+ *)j: 

(iii) the category of fiber spaces with enumerated bases which are decidable, 

separated, regular and satisfy DP. 

Corollary 4.11 (Decidability Theorem). Tile natural bases (defined at the begir~- 

ning of this section) for the cmtinuous functioaals are decidable. 

Remark. Results of much the same force as Corollary 4.11 were proved for their 
notions of the countable/continuous functionals by Kleene [15] and Kreisel [17]; 
there is a more general treatment in Tait [27]. Their proofs are limited to special 
types (i.e. to maps into the natural numbers); our use of the induced topology 
shows why this restriction is unnecessary. Yet another line of proof for the special 
case of the continuous functionals is indicated in Gandy, Hyland [ 101. Whether 
the generality of the results we have proved can be put to good use, has yet to 
emerge. Early treatments were effective from the start. The effective results seem 
more transparent when obtained by effectivizing the simple and purely mathemat- 
ical arguments for Propositions 4.5 and 4.9, We treat this in Appendix C. 
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5. Closure properties of the continuous functionals 

% is a c.c.c., that is the continuous functionals are closed under explicit 

definition and h-abstraction. This section presents further closure properties: it is 

simply a survey of well-known results. 

We first present a proof that the continuous functionals are closed under 

computation via Kleene’s schemes SI-S9. We suppose the reader familiar with 

this notion (see Kleene [16]); Gandy, Hyland [lo) contains a survey of computa- 

tion on the continuous functionals, and further developments are in Norman 1221 

and Wainer [29]. 

Proposition 5.1. (a) Let e be rhe ijzdex for a Kleerre computation, f,, . . . , fk 

mrtinr ous funcfionals of appraprr’afe type ridz that {e)(f,, . . . , fk) conueves. Let 

Qi,, . . . , C& be jilters conuevging ro f,, . . , fk respectively. Then there exist basis sets 

VI,. . . , V, with Vi E Qi such that if g, E VI, . . . , gk E VI< and {e)(g,, . . . , gk) can- 

uerges. then {e)(f,, . . . ,1;(1= {e)(g,, . . . , gk). 

(b) A total functional defined by Iii-S9 (possibly with continuous furrticmal 

pamrtreters) is a corztinmus functionc I. i.e. the contirtuous firnctionaIs are closed 
under computation. 

Proof. (a) and (b) are proved by simultaneous induction on the indices e. We 

sketch the only tricky induction step, that of application. We say that the basis 

sets V,, . . . , Vk deterfrke e (with value 12) whenever if g, E V,. . . . , gk E V, and 

{-‘I(g1, * *. 9 g,l converges then (e}(g,. . . . , gk) = 11. For (a), suppose that 

{eI(f [+ . . . ,fk) =f,(hx;{e’j(x, f,, . . . 1 fLf) 

converges. By induction hypothesis (a) we easily see that the finite intersections of 

elements of 

S ={[U, {n)] 1 there are V, E G1,. . . , V, E ak such that 

u, v, , . . . . V, determines e! with value n) 

form a filter base converging to the (by induction hypothesis (b)) contmuous 

functional Ax{c’}(x-,f,, . . . ,fk). Thus there is WE@, and [U,.jn,I], . . Iq 

[ U,. {II,}] E S such that 

WCU,, {n,!ln * * - n[v,,{n,t])=~(e)(f!. . . . .fk)]. 

Now (taking intersections) we can find Vi, V1, . . , Vk from @,, . _ . , ak such that 

u,, v;, v, - * * V, determines e’ (1 s i s r). 

Set V, = Wf7 Vi and we have V,, . . . , Vk determining e. The deduction of (13) 

from (a) is trivial. 

Two further results follow from the proof of Proposition 5.1, though for their 



understanding one requires the recursion theoretic ideas presented in the Appcn- 

dices. 

Proposition 5.3. Tire Krciscl generulizations L$ the COflii~lUOUs fut~ctiormls as 

described at the close of Section I, are closed under connpuration. 

Proofs. Both Propositions 5.2 and 5.3 rest on a obvious effectivization of Propos- 

ition 5.1: by the recursion theorem, there is a partial recursive function C/I such 

that if e is a Kleene index then 4(e) is an index for an r.e. set P,, with the 

foUowing properties: 

t I ) P,, consists of k + I-tuples (V,, . . . , V,. n) such that V,, . . . , V,~ determines 

(’ with value n, 

(2) If {e)(f’,, . . , fk I= n and 4,, . + . , d& are filters converging to f’,, . . . . Lx 

respectively then there are V, E @{. . . . , VL f cD~ with (V,, . . . , V,, n)~ P,,. 

This result gives Proposition S .2 directly in view of the work in Appendices A 

and B. Proposition 5.3 follows by observing that exactly the same proof gues 
through for the generalized type structures: we just need the effectivization to 

show that the set S in the proof of Proposition 5.1 can be replaced by an r.e. set. 

Our next result does rrot extend from the continuous functionals to its generali- 

zations (as Proposition 5.1 did). The bar recursive functionais were introduced in 

Spector [XI]. 

Proof. (Kreisel, see footnote 6 to Spector [26].) The continuous functionals 

computed by S i-S9 are closed under the schemes (so we rely on Proposition 5.1). 

For the non-trivial schcmas, primitive recursion and bar recursion, we can by the 

recursion theorem find indices for partial computable functionals satisfying the 

schemas, It remains to show that these are total functic~nals. This is straight%or- 

ward for primitive recursion. For bar recursion of type o-, the basis of the proof is 

an induction over a well-founded CC,-branching tree. 

Remarks. ( 1) This result fails to generalize because one loses wdl-foundedness. 

(2) The continuous functionals computed by Sl-S9 form a typz structure which 

is closed under bar recursion but does not satisfy the principle of bar induction 

(footnote 6 to [XI]). 



(3) When the theory of the continuous functionals is formalized in analysis 
(es3zntially via Section 6), the proof of Proposition 5.4 uses the principles of 
extended bar induction and intuitionistic logic (cf. Ershov 161); of course one can 
use dependent choices and classical logic. 

(3) The proof-theoretic significance of Proposition 5.4 is indicated in Kreisel 
[IS]. 

For completeness, we next present a closure property of the continuous 
functionals which is discussed in detail in Gandy, Hyland [lo]. It is related to a 
special feature of Cz namely that it can be inductively defined: 

C, is the least class C of maps: C,-+C,, such that, 
(i) all constant maps are in C, and 

(ii) if fi,, fr, . . . are in C, then so is f defined for (Y E C, by f(a!) = 

~&,(Ar!.a(n -t I)). 

Proof. See Gartdy, Hyland [ 101. 

Ren~~rks. (I) Both @ and another important functional r from Gandy. Hyland 
[ 101 can be defined by recursion over the inductive definition of C, in the sense 
discussed in Hyland [13]. The continuous functionals are closed under definition 
by recursion over tht: inductive definition of C,. but the significance of this is not 
entirely clear. 

(2) In contrast to Proposition 5.5, if we drop the restriction to compact subsets, 
92 does trot contain modulus of continuity functionals (see Proposition 7.7). It 
appears to be impossible to obtain such functionals without dropping 
extensionality. 

Finally WC present a useful modification of Proposition 5.5. 

P3roposition 5.6. There is c1 continuous functional @” such that &*(f, a) = n i.ff the 
finite set e,, = f{K,). 

6. Kleene’s definition of the countable functionafs 

Our aim in this section is to show that the definition of the continuous 

functionals which we gave in Section 1, is equivalent to that of the countable 
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functionals in Kleene f15]. Kleene defined the countable functionals at a particu- 
lar type as a subclass of the cohection of all functionals at that type. I have 
modified his definition so that the domain of a countable functional is the set of 
countable functionals of the appropriate type. A countable functional in this sense 
corresponds to an equivalence class of countable functionals in Kleene’s original 
sense: two of Kleene’s countable functionals of type n -t 1 are equivalent just 
when they have the same restriction to (Kleene’s) countable functionals of type IE. 
Unfortunately, a computation may terminate on one member of an equivalent 
pair but not on the other. So on Kleene’s procedure partial computations via 
Sl-S9 become a mess. On the other hand, partial computations on the restricted 
type structure of the continuous function& as we have defined them do have a 
significant theory (Norman [22]). Thus Kleene’s proposal to regard the countable 
(i.e. continuous) functionafs as a subset of the maximal type structure seems to 
have little value. 

[N.B. In Kreisel’s original paper [17], the continuous functionals were under- 
stood as equivalence classes corresponding precisely to the con’linuous functionals 
as defined in this paper.] 

We give Kleene’s definition of the countable functionals of pure type. As usual 
the pure types will be denoted by numerals. We write K,, for the collection of 
countable functionals of type n (in Kleene’s sense). 

Dehifion (Weenej. (1) K,, is the set N of natural numbers, ;nd fz E KO has the 
function Ax l n E NN as its only associate. 

(2) f: K,,-+K,, in K,,, iff it has an associate af; 0~~ E NN is an associate for f iff 
(a) if g E K,,, CX, an associate for g, then for some k EN, ir,(cu,(k))> 0, and 
(b) if g E K,,, OL, an ass&ate for g, and k is such that o~&(Y~(~))>O, then 

a&(k))=f(g)+ 1. 
This is a simultaneous definition of the spaces K,, and the associates for 

member; of K,,. (As usual when f~ NN and k E N, f(k) :s the standard code for the 
sequence (f(U), . . . , f(k - I)).) 

We use the variable (Y, to range over associates of g, and define for each n, 

VI: = {g 1 g E K and for some ‘Y,, a,(lh(u)) = u), 

where u. is a sequence number and Ih(~1) is its length. For a given cy,, the 

collection 

<b&J = iv: I u = ~,ww!~, 

is clearly a filter base. 

Theorem 6.1. For all 11, K,, is C,, (i.e. the underlying sets are the same); ifff K,,. af 
an cLssociate for f, then &(Ix~) converges to f in the sense of the fiber structure on C,, : 
finally. the filter bases 4(q) detemines rhe filter structwe on C,,, in the sense that a 
filter conuerees to f iff it includes some ~~,(cG~. 



Proof. By induction on n: the theorem is clear for n = 0: we suppose it is true for 

II and show it true for u + 1. Suppase we are given FE K,,+l with associates cxyJ. 
The filter base +(c+) will be considered for the moment in the full space of 
functions from K,, to K,,, Clearly it is included in the principle filter on E We 

show that if @,lf in C,,< = K,, 1, then q%(cu,:)(@P)J F(f) in C,,( = K,,). From this and 
the preceding observation, if follows that FE C,,., ,’ it is sufficient to consider the -_II 
case when cl., is a &(a,). But given af, there is a k such that a,.{cu,(k)) = F(f)+ 1. 
Let N =aq(k). Then Vi: ’ '(V::) = {F(f)]. Thus #(a,)(+(of)) tends to F(f). This 

shows not only that FE CT,.,, but that qjIa(r.-),l F, (where now $(a,) is considered 

in C,,, ,). 
Suppose now we are given FE C,, + i with 0 J, F. We define c+ by, 

cu,(u) = 
k + 1 if for some WE 0, W(V:l)=lk), 

0 otl7erwise. 

We show that (Y,; is indeed an associate for F. Take cy, any associate for g E K,, ; 
qS(a,)J g so @(c$~(a~))J F(g); thus there is WE Q and Vz E 4,(u,) with W(V::) = 
{F(g)). Hence c-+(a,(lh(u)) = F(g)+ 1. Since o[$ was arbitrary, this shows that ~1,. is 

an associate for F. Thus F is in K,,., ,. Hence C,, , , and K,, , , are the same 

(underlying SC t). What is more, it is clear from the above definition of cyI- that 

4(ar,. )E TOI. H ence a filter converges to F it? it includes some &(LQ). This 

completes the proof of the induction step. 

Corollary 6.2. For all types cr considered by Klcene, the countable fuwk.wcls in his 

settw K,,, is the sarrle (underlying set) as C,,. 

Proof. We have this for Kleene‘s numerical types by essentially the same prsof as 

for Theorem 6.1. KIeene extends the definition to all his types by ?rse of the 

isomorphisms in a Cartesian closed categorji. Since % is a c.c.c., the cquiva!ence is 

immediate. 

7. Some simple counterexamples 

The continuous functionals of types 0 and 1 arc the natural numbers (with the 

discrete topology) and the usual Bake space; both are topological. For our 

counterexamples we need a non-topological filter space, it turns out that the 

continuous functionals of type 2 form such a space. Before we show this however, 

we introduce a reformulation of some of Section 6 which is more convenient for 

discussing the structure of C,. 

For a (sequence) number u, we define Vu s C, by, 

V,, = (f 1 f~ C, and if i -=z lh (u), then f(i) = (uji). 

Each V,, is a clopen neighbourhood in the tupology on C, and the collection of 



such V!,‘s is koth a basis (in the usual sense) for the topology, and (hence) a basis 
for the filter structure on C,. 

Let A be a finite set of pairs of the form (u, p) where u is a sequence number 
and p E w. Define W, c C, by, 

W, ={F]FEC~ and if (u, p)~ A, then F;(v,, j =L {pj}. 

Then the collection of all such WA’s is a basis for the filter structure on C2. 
A (new-style) fype 2 associate (Y is a function from sequence numbers to N, 

satisfying, 
(i) for all f E C,, there is an n E o, such that c@(n)) > 0; 

(ii) if cr(u)>& then for any nE~,~~(U”{rr})==cr(~~). 
(Here * is the usual concatenation operator.) 

Every type 2 associate o: determines a functional FE C, and a filter 4 
convergmg to F by the stipul:ltions, 

(i) if (x( II) = k + 1 then F has constant value k on V,, ; 
(ii) 4 is generated by a filter base consisting of all W, such that if (u, p) E A. 

then cy(u)=1>+1. 
That the collection of such 4 determines the filter structure C, was shown (in a 

trivially difhxent formulation) in Theorem 6.1. 

Proof. If a filter space is topological. then for each s E X, F(x) the collection of 
filters tending to x, has a least member, namely the neighbourhood filter at x. But 
given an associate a, for FE C,, we can define another associate w2 by stipulating 
that, 

(i) if Ih (u)= k + 1 and w is such that u = w*:((u)~}, then a,(u) =a,(~); 
(ii) (Y?(( >) = (1. 

Then clearly the filter determined by cxz is strictly included in that delermined 
by 1y,. But the filter determined by a, is an arbitrary filter converging to F, SO 
there is no least such filter. 

Rmark. Since the injection of TOP in FIL preserves ail functiof. spaces. 
Proposition 7. I shows that TOP is not a ccc. 

Nest we prove a simple lemma about the relation between the basis sets and 
the open sets in C’?. 

Proof. It is sufficient to consider the case when A is the singleton ((~4, p’l). 

Suppose that 0 is non-empty and 0 E W,. Pick FE 0. There exists an associate 
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CY for F suih that if a(v) > 0 then Ih (u j > 111 (u). But clearly W, (and hence 0) 
cannot be a member of the filter determined by such an cx. Thus 0 is not open. 

We now give our counterexamples. For f~ C, define the compact set Kf E C, 

by, 
K, =(g 1 go C, and for all n, g(ft)~f‘(rz)}. 

Now define 0 c C,X C, by, 

0 = ((F, f, 1 FE C?, f~ C, and F(K,) = {Oj]. 

Proposition 7.3. 0 ib open (in fact clapen) in the induced topology on C2 x C,; 
however 0 includes no non-empty set of the form 0, x 0, with 0, open in C, and 
0, open in C,. 

Proof. Proposition 5.6 shows that 0 is clopen. 
Suppose there is non-empty O2 x 0, s 0 with O2 open in C, and 0, open in 

C,. 
Pick (F, f) E 0, x 0,. For some n, V,T;;, _ c 0,. Let U be the finite union of basis 

sets defined by, 

U = U (V,, 1 lh (u) = n and if i <n then, frtJi <f(i)). 

Then clearly, {G}X Vf;;;,‘: 0 ifi G(U) = {o). 
Thus O2 s {G ] G(U) = {O)), which is a basis of the form W, with A non- 

empty (in fact A ={(u, 0) 1 lh (u) = it and if i <n the:n, (u)~ s f(i)}). But 0, is 
open which contrad;cts Lemma 7.2. 

Corollary 7.4 (justifying a remark at the end of Section 2), The induced topology 
on a product is not necessarily the product of the induced topologies. 

For n E o and f E 0”’ let IZ * f be the function whose value for argument 0 is n, 
and for the argument k + I is f(k). Let z denote the always zero function. for 
FE C2, define hF E ww, by, 

h,(n)=F(n+I)*:z. 

Now define 0’~ C2 by, 

0’ = {F ! F(K<o,,,J = W)}. 

Proposition 7.5. 0’ is open (in fact clopen) in the itiduced ropology on C,; howeuer 
no non-empty finite intersection of sets of the form [A, U] wirh A compact in Cl 
and U open in C,, is included in 0’. 

Proof. 0’ is clearly clopen as one only needs a finite amount of information about 
any type 2 associate to determine whether the corresponding functional is in 0’ or 
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not. For the rest of the proof, we give the argument to show that no [A, U] as 
above is included in 0’; the reader can easily extend this to finite intersections of 
such sets. If [A, Uj is to be included in O’, we may safely assume that U is of the 
form (0). Since any compact set in C, is included in some compact set of the form 
KI, we may assume that A is K,, for a suitable f. Now define FE C, as follows: F 
takes the value zero except 

(9 on Vtlro)+ l) where it takes the value f(f(O> + 1 j-t I, and 
(ii) on Lcfif(I))+I,. 1j (where u is the sequence OF f(O)+ 1 zeros), where it takes 

the value 1. 
Then one easily checks that FE [K,, {0}] but F$ 0’. 

Corollary 7.6 (justifying a remark at the end of Section 2). The induced topology 
on u function space is not necessarily the compact-open topology. 

At the close of Section 5. we referred to the fact that % does not contain any 
(unrestricted) modulus of continuity functionals. We now prove this. 

Proposition 7.7 (Kreisel). ‘i%ere exist no functionals 4 in % such that for FE 
c to-,r)-o and a E G-0, 

(V/3 E C,,,,)[(Vk -=&tF, a))@(k) = a(k?-+F(B) = F(a)]. 

Proof. To avoid introducing further notation, we give this for the case cr := 0: the 
general case is essentially the same. Let ‘0 and ‘0 denote the everywhere zero 
functionals of types 2 and 1 respectively. Suppose there is a functional 4 as above 
and let 4(%, ‘0) = rt. By considering an associate for 2O which gives value 0 for all 
u with Ih (u)~iz, we car. find a W, such that 

‘OE w,. (u,O)EA-,lh(u)>n, qj(W.4 xUQ)={4. 

Construct an (Y such that cw(k) = 0 for k -=z II, but Q! extends no u with (LI, 0)~ A. 
Let m >Ih (u) for all u with (u, 0)~ A and UI >n. Define FE C, by 

-- 

F(P) = 
i if p extends or(m), 

0 otherwise. 

Then FE W, so $(F, ‘0) = n. However for ail k <n a(k) = 0 while F(a) # F(‘O). 
This contradiction proves the theorem. 

Remark. For u = 0 or 1, for each FE C,,tr~~r)_o, it is possible to find a continuous 
functional & such that 

(Va E C,,)(VP E C,,,,,)[Wk -= 4daMk) = P(k) + F(a) = W31. (*I 

Thus Proposition 7.7 simply shows that & cannot be chosen uniformly in F. 
However for levels of the type structure greater than I, it is impossible in general 



to find a c#I~: such that (*) holds. Essentially this is because for the higher IcveB 

ui f C,, _,,, can be regarded as a code for a pair of elements of types 2 and 1: so we 

let F‘ decode and apply tine to the other: ( :b) would now provide a modulus of 

continuity contradicting Proposition 7.7 for u = 0. 

8. ‘Ffie L-space approach to the continuous functionals 

‘I-his section gives a further approach to the continuous function& based cm 

sequence convergence. The topos-theoretic environment in which this material is 

embedded flas been considered in detail in Johnstone [ 141. 

An L-space (X, 4) is a set X together with a relation J,. of sequential 

convergence, between countable sequences (x,) E XN and elements s E X, written 

si J .x (“x, tends to x”), and satisfying the foilowIng: 

( 1) if all but finitely many Si are x, then s, 1 x; 

(2) it’ siJx and k(O)<k(i I<. * * <k(n)~ - - -. then s,,,,,Jx; 

(3) if not s, 1 Y, then there is k(O) < k( I )< + . . < k(~ I< - + *. such that for no 

subsequence 1(O)</(i)< 3 - - <I(n)< - * -, do we have x,,~, J x. 

Re~nark. When introducing filter convergence. we put very weak restrictions on 

the notion of a filter space. But for sequential convergence we will riced the strong 

conditions which we have gidcn to establish the topological approach in Section 

IO, ancl again in Section I I. 

In what follows, wc shall nc\.er consider more than one I_-structure on a given 

set: so we shall use “J,” For the relation of sequential convergence at all times. No 

confusion should result 

If ‘X. J, 1 and (Y, L ) are L-spaces, a map f : (X. 3 I- ( Y. J. J (i.e. a map between 

the underlying sets) is continuous iff whenever s, 4 .x in X. then f(x,)J f(x) in Y. 

The L-spaces with the continuous maps as morphisms furl the category 12% of 

I_ -spaces. 

It’ (X, 1 f and (Y, J ) are L-!+xcs, &line in X X Y, t.r,, v, J./. (s, v 1 if .Y, 1 s in X 

and y, \? v in Y. This gives an L-structure on X x Y, wfiich is the catcporicai 

,xoduct of (X, J, i and ( Y, J, ) in LSP. 

We let [X, Y] den&c the set of continuous maps from (X, .]. i to (Y, 4 1. In 

I?\;, Y]_ define f, J, f ff i w enever x, _1 x in X, then f, (xi ) 1 f(x) in Y. Kuratowski [ZO] h 

showed that this gives an L-structure cm IX. I’]_ and his results amount to a proof 

cri‘ the following proposition. 

Proof. See Kuratowski [20]. 



Remark. Kuratowski calls our “L-spaces”, “L*-spaces”. 

In Section I, we defined the category of the con~ktuous function& as a certain 

sub-C.C.C. of FlL. the category of filter spaces. We can consider the same process 

applied to LSP, the category of L-spaces. 5!? is the sub-CCC. of the C.C.C. LSP, 

generated by the space of natural numbers (where a sequence (xi> converges to a 

natural number n iff all but finitely many Xi’s are n). Thus, for each type symbol 

a, we have an object L,, of 3, where L,, is the natural numbers as above, L,,,, is 

the product of L,, and L,, and L,,-, is the space of functions from L, to LT. The 

ob.jects of 3. consist of the L.,,‘s together with the terminal object of LSP (the one 

point spacej. 
III the next section, we will establish a natural isomorphism between 55’ and the 

category % of the continuous functionais: thus the underlying sets I,,, and %‘<, are 

the same. The category .‘Y’ (or rather a full subcategory corresponding to a limited 

coilcction of types). was considered by Scarpellini [23] as a model for bar 

recursion of finite types. Scarpellini”s results follow very easily from the cyuivai- 

cncc of Y and %. Scarpellini has a notion of ccmsfructiur elements of Z--these are 

determined by indices in the manner of the effective operations (other characteri- 

zations may bc obtained by means of the Kreisel-Lacombe-Schoenfield theorem, 

cf. Gandy, Hyland [ I(9]). Now an easy application of the recursion theorem shows 

that the constructive continuous function& are included in those computed by 

Klccne’s schemes S I-S4 (see Proposition 5.1) and these include the continuous 

functionals defined by bar recurciion: so we have Scarpel!ini’s result that the bar 

recursive continuous function& are constructive. Scarpzifini alsi presents var- 

iants of ,Y which are models for bal. recursion: what this amounts to is that 

(hereditarily) the constructive elements are required to he dense in the spaces (i.e. 

ant only considers limits of sequences of such elements). But from Appendix C 

and Section 9, we see that there are (even) elementary sequences of elementary 

Functions dense in the continuous function&. So Sclrpellini’s variants give 

nothing new. 

The L-space approach to the continuous functiorrals has also hcen considered 

by Vogel [:2X]. His work is entirely in terms of sequence convergence, while the 

main interest from our point of view is in the applications to topolc*#aI cjuesfions 

which rue discuss in Section 10 and Section 11. (The C-space approach 

useful for applications to the sheaf models for intuitionism; indications 

Hyiand [ 121.) 

is also 

are in 

9. L-spaces and filter spaces 

If {a,} is a sequence in X, we write [x,] for the usual Frkhet filter on X 

gcncrated by (x,). [s,] is generated by the filter base consisting of al! {x-, 1 i 3 III) as 

tt1 E 1v. 
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A sequence (x,) in X is euerltuaEly id U cz: X iff for some II, if rn 3 n, x,, E U, If 
(x,) is not eventually in I/, it is continually in X . U. If (Xi) is a sequence in X and 

@ a filter base on X, (x,) is cuentually in rfi iff (x,) is eventually in every member of 
@. Thus (Xi} is eventually in @ iff [xi] z [@,I, in other words, iff (x,} converges 

more strongly than @. 
We can now set up a connection between L-spaces and filter spaces. 
(1) Let {X, & ) be an L-space. We define a filter structure F on X by, 

Q, E F(x) iff for some countable filter base q, @ 2 V’ 

and if Fx,,] 2 [*I, x,, 1 x. 

(2) Let (X, F) be a filter space. We define a notion of convergence of sequences 

by. 
Xi ./, x iff [Xi]E F(X). 

Remark. Instead of (l), the reader may expect to see, 

@ E F(x) iff for some K,, 1 x, @ 2 Lx-,,] 

Indeed if we dropped the strong axiom (3) in the definition of L-space, we would 
have a pair of adjoint functors, presenting LSP (without axiom (3)) as the 
sequential coreflection of FIL. But this would be no use to us here. It would not 
give us the way to derive the filter structures on the C,‘s from the L-structure on 
the L,‘s. 

Despite the above remark, (1) and (2) interact quite pleasantly. 

Theorem 9.1. Let (X, 1) be an L-space, and (X, F) rlze corresportding filter spucd 
defined by (1). In terms of F, (2) defines the original L-strucfure op1 X. Furthermore 
if (X, 1) and (Y, 1) are L-spaces, f:X -+Y is continuous with respect to the 

I--sfrucrures iff It is continuous wilh respect fo the correspondi~ig filter structures. 

Proof. I! is easy to see that (2) defines the original L-structure. Now suppose that 
f : X-+ Y is continuous with respect to the L-structures. Let q be a countable 
filter base on X such that if [x,]z[q], x,,lx. Then f(V) is countable. Also if 
[y,,] z[f(V)], we can use countability to find a sequence (x,) such that for all 
II, f(x,,) = y, and [x,] z[ty]. x,4x so f(x,)if(x) i.e, y,, If(x). We can clearly 
deduce that f is continuous with respect to the figter structures. 

Conversely if f : X -+ Y is continuous with respect to the filter structures and 
xi 4-u in X, then as [xi] is a convergent filter, so is [f(Xi)] and we can deduce 

f(xi)IfIx). Thus f is continuous with respect to the L-structures. 

For our purposes, we need more than a simple embedding of LSP in FIL. yor 
we need to preserve the Cartesian closed structure: and to do this, we must 
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consider a subcategory of LSP. We only really have to worry about the function 
spaces as our embedding of LSP in FIL clearly preserves products. 

Suppose that (X, J,) and (Y, 4) are L-spaces, with (X, F) and (Y, G) the 
corresponding filter spaces defined by (1) above. [X, Y] unambiguously denotes 
the set of continuous maps from X to Y, as by Theorem 9.1, this set is the same 
whether one works in LSP or in FIL. On the other hand, the natural L-structure 
and filter structures on [X, Y] in these two categories need not be connected by 
(1) and (2) above. However, there is an important case where this can be 
guaranteed. 

Theorem 9.2. In the aAove situation, suppose that (X, F) and (I’, G) have count- 
able bases. Then the natural L-structure and filter structures on [X, Y] are related 
hy (1) cznd (2) ahoue. 

Proof. It is sufficient to show that the filter structure on [X, Y] can be obtained 
from the L-structure by (1) above. tit 0 be a filter converging to ~E[X, YTin the 
natural filter structure [t;, CJ. By assumption and Proposition 3.2, this filter 
structure has a countable basis, hence there is a countable filter base 0’ included 
in 0, converging to f. Suppose [f,] z[O’) then [iI] converges to f in [F, G]. For 
any x,, J. x in X, [n;,]J. x in the filter structure F; hence [f,,]([x,])Jf(x) in G ; clearly 

Ef,,<x,~l~CfnlC~J) so IY,(xJIWX~ in G i.e. f,(x,,)J,f(x) in the L-structure on Y. 
Thus if [f,,]-r [@‘I, fiI if in the L-structure on [X, Y]. So 0 satisfies the condition 
(I) above. 

Conversely, let 0 be a countable filter base such that if [f,,]z [O], then f,, Jf. 
We wish to show that 0 J f in [F, G]. We can assume that 0 = { Wi 1 i E Nj where 
for all i, W, 2 W,+,. It is sufficient to consider @A x in the filter structure F, where 
@ ={ Vi 1 i EN} and for all i, Vi 2 Ui+I. Suppose that [y,,]~[@(@)]. We can find 
sequences <f,> and (x,,) such that f,,(x,) = yn for each n, and [f,,] 3 0 and [x,,] ZJ @. 
Then f,, 1 f and x,, J, x, so y,, 1 f(x). This shows that O(Q) 5 f(x) in the filter structure 
G, so @if in the fiIter structure [F, G]. 

Theorem 9.3. For alI type symbols a, C, is (the same underlying set as) L, and the 
connection between the filter structure und L-structure is given by (1) and (2) above. 

Proof. By induction on the types. The result is trivial at type 0, products give no 
trouble and Theorem 9.2 takes care of function spaces. 

Theorem 9.3, which establishes the equivalence of the filter space and L-space 
approaches to the continuous functionals, clears up the worries on pp. 139-140 of 
Scarpellini [19]. In particular v ‘:an answer a question of his, 

Proposition 9.4. The L,‘s are st-arable in the sense that there exists a countable 
collecrion of elevllcnts sut*h that oily element is the limit of a sequence chosen from 
this collection. 



Proof. Simply choose an element from each non-empty U;: in the basis 02r’r. (By 

Appendix C. we can even do this effectively.) 

&mark. Vogel [28) has shown how to prove Proposition 9.4 purely from the 

point of view of sequence convergence. 

WC close this section with an cxomple of the conceptual value of the L-space 

approach to the continuous functionals. A map F: C,-C,, is continuous iff ‘E is 

not (Sl-S9) computable from F and any element of C,. Many people must be (at 

!cast vaguely) aware that this result will extend in some sense through the 

continuous functionals. Bergs&a has given a very refined version of such a resr;?t. 

L,eavirq aside extreme refinement, we now give the essential content of this at 

higher types. 

Proof. The only problem is to show that if F: C,, - C,, is discontinuous then ‘E is 

clemcntary in F and some elements of C,,. 

But if F:C,, -cc,, is discontinuous. then there is X~ 1 s in C’#: such that 

F(.Y-, )y F(s):we may as well assume all F(s, I’s distinct from F(s). but then there 

is a continuous map r: : C, -C,, where 

.Y if Q = An * 0 
g(a)= 

1 xi, where k is least i such that a(~ I+ 0 otherwise. 

WC can csplicitiy JC tine ‘E in terms of F and ,q_ and elementary typechanging 

rnap~, now complete the proof. 

80. The E-topology and sequential spaces 

1~ (S. J,) be an l.-space. A subset 0 of X is L-open ifl whcnevcr s,, $ s and 

.V t- 0. then (s,,) is cvcntually in 0. It is clc:ar that the collection of t-open sets is a 

topology on X. which wc call the L-lo/i ~Eqy. 

In a topological space MC define a notion of sequential convergence by x,, J x iff 

(x,,} is eventually inside each open set containing x. This does define an L- 

structure on the underlying set of the topological space. Indeed it induces an 

obvious functor from TOP to LSP which is clearly right adjoint to the functor 

induced by taking the L-topology. It is more to our purpose however to consider 

just those topological spaces which can be obtained from L-spaces by taking the 

I, -topology. They satisfy the following equivalent conditions on a topological space: 

(al 6’ is closed itf whcncvcr s,, 1 x and each x,, :G C’, then x E C: 



(b) 0 is open iff whenever x, ~ x and x E 0, then (x,,) is eventually in 0. 

The spaces satisfying these corditions were first studied by Franklin [&I in a 

purely topological context, and a e known as the sequential spaces. It is easy to 

set that we can identify SEQ th category of sequential spaces and continuous 

maps with a subcategory of LS (by the fun&or described at the start of this 

paragraph). The following propoition is then immediate. 

Proposition 10.1. SEQ is a reflr tive subcategory of LSP. 

Proof. Trivial. 

Corollary 10.2. SEQ is cnrtesi closed. 

Proof. It suffices to check that I,re left adjoint functor “taking the I,-topology” 

prcservcs products (which is c.,,vious) and then apply a simple argurncnt in 

:ategory theory. (A simple “re4ction theorem”.) 

Remark. SEQ is of course a ‘coreflectivc hull” of TOP, and the proof of 

Corollary liI.2 is in fact by a qute general method for showing that certain such 

corcflective lwlls arc Cartesian osed. a more complicated general method is in 

Day [is]. who proves a very F ng reflection theorem for an arbitrary (i.e. not 

necessarily Cartesian) closed c gory. 

We say that an L-space cW,$) is sequentially Nausdofl iff no sequence 

converges to two distinct points, a topological space is sequentMy Hausdarff iff 

the corresponding notion of s,:quence convergence is. A &lausdorfi space is 

sequentially Hausdorff, but no’ vice-versa. 

Our next result is that if tl L-topology on an L-space (X,l> is sequentially 

flausdorti, then x,, 1 x in thL -space sense if? x,, J,x with respect to the L- 

topology. So that there should :e no confusion, we use “‘1” only in the L-space 

sense in the statement and proc,f of the proposition. 

Proof. The only problem is implication from right to left. 

Suppose then that (x,,) doez ,not tend to x. By axiom (3) of the definition of 

L-space; we can take a subse(luence (y,,) of {x,,), none of whose subsequences 

converge to x. We may assu -a” that x does not appear amongst the Y,~‘s (by 

omitting a finite initial segm (rt of (y,,} if necessary). If the set (y,, ( II EN} is 

L-closed, its complement is 2 L-open set 0 containing x, such that (x,,} is not 
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eventually in 0. On the other hand, if {y,, 111 EN) is not L-closed, there is a 

sequence (z,,) of elements of {y, 1 n E N} such that z,~ 1 z but z is not among the 

y,,‘s. Since the L-topology is sequentially 3ausdorff, no sequence converges to 

two distinct points, so (z,,} does not converge to any element of (y,, 1 n EN), and so 

no y,,, can appear infinitely often in the sequence (z,,). Thus we can pick a subsequ- 
ence (w,,) of (z,,) which is also a subsequence of (y,,). Then w,, &z but (w,,) does 

not converge to _Y (by our choice of (y,,). Thus z and x are distinct. Now we can 

see that {w,,/rt E N} U(z) is closed: for otherwise there is a sequence (s,) of 

elements from the set {w,, 1 n E N) such that s,,Jt and t is distinct from z; but as 

above (s,,) may be chosen to be a subsequence of (w,,), contradicting the fact that 

(X, 4) is sequentially Hausdorff. Thus in the case (y,, ( n E Nj not closed, the 

complement of {w,, 1 M E N)U{z} is an L-open set containing x with (x,,) not 

eventually inside it. This completes the proof. 

Theorem 10.4. The category of sequentially Hausdofl sequerztid spaces is 
isomorphic to the category of sequentially Hmsdorfl L-spaces. 

Proof. Proposition 10.3 shows that if you start with a sequentially Mausdorff 

L-space. reflect into SEQ and inject back in LSP, yoti get back where you started. 

The isomorphism of categories now follows from adjointness, Proposition 10.1. 

‘Theorem 10.1 indicates that there is a purely topological approach to the 

continuous functionals. We have but to check that the L-topology on the 

countable functionals is sequentially Hausdorff; it is in fact Hausdorff as one can 

either prove directly as we did Corollary 2.5, or by Corollary 2.5 together with 

Proposition 11.1. Then we simply consider the sub-ccc. of SEQ generated by the 

mttural members with the discrete topology. This clearly gives a category 

isomorphic to 2 (as defined iir Section 10). This approach has however a 

limitation which we discuss in Section 11: the sequential topology is not 1st 

countable for types 2 and above. 

Rewarks. (1) It is easy to describe the topology on the categorical product and 

function space in SEQ. The sequentid cwrcfk~tion of a space is obtained by taking 

the L-topology corresponding to the notion of sequential convergence naturally 

defined on the space. The product in SEQ of two sequential spaces is then the 

sequential coreflection of the usual product. (That it is not just the usual product 

follows from the work of Section 7 in view of Proposition 11.1.) To obtain the 

function space in SEQ, one can take the sequential coreflection of any of the 

following topologies: 

(a) that with subbasis {[A, O] ) A sequentially compact and 0 open); 

ik) that with subbasis 

([A, 011 A thz image of a compact Hausdorfi. and 0 open\; 
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(c) that with subbasis 

{LA, 01 1 A of f orm {x,, ) n E N)U (x} where X, i x and 0 open}. 

(2) A careful analysis of the compact subsets of the Fi>aces of continuous 
functionals shows that SEQ is k no means the unique cartesian closed category 
of topological spaces from whicr, one can define the continuous functionals. For 
example they could equally we’ be obtained from the more familiar category of 
compactly generated Hausdort 

c 

-paces. 

11. Failure of first countability 

First we prove an equivalence which we will use tacitly throughout the proof of 
our main result. 

Proposition 11.1.. IA (X, 3) I 

( 
art L-space and /et (X, F) be the corresponding 

lilrer space as defined by (1 j (1~ ktion 9. Then 0 is L-open iff 0 1s open in the 
induced topology on (X,F). 

Proof. First suppose 0 is open 
we have [x,,JJ X. so 0 ~[x,,], I 

1 

I the induced topology. For any x, 5 x with x E 0, 
t is (x,) eventually in 0. Thus 0 is L-open. 

Conversely suppose 0 is ._ 3pen. If @ix, XEO then 4zzlr where zli is 
countable and ‘YJ X. If 0 is not n [PI, there is (x,,) such that [x,,] z[V?] and (x,) 
is not eventually in 0: this coriradicts the fact that 0 is L-open, as by (1) of 
Section 9, s,, 1 X. Thus 0 is in [v] and so in [@]. Thus 0 is open in the induced 
topology. 

Corollary 11.2. Stq-~posr (X, F) lnd (Y, G) ~YCJ rhe corresponding filter spaces of 
L-space,s. whose induced topolog. is sequentially Hausdorff. Then a map f : X-+ Y 
is continuous wirh respec( to the ,~Jter structures ifl it is continuous wifh respect to the 
induced topologies. (In particula; this conclusion holds for the spaces of countable 
functionals.) 

Proof. By Theorems 9. I and 10.4 and Proposition II_ 1. 

We now establish a limitation of any purely topological approach to the 
continuous functionals (such as that via SEQ in Section 10). Any such approach 
involves topologies which are not ist countable. 

Proposition 11-3. Slippose 3- is a topology on Cz such that the maps from C, lo C,, 
and from C, to C, continuous with respect to T, are just ihose cotztinMous with respect 
to the filter sfructure. Then 7 is not 1st countable. 
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Proof. In the proof, we USC f,, J.f in C, to mean (f,,) tends to f with respect to the 

standard L-structure on C2. First we note that if T is to give the right maps from 

C, to C,. then x,J.f will imply that (fi,) is eventually in all members of T 

containing f. 

We proceed to show the converse. that if (i,} does not converge to f in C,, then 

there is 0 f 7 such that f~ 0 but (f,,) is not eventually in 0. Suppose then that 

(f;,} does not tend to f, and without loss of generality that none of its subsequences 

do so either. Pick x,,Jx. in C, such that !f,,(x,,)) does not converge to f(x). Now 

since f’ is continuous, there is /?z E M such that for all n > ~II, f(x,,‘l = f(x). Consider 

A = (,Y,, 1 II > m} U{N}, which is clearly compact in C,. By Propositicn 2.7. 0 = 

[A, (f(.~))j is open in the induced topology on C,. But C:!.Oo= 

U {LA. lk11 t f-(x) # kS is also open by Proposition 2.7, so 0 is clopen. But now if T 

is to give the right maps from Cz to C,,, 0 must be in T. However while fE 0. 

clearly (f,,} is not eventually in 0. 

WC have now shown that 7 must define the standard notion of scqucntial 

convergence on C,. Thus 7 is included in the induced topology. (which must be 

the sequential coretlection of 7). Now suppose that f~ C, has a countable basis 

{O, 1 i EN} for its neighbourhood system in 7. By what we have shown, 
if [f,,] 1 [{O, / i EN)], then f,, &f. But by (1) of Section II, this means that [{O, 

1 ;~N)]if in th e usual filter structure on C,. Then there will be non-trivial basis 

sets U,Z in [{O, 1 i EN)], contradicting Lemma 7.2. 

Proof. By TheoI-c>rn f 0.4 and Prepositions II+ i and 11.3. 

Remark. One can prove Corollary 1 1.4 more directly by observing that the 

L-topology on C1 is not Fr@chet (cf. Franklin [Xl). Indeed C2 has such a pleasant 

structure that 3ne can readily find for each countable ordinal (Y, a set A,, E C, 

such that one must apply the operation “add all sequential limits” exactly Q: times 

to A,, to obtain the closure of A,, in the L-topology. 

ilappendix A. The recursion theory (general discussion) 

The aim of this section is to motivate briefly the definition of the recursion 

theory which I believe is the natural one to consider on the continuous function- 

ais. The familiar dcfkitions of a recursion theory are given by schemes, that is, by 

an inductive definition of the computation relation “{e}(x) = y”. The definition 

discussed here does not arise in this way, however. Rather, the fundamental 

notion turns out to be the degree-theoretic one “x~~,y”, and no notion of 

computation on the conrirruous funcrionals turns out to be involved in this. Of 

course there is a corresponding notion of partial recursive continuous functional 

(Feferman [7], Hyland 1131) but it has no priority. 



This is not the place to discuss (the range or applicability of) the notion of 
constructivity from the classical point of view, but the reader will be familiar with 
its typical feature, the interpretation of 

Wd@yUW, Y) 

where the variables range over real numbers. (In the usual case R(-, -) becomes 
recursive as a relation on the real number generators.) The natural way to regard 
the situation is to suppose that x is given by a countable sequence of successively 
better finite approximations and that we are to use these effectively to determine 
approximations to an appropriate y. To make such an interpretation precise, one 
must answer the following questions: 

(1) What finite approximations should we consider, and what collections of 
finite approximations (i.e. codes) should determine elements‘?; that is (adopting 
the terminology of Kreisel 1291) what choice of data should we make? 

(2) what is the appropriate notion of effective operator on the data‘? 
(3) should the interpretation be extensional or intensional? 
Question (3) is of great general interest: experience shows that 1 +ere are p-eat 

advantages in dropping extensionability (for example there ar:z modulus of 
continuity functionals for the intensional continuous functionals in contrast. to 
Proposition 7.7). Though in order to develop a theory appropriate for the 
continuous functionafs, we consider an extensional interpretation (i.e. we will 
demand operators respecting the obvious equivalence relation on codes), this has 
no bearing on the appropriate answer to question (3) in the general context of 
constructivity. (Incidentally, an abstract categorical approach to irrtensional func- 
tionals would be of great value; category theory is perfectly adapted to the 
considerations required. Of course such an approach could not be based Jirectly 
on categories such as PIE.) 

The above considerations suggest a basic form for a definition of “recursive in”: 

x is recurs~ue in y with index e iff the operator with index e, applied to data 
determining y gives data determining x. 

When we first introduced the notion of a filter space, we said that one shou!d 
think of filters con jerging to points as ways of approximating to them. We now 
propose to make same real use of this idea. Typically, of course, a convergent 
filter @ is too big for the application of the ideas of effectivity provided by 
ordinary recursion theory. What is more, @ may converge to x’ but contain 
elements U of which x is not a member; such a U would seem inappropriate as a 
finite approximation to (or bit of information about) x, 

We dispose of the first difficulty by considering as 3ur basic objects of study, 
fiber spaces (X, F;) with explicitly enumerated bases ‘% = { Ui 1 i E N). As data for 
determining an element x of X, we consider codes for filter bases included in % 
and converging to x. 



As for the second difficulty the approach we shall adopt is to lcgislatc it out of 

existence. We shall only consider codes for filter bases converging to x all of 

whose members contain x. (In the special case when the basis is regular there is no 

nc~d for this tcgislation: regular bases arc forth co~khxxl in Appendix H.) 

Krrnclrk. It is worth noting at this point that the ust’ of non-topological filter 

spaces forces one to consider many codes for an element. Of course we are 

aheady used to this: the representations of reals by Cauchy sequences of rationals 

cwith given rate of convergence) and by oscillcrting decimals both involve non- 

uniqueness of representation. (Decimals are not worth considering as addition is 

not continuous on the product topology-a good example of the itnportance of 

question (If above.) Since spaces may admit a natural filter structure with 

countable basis, which is well-related (via the induced topology) to a more usual 

non- Ist-countable topology, the theory we are about to describe has wide 

application. 

Non-uniqueness of representation means that while our cfclinition of relative 

recursion, will be parasitic upon ordinary recursion theory. it will he a non-trivial 

extension of that theory. 

We have sa.id that as data for determining an element of a filter space with 

basis, we wilt be using codes for filter bases. Before we hav>c decided an the 

precise form of these codes, we can agree tipon the appropriate notion of effective 

olxx-ator on the data, For suppose that @ is a filter base converging to x; if U, is 

rot in @. it may still be that U, is information about x (i.e. that x E Ui). But this 

:nakes it ridiculous to use negative information about the data for x. Similarly. it 

would be siliy to attempt to compute such information about data. it is only the 

positivje information that matters. Now the standard ei-fective operators taking 

positive information to positive information are the emlmern!iun oprrafors (or 

monotonic 2:‘: operator;) as described in Rodgers [23], We adopt these as our 

uffective operators on data. 

There remains the question what codes for the filter bases should be cansi- 

dered. Suppose. we have a filter space (X, F) with basis Q = {U, ( i EN). We could 

(i) code a canonical filter base @, uniquely as (i j U, E a}, or 

iii) allow any set I cr: N such that (U, 1 i E 1: is @, as a code for @, or 

(iii) allow any set I c N such that {Vi / i E 1) is a filter base generating the same 

fitter as @, to be a code for @. 

It turns out, however, that we do not simply need to make a choice here; we have 

in fact to change our point of view slightly. 

How this comes about can be best shown by looking mute closely at our choice 

of enumeration operators as our effective operators on data. An enumeration 

operator is determined by an r.e. set W, (which we identify with the operator), 

with application (as in Scott [25]) defined by, 

W,(I) = {m (for some n, e,, E I and (II, Y~I)E WJ for IE IV, 



(where the enumeration of finite sets (e, ! n. EN) and pairing functions (, ) are as 

described at the beginning of Section 4). Suppose now that we have filter spaces 

(X, I;) and iY, G) with bases Ou and K and suppose we have an enumeration 

operator W,. taking data for elements of X to data for elements of Y in such a 

way that it determines a total map from X to Y. Then we should like this map to 

lx a recursive clement (i.e. one recursive in something trivial) of (TX, Y], [F, G]) 

with the canonical basis for a function space. Let us suppose that for 42 = 

{ CJi 1 i EN], there is an effective map M such that, 

(in other words % is efiectiuely &sspcl under finite intrrsection). (Note that this 

always holds for the canonical basis for a function space.) Then it is easy to 

convert our enumeration operator W, to an r.e. code fcr a filter base converging 

to the corresponding map from X to Y, in the sense of possibility (iii) mentioned 

above. But however we may have coded the data for elements of X and I’. we 

couftf not hope to provide more restrictive codes in the sense of (ii) or (i) above. 

Thus WC see that WC must allow more or less arbitrary codes. But now a problem 

arises. For WC cannot turn an arbitrary r.e. code for an element of [X, Y] into an 

enumeration operator WC, of the sort we started with. There is no need for such a 

code to give information relevant to ull codes for canonical filter bases on X; it 

may give information for just some codes for each filter base. What this shows is 

that we must wake the clzoice of data par-1 of the sfructure we consider. 

The most appropriate situation seems to be this. We consider a filter space 

(X, F) with enumerated basis % = (Ui 1 i E N).. effective map M., giving the 

intersection of elements of %! as above, and a set C, E P(N) such that 

(i) each I in C,.. is closed under MO, ; 
(ii) if I is in C,.-, then {U, 1 i E I$ is a filter base converging to some member of 

X, and if {Ui 1 ~EI)J,s, then .YE Ui for all i~1; 

(iii) the collection of filter bases (U, ] i E I) for I in C,;, generates the filter 

structure F (i.e. a filter is in I; iff it includes (C_& 1 i E I) for some II E C,:). 

(iv) if IEC~.-,JzI,JcIosedunder n/iand{U,(j~P)ix andxEUi for a1ljE.J 

then JE C,. We call such a structure ((X, F), ‘X2. Msu, C,;) a coded filter space. In a 

coded filter space, we write “1J.x” for “I E C,; and {Vi 1 i E I}J. s”. 

The morphisms between coded filter spaces are just those between the underly- 

ing filter spaces. Thus we have a category of coded filter spaces. Given two coded 

filter spaces ((X, F), 011, KL, C,.) and ((Y, G), -V, MI-, C,) it is easy to see how to 

construct their product in the category. To form the function space we take 

(<lx, Yl, tE G]), K M%u, CrF.G1l where 
(a) %V is the canonical basis for the function space enumerated by setting 

W, = l-l t[U, Vi1 I ti, i)E ~5, 

(b) if M,,( k, I) = n, then ek U e, = e,, and 

(c) K E CIF.GI iff for some f~ [F, G] whenever IE C, and IJ. x, then K(l)$f(x), 
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(here K(I) is defined to be (j I(ZIi)@k)(iE I & k E K & (i,j)E Q)]), and K is 
closed under Miv. 

It is easy to check that the function space as defined is a coded filter space, and 
we obtain the following proposition. 

Proposition. The category of coded filter spaces is cartesian closed; the function 
space as defined provides the right adjoint to the product. 

In the context of coded filter spaces, we give a precise definition of “recursive 
in”. Let ((X. F), 94 M,,, C,) and ((Y, G), V, Ml;., C,) be coded filter spaces, Let x 
be a member of X and y a member of Y. 

Definition. x is recursive in y with index e (tacitly with respect to the coded filter 
spaces) iff whenever 1J y then W,(l)J x. 

Definition. x is recursive (tacitly with respect to the coded filter space) iff there is 
an r.e. I such that 14 x. 

Remarks. (I) The above framework enables o;!e to consider the constructivity of 
rnaily operations in mathematics in a uniform way. I believe that the very general 
vi?w taken above is the correct one. The reader who finds the definitions 
somewhat ad hoc should be reassured that they also appear naturally in the lattice 
theoretic approach to the continucus functionals. A paper on this is in prepara- 
tion. Of course for the continuous functionals, the definitions can be greatly 
simplified. We discuss the simplified definitions in Appendix B. 

(2) It is clear how to give a definition of recursive equivalence of coded filter 
spaces. We have a typical situation in modern mathematics: a collection of 
structures (here filter spaces) on some of which we can put some additional 
structure (here giving rise to coded filter spaces); the additional structures 
determine special maps between the original structures (here the continuou:; maps 
which are recursive elements of thle canonical function space). The natural notion 
of equivalence of the additional structures is that the identities (in both directions) 
be such special maps. (As a typical example of this consider the procedure for 
pLtting a differential structure on a manifo!d). We let the reader formulate for 
himself the precise definition of recursive equivalence of coded filter spaces, and 
content ourselves with making a cautionary remark about the concept. In Section 
4 and later in Appendix C, we establish various properties of our specific 
enumerated bases for the continuous functionals; they are decidable and arc 
effective dense bases. These properties of a basis are not invariant under recursive 
equivalence of coded filter spaces. The technical importance of the properties are 
that thlzy can be used in the induction through the types. It follows from the 
existence of effective dense bases that we can effectively enumerate a (countable) 
dense subset of any space of continuous functionals. This latter fact is invariant 
under recursive equivalence of coded filter spaces and suffices (for example) to 
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establish quantifier-free axiom of choice for the continuous functionals. I3ut it 
appears too weak to be of much use for the induction. 

(3) The considerations in Hyland [I 11 about the recursion theory on general 
spaces are not sufficiently detailed. As a result the importance of taking the 
coding into the structure did not emerge there. 

Appendix B. Tbe intrinsic recur&m theory (on the continoous functionals) 

In this section we present some simpIe characterizations of the notions “recur- 
sive in” and “recursive” for the continuous functioPals. We start with a quite 
general result which shows that for filter spaces with decidable bases, we may 
disregard the rest of the structure of a coded filter space. 

Proposition 1. Let (X, F) and (Y, G) be filter spaces with enumerated buses % and 
v, 

(a) Suppose that % and V are decidable ahd closed under intersectio~z. L.11 
MOu, My, C,, C, be chosen so th,ai ((X, F), Q, M,, C,) and ((Y, G), -V, MS.-, C,;) ure 
coded filter spaces, (Note that there wild afways exist such choices.) Let x he in X 

and y in Y. 
Then x is recursive in y (in rhe sense of Appendix A) iff for some e, whenever 

@E C(y) and GE [y], then there is v’c [x] with WE F(x) such that, 

W,({jI ViE@})z{iI UiEq). 

(b) Fctrther. if %, Y above are regular, we can drop the stip7uIations ‘-@ s [y-i” 
and “Y S [x]” from (a). 

Roob. (a) is immediate on the existence of enumeration operators which acting 
.M I in C, (say) produce {i 1 U, E [{U, ) j E I}]) (and similarty for C,). (b) is just the 
characterization of Proposition 3.3(a). 

Kemurk. This proposition requires less than the full notion of decidability as 
defined in Section 4. 

Proposition I shows that for decidable and regular bases, recursion can be 
defined in terms of the canonical filter bases. By Proposition 3.3(a), the elements 
U of a regular basis may be regarded as pieces of information which are about 
any x such that UE @ and @ix, in the obvious sense that x is in U. 

We have not introduced the continuous functionals as coded filter spaces, and 
since the bases we gave for them were decidable, we have no need io do so 
(though there is of course a natural way to do so). 

Definition. Consider the continuous functionals with the enumerated bases as 
defined in Section 4. Let .Y be in C,, and y in C,. x is recursive in y ifi for some e, 
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whenever  05 is a canonical filler basis converging to y, there is a canonical filter 

base ~ converging to x such that 

w..l/i j u ;  c 05}~ = t i t  u'; ,~ q,}. 

x is recursive iff for some canc.nical filter base 05 converging ~o x, {i I U" e 05} is 

r.c.. 

Corollary 2. However we may e¢tend the contimums functionals an filter spaces 
with enumerated bases (defined m Section 4) to coded filter spaces, the aboee 
de~.i t ions agree with those giecn in Appendix  A. 

The above definitions me  the core of what I have called the in,rip,sic pz'cursiou 
the~JO' on the continuous funclionals: the corresponding notion of a partial 
recursit~e (unctional is that of a partial map 

te l :  C.  ~ C ,  

where for x in C,, and y in C_. 

{e}{x} = 3' i0f y is reetxsive in x with index e. 

A 'mrvcv of our  present (rather slightt knowledge of this subject is in Hyland [ 13]. 

Fhe whole emphasis of the recursion theory we are discussing is on partial 
objects as codes (that is we only use positive informationL Our  next result shows 

that for the continuous functionals we could just  as well consider codes as total 
objects. 

Theorem 3. Let O 1,e a filter colwerging to f c C , ;  le~ {i l U'[ ~ O} be r.e. iq some set 
A:  then there is O* q 0 with O* a filter converging to f ~ C,~ and with {i ] U'[ ~ O*} 

recursive in A.  Moreover, from an r.e. index trelative to A )  for l i t  U'[ ~ O} we can 
effecticely find an i~dcx (relative to .~) (or the characteristic function of /i [ U'/c- 
0"1. 

Proof.  For simplicity wc consider only the unrclativized version. We may assume 
that ~r is of the form (n---~0) since (see Section 0) every type may be regarded as a 
product  of such types and of type ft. Let U?  e O if[ (3y)T(e ,  i, y) where T(-,  -. -) is 
the usual T-predicate.  Define a recursive set R by, 

( i , n ) ~ R  iff ( 3 y ~ i ) ( 3 x < ~ y ) [ T ( e , x , y ) &  U ' ( ( U ~ ) = l n } & t V k < i ) ( U ~ , ¢ U ~ ) ~ .  

(That R is recursive follows from the decidability of the bases for the conlinuous 
functionals.) 

R contains enough information to determine the behaviour  of O on any 
canonical filter base in (7.,, in the sense of the following trivial Lemma, 



We are about to define a (as we shall show) filter 0’“. For ease of presentation, 

WC adopt the notations and conventions of Section 4 to our situation: WC take %’ 

as the basis %, %” as the basis Y3 and %!!” as the basis %r, and shall use both 

notations in the same formula! Let {U:, 1 i E Nt be a recursive enumeration of the 

non-empty basis sets in olr’ (we mean that the set {a, 1 i E N} is recursi~ dj. We find 

such an enumeration by the decidability of the basis %=. 

We define 8% by definin:! the set K = {D / W,, E @*}. K is defined as follows: 

D c K iff whencvcr E c D, then one of the fallowing three alternatives holds: 

ti) U,, .= 9. 

(ii) V,: =Icd, 
(iii) V,, = (II) 

Lemma PI. If W,,, c_ W,, aid D E K. then D’ E K. 

Proof. Let E’E D’. Take the corresponding Ec D guaranteed by condition (:%*I. 

By (*XI if ti,,, j; (0 and Vf., #N, then I/,: # $J and V,:+ N. So in that case E satisfies 

(iii) of the above definition. There are then two possibilities. 

t 11 The unique i sucfl that U:, = Cr,-, is less than the k such that UA, = Ui.. 

Then (b) above for E ensures both (a) and (b) above for E’. 

(2) Otherwise. Then (a) for E ensures (a) for E’ while (b) for E’ follows fr:jm 

(aI and Cb) for E. 

This completes the proof of Lemma R. 

Lemma C. If D and D’ arc in k, so is 5 W D’. 

Proof. Let E c D U D’ be such that iif: # $A and V,? f N. 

Then we may assume (say) that U,,,l f (J and that V,,,l.l is a singleton III). 

D C> E satisfies (iii) above. U,, c U,,,,, so as in the proof of Lemma B. Y+T can 

split into two cases from each of which WC deduce (iii) for E. 

From the above Lemmas it ft;ilows that K is the set {D 1 W, E 0”) for some 

filter 0” c 63. 
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proof. Let the filter @ converge to g E C,. Pick by Lemma A, UT E Q, such that 

(i. f(R)jE R. 
Consider the set 

B = (u, 1 UT 2 VA, and ah 2 i and not 

(Vi .=I kNif cl:, G u:,, then (3r c a,)( U: 2 U;, & (r&J E R)fi. 

If uk E B, then there is a, <i such that 

Now choose U& i:l ip such that U& c UT and ak 2 i and for all ai c i Uza E U:,. 

(When T is trivial this Ts easy; otherwise make use of the regularity of the bases to 
show that the intersection of any canonical base is a singleton, while no set in the 

basis is a singleton.) According to the definition of K, [Uz,, {f(g))]E 63”. Hence 

@‘(@I converges to f(g), This completes the proof of Lemma D. 

The rest of the proof is now obvious: K is clearly recursive with index 

effectively obtainable from e. 

CoroHiary 4. Let x be in C, and y in C,. 
ia) x is recursive in y iff for smle recrmiue imfes e, wherlcver CD is a cmonical 

filter he converging to y, tltcre is a canojlicnl filler base W corluergirzg to x such dtal 

(b) x is recursive #for SOIW canonical filter base @ contlerging to x, {i 1 U,’ E @) 
i.\ recursive. 

WC can also show the equivalence of these definitions for the continuous 

functionals to ones in terms of associates (see Section 6). 

Corollary 5. Let x be in C,, artd y in C,. 

ia) x is recurskje in y ifffor some recursive index e, whenever a is art associate for 

y_ then ht~.{e}(a, n) is a~ clssoriare for x. 

tb) x is recursive iff it bus a recursiue associate. 

Proof. Both results follow easily from Theorem 3 in view of the constructions iq 
th,: proof of Theorem 6.1. Details are in Hyland [l l]. 

Reuuzrks. ( I) (b) is Kleene’s own definition. (a) is a definition suggested to me by 

Gandy; it initiated my research on the continuous function&. 

(2) The above results show that there is an embedding of the degrees of the 

continuous functionals (with respect to our notion of “recursive in”) in the Mass 

Prohlems of Medvedev (see Rogers [23]). 
(3) The results of this section apply to the Kreisef generalizations of the 

continuous functionals (see Section 1). 
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Appendix C. The recursive density theorem 

The aim of this appendix is to prove a result (Theorem 5) which is vital both for 
the study of recursion theory on the continuous functionals, and for applications 
to constructive mathematics. It is also needed to characterize the (total) effective 
operations in filter space terms (as indicated at the end of Section I), and to 
characterize Scarpellini’s notion of “constructive” (see Section 8). These results of 
this appendix hold equally well for the Kreisel generalizations of the continuous 
functionals (see close of Section 1). 

The proof involves effectivizing material from Section 4 in particular Proposi- 
tions 4.4 and 4.9. The reader will readily see how to give effective versions of 
other parts of Section 4 should he ever feel the need. 

In what follows, “effective” may be taken to mean “recursive in the sense of 
Appendix A”. In what fullows, we may assume that all buses are decidable; thus 
by Proposition 1 of Appendix B, the recursion theory is independent of choice of 
coding and depends only on the: bases. So there is no mention of coding in the 
definitions and results below. However only very weak conditions are needed on 
the notion of “effective”: in particular for cases %vhere it makes sense (e.g. any 
generalization of the continuous functionals in the sense of the discussion of 
Section I), “effective” could be taken to mean “primitive recursive” in the sense 
of Kleene [ 163. or even “elementary” in the sense of Gandy [9]. 

In discussing effective enumerations, we identify N with the filter space C,, with 
basis %“. An eflectr’ue nrap from N to (X, F) with decidable basis %Y is an effective 
(recursive) element of the space of (continuous) functions from N to (X, F). We 
denote by 2 the two element discrete space (with obvious decidable basis). 

Let Q = { Ui 1 i EN) be a decidable basis for (X, F). 011 is an effect& base iff 
there are effective maps a from N to (X, F) (with basis %j and b from N to 2, 
such that if Vi # $?J, then a(ijf U,, and b is the characteristic function of {i 1 U, # (4). 

The set {a(i) 1 i E U,J is then an effective dense subset of (X, F). (It is clear that the. 
closure of {o(i) ( i E 42,) in the induced topology is X.) 

An effectice cIopen set in (X, F) with decidable basis %, is an effective map from 
(X. F) to 2. There is an obvious filter structure and basis for [X, 21, the set of 
effective clopen sets. % is efiectiuely sepnrated iff there are effective maps 
(uniformly in k) ok:Nk3[X,21k such that if(il,. . ..~.)EN~ and a,(i,,...,i,<)= 
j[~clu,e~j ;h;r;nfx:f aJlgji ll G J’ d k, fi( UJ = ( 11 (i.e. the effective clopen set f; 

.l’ 
14 ,..., k} is such that n { Ui, 1 i E S) = @* then [[ic:s fi k 

everywhere zero. 
With the above definitions we can elfectivize the latter part of Section 4. We 

use the notation of that section. 

Proposition 1. [Effective version of Proposition 4,5]. Zf % is eficctiurly separated 
and ‘r/’ is an effective dense base, then +W is an efiectiue dense base. 

Prodtf. III the proof of Proposition 4.5, we can define f from the {O, / i E Zl and 
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the Y,+‘s explicitly (using definition by cases). But by assumption we can get the 

{Cl i i E I{ and hy y,,‘s effectively, so f is cffcctive and is defined uniformly from 

A.‘(‘If W,, = $4, it doesn’t matter whitt we associate with W,,.) 

Proof. Obvious given Lemma 4.6. 

Proof. Lemma -4.8 gives a uniform cffectivc method for finding the cffcctivc 

clcqxw sets needed to etiectivize the proof of Proposition 4.9. One obtains the sets 

needed by a complicated explicit definition using definitions by case5 (which arc 

c-fcctivc by our assumptions). 
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